Nozzle for a spray gun, nozzle set for a spray gun, spray guns and methods for producing a nozzle for a spray gun

Information

  • Patent Grant
  • 11865558
  • Patent Number
    11,865,558
  • Date Filed
    Monday, July 29, 2019
    4 years ago
  • Date Issued
    Tuesday, January 9, 2024
    5 months ago
Abstract
A nozzle for a spray gun, in particular a paint spray gun, has at least one material nozzle having a hollow portion for the passage of material to be sprayed; a material outlet opening; and a disk element extending radially from the material nozzle and having at least one passage opening. The nozzle has at least one first baffle disk which is arranged on the disk element and has an inner and an outer circumference. The first baffle disk is arranged on the disk element directly, in particular without a sealing element arranged inbetween. The disadvantages that separate sealing elements have to be specially produced and may be lost or damaged, can thereby be avoided. The nozzle according to the disclosure and related nozzle sets, paint spray guns and methods for producing nozzles are functionally reliable, have only few individual parts and a compact design and are quiet.
Description
FIELD OF THE DISCLOSURE

The disclosure relates to: a nozzle for a spray gun, in particular a paint spray gun; a nozzle set for a spray gun, in particular a paint spray gun; a spray gun, in particular a paint spray gun; a method for producing a nozzle for a spray gun, in particular a paint spray gun; and a method for producing a nozzle for a spray gun, in particular a paint spray gun.


BACKGROUND

Spray guns, in particular paint spray guns, operate with different pressurization methods. Conventional spray guns operate at relatively high spray pressures of several bar. In what are referred to as HVLP guns, the internal nozzle pressure is at maximum 10 psi or 0.7 bar, as a result of which transmission rates of far more than 65% are achieved. Compliant spray guns in turn have an internal nozzle pressure of more than 10 psi or 0.7 bar, but likewise achieve a transmission rate of more than 65%.


The internal nozzle pressure of the spray gun is understood as meaning the pressure which prevails in the air cap of the spray gun. The atomizer-air region is frequently separated here from the horn-air region, and a different pressure can prevail in the atomizer-air region than in the horn-air region. However, the pressures in the atomizer-air region and in the horn-air region can also be identical. The internal nozzle pressure can be measured, for example, with what is referred to as a test air cap. This is a special air cap which is arranged on the spray gun instead of the customary air cap.


The test air cap generally has two manometers, one of which is connected to the atomizer-air region via a bore in the test air cap and the other is connected to the horn-air region via a further bore in the test air cap.


According to the prior art, the head of a spray gun, in particular paint spray gun, in particular compressed-air-atomizing paint spray gun has a paint nozzle which is screwed into the gun body. The front end of the paint nozzle frequently has a hollow-cylindrical spigot, from the front mouth of which the material to be sprayed emerges during the operation of the spray gun. However, the front region of the paint nozzle can also be configured conically. As a rule, the gun head has an external thread, via which an air nozzle ring having an air cap arranged therein is screwed onto the gun head. The air cap has a central opening, the diameter of which is larger than the outer diameter of the paint nozzle spigot or the outer diameter of the front end of a conical paint nozzle. The central opening of the air cap and the spigot or the front end of the paint nozzle together form an annular gap. What is referred to as atomizer air emerges from said annular gap and, in the above-described nozzle arrangement, generates a vacuum on the end surface of the paint nozzle, as a result of which the material to be sprayed is sucked out of the paint nozzle. The atomizer air impinges on the paint jet, thus causing the paint jet to be torn into strands and strips. Their hydrodynamic instability, the interaction between the rapidly flowing compressed air and the ambient air and aerodynamic malfunctions cause said strands and strips to integrate to form droplets which are blown away from the nozzle by the atomizer air.


The air cap frequently furthermore has two horns which are diametrically opposite each other and protrude over said annular gap and the material outlet opening in the outflow direction. Two supply bores, i.e. horn-air supply ducts, run from the rear side of the air cap to horn-air bores in the horns. As a rule, each horn has at least one horn-air bore, but each horn preferably has at least two horn-air bores from which the horn air emerges. The horn-air bores are generally oriented in such a manner that they point toward the nozzle longitudinal axis in the outlet direction downstream of the annular gap, and therefore the “horn air” emerging from the horn-air bores can influence the air which has already emerged from the annular gap or the paint jet or the paint mist which has already been at least partially produced. As a result, the paint jet or else spray jet having an originally circular cross section (round jet) is compressed on its sides facing the horns and extended in a direction perpendicular thereto. This gives rise to what is referred to as a wide jet which permits a greater surface-painting speed. In addition to the deformation of the spray jet, the horn air brings about further atomization of the spray jet.


Air ducts are generally introduced in the gun body, i.e. the main body of the spray gun, wherein air from one of the ducts is directed, as described above, to said annular gap for use as atomizer air, and air from another duct is directed, as described above, to said horn-air openings for use as horn air. For this purpose, the air ducts open in an end surface of the head of the gun body and are directed to the annular gap or to the horn-air bores via an air-distributor arrangement. The air-distributor arrangement frequently comprises an air distributor ring which separates the atomizer-air region and the horn-air region from each other. Such a nozzle arrangement or air-distributor arrangement is disclosed, for example, in DE 20 2010 012 449 U1 and in Chinese utility model documents ZL 2014 2 0431026.7 and ZL 2016 2 0911120.1.


A disadvantage of the above-described prior art, namely the air-distributor arrangement having an air-distributor ring, is that the air distributor ring has to be produced as a separate component by the manufacturer of the spray gun and has to be fitted by the manufacturer or by the user of the spray gun. The user has to clean and change the separate component. Furthermore, there is the risk of losing the air-distributor ring, which makes the spray gun unusable until the user has acquired a replacement. In order to achieve simple sealing between the atomizer-air region and horn-air region, the air distributor ring is produced from plastic. As a result, however, it is susceptible to damage. Furthermore, the air-distributor rings according to the prior art are of relatively complex configuration.


US 2007/0262169 A1 cites Taiwanese utility model document TW 510253 which discloses a gun head structure, wherein the gun head discloses two annular grooves which are bounded by three encircling walls on the gun head. The described nozzle structure comprises a sealing disk b, a connection part c, a nozzle d, a spray head e and a screw nut f.


Both the gun head structure according to the prior art cited in the US document and the arrangement described in said US document itself comprise a multiplicity of individual parts having the disadvantages described above. Some of the individual components have a relatively filigree configuration. If one of the components is damaged, there is the risk that sealing between the atomizer-air region and horn-air region is already no longer provided, which has a negative influence on the spray jet. Furthermore, the gun head is relatively long because of the multiplicity of components fitted on one another.


The same advantages emerge from the solution disclosed in EP 0 846 498 A1. The nozzle of the spray gun described there is constructed from a plurality of individual parts, in particular a paint nozzle having a disk element which is arranged integrally thereon and extends from the paint nozzle in the radial direction, a separating ring which is placed onto the main body of the spray gun before the paint nozzle is arranged on the main body, wherein the disk element of the paint nozzle rests on the separating ring in the fitted state, and wherein a separate sealing ring is arranged between the paint nozzle and the separating ring.


SUMMARY

One aspect of the disclosure therefore relates to a nozzle for a spray gun, in particular a paint spray gun, a nozzle set for a spray gun, in particular a paint spray gun, and a spray gun, in particular a paint spray gun, which are all functionally reliable.


Another aspect of the disclosure relates to an efficient method for producing a nozzle for a spray gun, in particular a paint spray gun.


In an embodiment, a nozzle for a spray gun, in particular a paint spray gun, has at least one material nozzle having a hollow portion for the passage of the material to be sprayed and a material outlet opening, and also has a disk element extending radially from the material nozzle, wherein the disk element has at least one passage opening, wherein the nozzle has at least one first baffle disk which is arranged, in particular is arranged captively, on the disk element and has an inner and an outer circumference, and wherein the first baffle disk is arranged on the disk element directly, in particular without a sealing element arranged inbetween.


The fact that the baffle disk can be arranged “captively” on the nozzle means here that the baffle disk cannot be removed or cannot be removed without relatively great effort from the nozzle, and the removal is not envisaged. For example, the baffle disk can be adhesively bonded, riveted or welded to the material nozzle. A strong snap-in connection or strong screw connection can also render the baffle disk “captive”. The first baffle disk is particularly preferably pressed to the nozzle. An advantage of this configuration is that the user of the spray gun in which the nozzle according to the disclosure can be installed cannot lose the baffle disk. The disk element and the first baffle disk are connected directly to each other, i.e. the surfaces of the disk element and of the first baffle disk lie directly against each other in the connecting region. A sealing element which is separate or is arranged on one of the components, in particular is arranged fixedly, in particular injection-moulded thereon, can be dispensed with. The connection between the disk element and the first baffle disk is preferably configured to be substantially air-impermeable. This means that the air which impinges on the one side of the connection or of the connecting region cannot flow between the disk element and the first baffle disk. The intention at least is that the connection between the disk element and the first baffle disk is air-impermeable in such a manner that no relevant portion of air impinging on the connecting region flows between the disk element and the first baffle disk. The passage of small amounts which do not have any influence on the atomization during the operation of the spray gun are insignificant. Preferably, however, the region is fully air-impermeable. The disk element and the first baffle disk can also be configured integrally, as a result of which the first baffle disk can likewise be arranged captively on the nozzle, and the connection between the disk element and the the first baffle disk can be configured to be substantially air-impermeable. However, the disk element and the baffle disk are preferably configured as separate components.


Neither the disk element nor the baffle disk have to be configured cylindrically nor do they have to have a circular area. On the contrary, their width and length are merely greater by a multiple than their thickness. Otherwise, both in the case of the disk element and in the case of the baffle disk, the lower side can in each case have a different shape than the upper side, they can have different thicknesses at different points, they can have constrictions or extensions, they can have an elliptical or otherwise ovally shaped upper or lower side, or else can be configured in an angular manner as small plates. Furthermore, they can be provided with openings or grooves or can be equipped with or connected to further components. Preferably, however, the disk element is configured as a disk or ring with a circular area which is arranged concentrically about the nozzle or material nozzle. As a result, simple production of the nozzle and disk element unit is possible by means of turning. The same is true of the baffle disk. Both the disk element and the baffle disk can act as restrictors which, for example, restrict the flow region of air. Alternatively or additionally, the two components can act as an air-deflecting element or air-directing element. They can be used in particular for homogenizing an air flow or a plurality of air flows. They can serve to distribute an air flow or a plurality of air flows emerging from an air outlet opening or from a plurality of air outlet openings over a relatively large region such that the air flow is present less in a punctiform manner and instead in a more extensive manner. Exemplary embodiments for the components and the function thereof will be explained in more detail further below.


The disk element and the nozzle or the material nozzle can be configured integrally, i.e. they have been manufactured together from a single piece, for example by means of casting, machining, 3D printing or other methods. This means that the nozzle and the disk element do not have to be manufactured separately from each other and subsequently have to be connected to each other. They are preferably produced by turning. The disk element preferably has a plurality of passage openings, particularly preferably seven to thirteen, distributed over the circumference.


In an embodiment, a nozzle set for a spray gun, in particular a paint spray gun, has at least one nozzle described above and in more detail further below, wherein the nozzle set furthermore has an air cap with a central opening and at least one, preferably two, diametrically opposite horn-air bores.


The explanations above and below with respect to the nozzle apply correspondingly to the nozzle set according to the disclosure. In addition to a nozzle, the nozzle set has at least one air cap which can be configured as described at the beginning and can carry out the functions described above.


In an embodiment, a spray gun, in particular a paint spray gun, has at least one main body and a nozzle, in particular a nozzle described above and in more detail further below, with a first baffle disk, wherein the first baffle disk is arranged downstream of at least one radially outer air outlet opening in the main body in the direction of the nozzle longitudinal axis and is spaced apart from the at least one radially outer air outlet opening in the axial direction and at least partially projects over an at least one radially outer air outlet opening in the radial direction. “Axial direction” should likewise be understood as meaning a direction along the nozzle longitudinal axis. The air flowing out of the at least one, preferably two radially outer air outlet openings in the main body, said air preferably being the horn air, thereby impinges on the first baffle disk and is restricted, and distributed over the circumference of the first baffle disk and homogenized.


In another embodiment, a spray gun, in particular a paint spray gun, has at least one main body and a nozzle set, in particular a nozzle set described above and in more detail further below, wherein the main body has at least one radially outer air outlet opening, in particular two radially outer air outlet openings, at least one radially inner air outlet opening, in particular two radially inner air outlet openings, and a middle wall lying inbetween, and the nozzle set has at least one air cap with at least one horn-air supply duct, at least one horn-air bore and at least one central opening, wherein the nozzle set furthermore has a nozzle, in particular a nozzle described above and in more detail further below, with a first baffle disk having an inner circumference and an outer circumference and a disk element having at least one passage opening, wherein the spray gun, has at least one first air flow path which runs from the at least one radially inner air outlet opening, past the inner circumference of the first baffle disk, through the at least one passage opening of the disk element, into an air-cap chamber formed by the air cap and the nozzle, and through a gap which is formed by a front region of the nozzle and the central opening in the air cap, and/or wherein the spray gun has at least one second air flow path which is separated from the first air flow path and which runs from the at least one radially outer air outlet opening, past the outer circumference of the first baffle disk, past an outer circumference of the disk element, into the at least one horn-air supply duct in the air cap and through the at least one horn-air bore.


The above explanations with regard to the nozzle apply correspondingly to the spray guns according to the disclosure. In addition to a nozzle, the spray guns have at least one main body and preferably an air cap, which can both be configured as described at the beginning and can both carry out the functions described above. Of course, the spray guns according to the disclosure can have further components known in the prior art, for example a compressed-air connection, a paint needle, a trigger guard for opening an air valve and for moving the paint needle out of the material outlet opening of the material nozzle, a fan control for adjusting the ratio of atomizer air and horn air in order to shape the paint jet, an air micrometer for adjusting the spray pressure, a material-quantity-regulating device for adjusting the maximum volumetric flow of material, a material connection, paint ducts for directing the material to be sprayed from a material inlet to the material outlet, a hanging hook, an air nozzle ring for attaching the air cap to the main body and/or an an analogous or digital pressure-measuring device. The main body, which may also be referred to as the gun body, can comprise at least one handle and an upper gun body.


By means of the described configurations of the nozzle according to the disclosure, the nozzle set according to the disclosure and the paint spray guns according to the disclosure, separate sealing means or sealing elements, such as, for example, sealing rings, can be dispensed with. The disadvantages that separate sealing elements have to be specially produced, and may become lost or damaged, can thereby be avoided, and the nozzle according to the disclosure, the nozzle set according to the disclosure and the paint spray nozzles according to the disclosure are functionally reliable and have only few individual parts and a compact design. Furthermore, they are quieter than nozzles, sets of nozzles and paint spray guns according to the prior art, which is achieved in particular by the changed air flow paths.


In another embodiment, an efficient method for producing a nozzle for a spray gun, in particular a paint spray gun, is achieved by a method for producing a nozzle for a spray gun, in particular a paint spray gun, in particular a nozzle described above and more precisely further below, wherein the nozzle has at least one material nozzle having a hollow portion for the passage of the material to be sprayed and a material outlet opening, and also a disk element extending radially from the material nozzle, wherein the disk element has at least one passage opening, wherein the method comprises, at least as one step, arranging, in particular captively arranging, in particular pressing, a first baffle disk and a second baffle disk onto the material nozzle and/or onto the disk element, wherein the first baffle disk and the second baffle disk are arranged on the material nozzle and/or on the disk element in such a manner that the second baffle disk is arranged on that side of the first baffle disk which faces away from the material outlet opening and is spaced apart in the axial direction from the at least one passage opening in the disk element and at least partially projects over the at least one passage opening in the radial direction. “Axial direction” is understood here as meaning a direction along the nozzle longitudinal axis.


In another embodiment, the disclosure relates to a method for producing a nozzle for a spray gun, in particular a paint spray gun, in particular a nozzle described above and more precisely further below, wherein the nozzle comprises at least one material nozzle having a hollow portion for the passage of the material to be sprayed and a material outlet opening, and a disk element which is arranged on the material nozzle, in particular is arranged integrally thereon, and which has at least one passage opening, where the nozzle also has a first baffle disk with a second baffle disk connected integrally thereto, wherein the second baffle disk is arranged on that side of the first baffle disk which faces away from the material outlet opening, and is spaced apart in the axial direction from the at least one passage opening in the disk element and at least partially projects over the at least one passage opening in the radial direction, wherein the nozzle is produced integrally by means of 3D printing. “Axial direction” should also be understood here as meaning a direction along the nozzle longitudinal axis.


The advantage of production by means of 3D printing resides in particular in the fact that the entire nozzle can be produced in a single step. During the production by means of machining, such as turning or milling and subsequent boring, the component has to be inserted into different tools or machines and removed again after the machining. Furthermore, 3D printing makes it possible to produce shapes which can only be realized with difficulty, if at all, using conventional manufacturing methods, for example undercuts. In addition, virtually no material waste occurs. The nozzle produced by means of 3D printing can be produced in particular from plastic or from metal.


Advantageous refinements are also disclosed.


The first baffle disk of the nozzle according to the disclosure is preferably configured from continuous material between its inner circumference and its outer circumference, in particular said baffle disk does not have any passage openings. This means that air which impinges on the region between the inner circumference and the outer circumference of the first baffle disk cannot penetrate or flow through the first baffle disk. The intention is at least for the region to be air-impermeable in such a manner that no relevant portion of air which impinges on the region flows through the first baffle disk. The passage of small amounts which do not have any influence on the atomization during the operation of the spray gun are insignificant. Preferably, however, the region is completely configured from continuous material. The air which impinges on the region or the surface is therefore forced to be distributed over the circumference of the baffle disk and to flow through a gap, described more accurately further below, between the first baffle disk and an outer wall of the main body of the spray gun. As a result, the first baffle disk can act as a restrictor which restricts the flow region of the air. In addition, it can act as an air-deflecting element or air-directing element. It can serve in particular for homogenizing the air flow or the air flows. Furthermore, the air flow or the air flows emerging from an air outlet opening or from a plurality of air outlet openings in the main body of the spray guns and impinging on the first baffle disk is thereby distributed over a greater region, and therefore the air flow is present less in a punctiform manner and instead in a more extensive manner. However, the first baffle disk can have grooves or other depressions between their inner circumference and their outer circumference.


The disk element preferably has at least two, in particular at least three, contact surfaces, in particular contact surfaces arranged substantially at right angles to one other, and the first baffle disk likewise has at least two, in particular at least three, contact surfaces, in particular contact surfaces arranged substantially at right angles to one another, wherein the contact surfaces of the first baffle disk lie at least in regions against the contact surfaces of the disk element. The contact surfaces do not have to be joined together, but rather can be separated from one another, for example by grooves. Two or more contact surfaces which lie against two or more mating contact surfaces are advantageous in order to be able to configure the connection, i.e. the contact region, between the disk element and the first baffle disk to be substantially air-impermeable. If there are only two contact surfaces lying against each other between two metal components, undesirable ducts may exist between the two components because of the manufacturing, in particular because of tolerances and/or because of microstructures on the metal surface, through which ducts air can flow. In the case of a plurality of contact surfaces, the probability of a continuous duct forming is smaller than in the case of just one contact surface. In particular, a connection with contact surfaces arranged at right angles to one another is difficult for air to penetrate. For this purpose, the first component has a stepped region which corresponds to a corresponding stepped region of the second component. An outer diameter of the one component can correspond to the inner diameter of the region bearing thereagainst of the other component, or the outer diameter can be somewhat larger in order to achieve a press fit. Such a press fit is likewise conducive to the air tightness of the connection between the disk element and the first baffle disk.


A surface of the first baffle disk, said surface facing away from the material outlet opening, is preferably set back along an axis in relation to a surface of the disk element, said surface facing away from the material outlet opening. The axis along which that surface of the first baffle disk which faces away from the material outlet opening is set back in relation to a surface of the disk element, said surface facing away from the material outlet opening, here is the central or longitudinal axis of the nozzle. “At the front” is considered here to be the spray direction or the side of the material outlet opening of the nozzle, and “at the rear” to be the opposite side or opposite direction. The fact that a surface of the first baffle disk, said surface facing away from the material outlet opening, is set back along an axis in relation to a surface of the disk element, said surface facing away from the material outlet opening, means that a surface of the disk element, said surface facing away from the material outlet opening, is arranged further at the front, i.e. closer in the axial direction to the material outlet opening, than a surface of the first baffle disk, said surface facing away from the material outlet opening. As a result, additional space for the distribution of air can be provided between said surface of the first baffle disk and said surface of the disk element.


The first baffle disk of the nozzle according to the disclosure preferably has a greater outer extent than the disk element. This makes it possible to position the first baffle disk within the head region of the main body of a spray gun, in particular within an outer wall described in more detail further below, in particular in such a manner that the first baffle disk forms a gap together with the outer wall, while the disk element can be arranged at least in regions within an air cap having smaller dimensions or, together with an air cap dimensioned similarly to the outer wall, can form a larger gap than the first baffle disk with the outer wall, or can lie against a part of the air cap with a smaller diameter.


The first baffle disk or the disk element, preferably both, particularly preferably each have a circular outer circumference and are arranged concentrically with respect to each other. The production by means of turning and a uniform distribution of air over the circumference are thereby made possible.


The disk element preferably has at least one first surface facing away from the material outlet opening and a second surface facing away from the material outlet opening, wherein said first surface and second surface are connected in a stepped manner to each other via a third surface. This means that the three surfaces form a step. The step on the disk element preferably forms contact surfaces against which mating contact surfaces of the baffle disk, in particular of the first baffle disk, lie, i.e. the baffle disk is arranged on the disk element, in particular pressed thereon, in the region of the step. The baffle disk can likewise preferably have a stepped configuration in the contact region.


The disk element, in particular a surface of the disk element, said surface facing away from the material outlet opening, particularly preferably has a groove. The groove permits or facilitates the pressing of the baffle disk onto the disk element. Without the groove, at the point at which the groove is introduced, a radius would be present between the adjacent surfaces, which would prevent the baffle disk from being pressed onto the disk element.


The end of the nozzle that faces away from the material outlet opening preferably has an external thread for fastening in or to a main body, and/or a sealing element. The sealing element serves in particular for sealing a material-guiding region of an air-guiding region of the spray gun. The manner of operation of such a sealing element, which is also referred to as a nozzle seal, is explained further below. The nozzle seal is preferably composed of plastic and is preferably connected exchangeably to the nozzle, in particular the material nozzle.


In addition to the first baffle disk, the nozzle particularly preferably has at least one second baffle disk which is arranged on that side of the first baffle disk which faces away from the material outlet opening, which is spaced apart in the axial direction from the at least one passage opening in the disk element and which at least partially projects over the at least one passage opening in the disk element in the radial direction. Such a second baffle disk is advantageous in particular for low-pressure nozzles, in particular HVLP nozzles, since the second baffle disk permits further restriction of the air flow and contributes to the required limiting of the internal nozzle pressure to a maximum of 10 psi or 0.7 bar.


The terms low-pressure nozzle and—as explained further below—high-pressure nozzle are not intended here to mean that the respective nozzle is used only in classic low-pressure or high-pressure spray guns or that, by means of the use of the restriction nozzle, the spray gun becomes a classic low-pressure spray gun, in particular a HVLP spray gun, or a classic high-pressure gun. On the contrary, they should be understood as meaning only that the spray gun, when equipped with the high-pressure nozzle, has a higher internal nozzle pressure than if it is equipped with the low-pressure nozzle. The spray gun equipped with the low-pressure nozzle or the main body equipped with the low-pressure nozzle preferably meets the criteria of an HVLP spray gun, and the spray gun equipped with the high-pressure nozzle described further below or the main body equipped with the high-pressure nozzle meets the criteria of a compliant spray gun.


The second baffle disk particularly preferably has a smaller outer extent than the first baffle disk. As a result, when a nozzle is arranged in or on a main body of a spray gun, the first baffle disk can be arranged in the axial direction over at least one radially outer air outlet opening in the main body, while the second baffle disk can be arranged in the axial direction over at least one radially inner air outlet opening in the main body, wherein the radially inner air outlet opening is arranged further on the inside in the radial direction than the radially outer air outlet opening. The radially outer air outlet opening in the main body can be, for example, a horn-air outlet opening, and the radially inner air outlet opening can be an atomizer-air outlet opening. The main body preferably has two horn-air outlet openings and two atomizer-air outlet openings. Particularly preferably, in the view from the front of the head region of the main body, the two horn-air outlet openings and the two atomizer-air outlet openings each lie next to one another and a horn-air outlet opening lies in each case below an atomizer-air outlet opening.


On its side facing away from the material outlet opening, the disk element preferably has a recess or a groove in which the passage openings are arranged. This increases the distance between that side of the disk element which faces away from the material outlet opening and that side of the second baffle disk which faces said side, and the air which flows into said region has more volume available in order to be distributed.


The second baffle disk preferably has a circular outer circumference and is arranged concentrically with respect to the first baffle disk and/or with respect to the disk element. The second baffle disk and the first baffle disk and/or the disk element can as a result be turned in a simple manner as a single part. However, they can also turned as separate parts and connected to one another. Furthermore, the circular outer circumference and the concentricity ensure a uniform distribution of the air.


The first baffle disk and the second baffle disk are preferably configured integrally, in particular are turned from a single piece. However, they can also be configured to be connectable to each other, preferably captively. In particular, they can be pressed together and together can be pressed onto the nozzle, or the first baffle disk is first of all pressed onto the nozzle before the second baffle disk is pressed onto the first baffle disk. However, the nozzle and first baffle disk can also be configured integrally, and the second baffle disk can be pressed onto the unit. The abovementioned advantages with respect to integrity and captivity apply correspondingly here.


The outer diameter of the first baffle disk is preferably between 29.0 mm and 30.5 mm, in particular approximately 29.7 mm, and/or the outer diameter of the second baffle disk is between 20.0 mm and 21.5 mm, in particular approximately 20.6 mm. The outer diameter of the first baffle disk is generally preferably 1.3 to 1.6 times the size of the outer diameter of the second baffle disk.


The nozzle preferably has an air-directing disk which is arranged downstream of the at least one passage opening of the disk element in the direction of an axis, in particular the nozzle longitudinal axis. Said air-directing disk can carry out the same or similar functions as the baffle disk, in particular further restriction of the air flow can be achieved. The air-directing disk can preferably be connectively captively to the nozzle, in particular the material nozzle, in particular can be pressed thereon.


The described nozzle with the second baffle disk, the air-directing disk and/or the same dimensions of first baffle disk and/or second baffle disk is particularly suitable for use as a low-pressure or HVLP nozzle or in a low-pressure or HVLP spray gun since the air is restricted relatively strongly by said configuration.


By contrast, in addition to or instead of the second baffle disk, the nozzle can have, on the first baffle disk, an outer collar which is arranged on that side of the first baffle disk which faces away from the material outlet opening, and which is arranged on the outer circumference of the first baffle disk, and/or an inner collar which is arranged on that side of the first baffle disk which faces away from the material outlet opening and which is arranged on the inner circumference of the first baffle disk. The nozzle or the first baffle disk can have either only the outer collar, only the inner collar or both the outer collar and the inner collar. The inner collar and/or the outer collar can temporarily prevent the air impinging on the first baffle disk from flowing away directly inwards or outwards over the edge of the first baffle disk. Instead, a temporary limitation of the air in the radial direction takes place, and therefore the air is distributed in the circumferential direction over the circumference of the first baffle disk. A good distribution of air is advantageous for good atomization of the material to be sprayed or for a uniformly shaped spray jet.


The outer collar preferably has at least one oblique surface. This constitutes in particular an air-directing surface for the air which flows from the region between the outer and inner collar outwards in the radial direction towards the outer circumference of the first baffle disk.


In this exemplary embodiment, the outer diameter of the first baffle disk is preferably between 30.0 mm to 31.5 mm, in particular approximately 30.8 mm.


This nozzle with the outer and/or inner collar and the abovementioned dimensions of the first baffle disk is particularly suitable for use as a high-pressure or compliant nozzle or in a high-pressure or compliant spray gun. Said nozzle preferably does not have a second baffle disk and any air-directing disk, and therefore in particular the atomizer air is not as greatly restricted as in the case of a nozzle with a second baffle disk, which can lead to a higher internal nozzle pressure. Also in this embodiment, the disk element particularly preferably has on its side facing away from the material outlet opening a recess or a groove in which the passage openings are arranged. In the installed state of the nozzle, this causes an increase in the distance between that side of the disk element which faces away from the material outlet opening and the first front surface of the head region of the main body, and the air which flows into said region has more volume available in order to be distributed.


In all of the exemplary embodiments, the outer diameter of the disk element is preferably between 24.0 mm and 26.0 mm, in particular approximately 25.0 mm.


In addition to the components mentioned further above, the nozzle set according to the disclosure preferably furthermore has a needle for closing the material outlet opening of the nozzle. The air cap, the paint nozzle and the needle, which is also referred to as a paint needle, are the most important components for the quality of the spray jet and are frequently subject to the greatest amount of wear. It is therefore advantageous to provide a set in the form of the nozzle set according to the disclosure, which comprises said most important and most greatly stressed components. Furthermore, said components have to be readily coordinated with one another. The nozzle set according to the disclosure can furthermore comprise an air nozzle ring for attaching the air cap to a main body of a spray gun.


A spray gun according to the disclosure preferably has, in addition to the first baffle disk, a second baffle disk, wherein the second baffle disk is arranged downstream of at least one radially inner air outlet opening in the main body in the direction of the nozzle longitudinal axis and is spaced apart from the at least one radially inner air outlet opening in the axial direction and at least partially projects over the at least one radially inner air outlet opening in the radial direction. The air which flows out of the at least one, preferably two, radially inner air outlet openings in the main body and which is preferably the atomizer air thereby impinges on the second baffle disk and is restricted, distributed over the circumference of the second baffle disk and homogenized.


The main body of a spray gun according to the disclosure preferably has at least one outer wall and a middle wall, wherein the first baffle disk has an outer collar, wherein the first baffle disk, in particular the outer collar of the first baffle disk, forms a gap together with the outer wall of the main body, and/or that the first baffle disk has an inner collar which is arranged in the radial direction directly next to the middle wall of the main body, in particular directly next to an inner surface of the middle wall of the main body. The collar, in particular the outer collar, can have the above-described disadvantages, and/or the collars, in particular the inner collar, can serve for the alignment, in particular the coaxial alignment, of the nozzle in relation to the main body.


In the case of a spray gun according to the disclosure, in particular in the case of the spray gun according to the disclosure with the first air flow path described and the second air flow path described, the sealing between the first first air flow path and the second air flow path preferably takes place by means of at least part of the air cap, the disk element, the first baffle disk and the middle wall of the main body of the spray gun. By means of the configuration described, a separation or sealing between the first air flow path, which may also be referred to as first air-guiding region, and the second air flow path, which may also be referred to as second air-guiding region, is possible only with parts which are already present, i.e. parts which also carry out a different function than the separation of the two regions. No additional sealing element is necessary, and therefore the number of individual parts can be kept low so as to overcome the abovementioned disadvantages and to realize the abovementioned advantages. The air which flows along the first air flow path and which is used for atomizing material to be sprayed is frequently referred to as atomizer air. The air which flows along the second air flow path and which is used for influencing a spray jet is frequently referred to as horn air. The first air-guiding region is frequently referred to as atomizer-air region, the second air-guiding region as horn air region. Of course, the other spray guns according to the disclosure can also have a first air flow path and a second air flow path which can be configured in precisely the same manner as or similarly to the air flow paths described.


The spray gun according to the disclosure or the nozzle thereof can preferably have at least one second baffle disk which is arranged in the first air flow path. The second baffle disk can have the functions and advantages already described above.


Within the scope of a method according to the disclosure for producing a nozzle, when the first baffle disk and the second baffle disk are arranged on the material nozzle and/or on the disk element, a surface of the disk element, said surface facing away from the material outlet opening, preferably forms a stop for the first baffle disk and/or the second baffle disk. Therefore, no tolerances have to be taken into consideration in the arrangement, and instead the first baffle disk and the second baffle disk are, for example, pushed, screwed or preferably pressed onto the material nozzle or the disk element as far as possible, as far as the stop.


Before the first baffle disk and the second baffle disk are arranged on the material nozzle and/or on the disk element, the first baffle disk and the second baffle disk are preferably manufactured integrally. The integral manufacturing can take place, for example, by turning or casting or by means of 3D printing. The integrity has the advantages already described above.


The methods according to the disclosure for producing a nozzle can comprise, as further steps, arranging the nozzle in or on a main body and/or supplying the nozzle or the main body equipped with the nozzle or a spray gun equipped with the nozzle to a customer and/or using the nozzle, the main body equipped with the nozzle or the spray gun equipped with the nozzle.


The statements regarding the nozzle according to the disclosure, the nozzle set according to the disclosure, the spray guns according to the disclosure, the methods according to the disclosure for producing a nozzle and in particular the statements regarding the components can apply comprehensively, i.e. the statements regarding the nozzle according to the disclosure can also apply to the nozzle set according to the disclosure, to the first spray gun according to the disclosure, the second spray gun according to the disclosure or to the methods according to the disclosure, or vice versa, etc.


With the spray guns according to the disclosure, in particular paint spray guns, spray guns which are equipped with the nozzle according to the disclosure, spray guns which are equipped with the nozzle set according to the disclosure and spray guns which are equipped with a nozzle, which have been produced by means of the methods according to the disclosure for producing a nozzle, not only paint, but also adhesive or varnish, in particular a base coat and clear varnish, both based on a solvent and based on water, can be sprayed, as can liquids for the foodstuff industry, wood protection agents or other liquids. The spray guns mentioned can be in particular a hand-held spray gun or an automatic or robotic spray gun. Hand-held spray guns are used above all by tradesmen, in particular painters, joiners and varnishers. Automatic and robotic spray guns are generally used in conjunction with a painting robot or a painting machine for industrial application. However, it is entirely conceivable also to integrate a hand-held spray gun in a painting robot or in a painting machine.


The present disclosure can be used for all types of spray guns, but in particular for air-atomizing, in particular for compressed-air-atomizing, spray guns.


Spray guns which can include the present disclosure can have in particular the following further components, or can be equipped therewith: a handle, an upper gun body, a compressed air connection, a paint needle, a trigger guard for opening an air valve and for moving the paint needle out of the material outlet opening of the material nozzle, a fan control for adjusting the ratio of atomizer air and horn air in order to shape the paint jet, a micrometer for adjusting the spray pressure, a material-quantity-regulating device for adjusting the maximum volumetric flow of material, a material connection, paint ducts for directing the material to be sprayed from a material inlet to the material outlet opening, a hanging hook and/or an analogue or digital pressure-measuring device. However, they can also have further components from the prior art. The spray guns can be configured as a gravity cup gun having a paint cup which is arranged above the gun body and from which the material to be sprayed flows substantially by gravity and by negative pressure at the front end of the material nozzle into and through the paint ducts. The spray guns can, however, also be a side cup gun, in which the paint cup is arranged laterally on the gun body, and in which the material is likewise supplied by gravity and by negative pressure at the front end of the material nozzle of the gun. However, the spray guns can also be in the form of suction or hanging cup guns with a paint cup which is arranged below the gun body and from which the material to be sprayed is sucked out of the cup substantially by means of negative pressure, in particular by using the Venturi effect. Furthermore, they can be configured as pressurized cup guns, in which the cup is arranged below, above or laterally on the gun body and is pressurized, whereupon the material to be sprayed is forced out of the cup. Furthermore, the spray gun can be a pressure-vessel gun, in which the material to be sprayed is supplied from a paint container by means of a hose or via a pump of the spray gun.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be explained in more detail below by way of example with reference to the following figures, in which:



FIG. 1 shows part of a spray gun, partially shown in an exploded view, with an air distributor ring according to the prior art disclosed in Chinese utility model document ZL 2014 2 0431026.7;



FIG. 2 shows a top view of a head region of a main body of a spray gun according to the prior art disclosed in said Chinese utility model document;



FIG. 3 shows a sectional view of a head region of a spray gun according to the prior art disclosed in Chinese utility model document ZL 2016 2 0911120.1;



FIG. 4 shows an exploded view of an exemplary embodiment of a spray gun according to the disclosure or a spray gun having an exemplary embodiment of a nozzle according to the disclosure or a nozzle set according to the disclosure;



FIG. 5 shows a sectional view of a main body for an exemplary embodiment of a spray gun according to the disclosure or of a main body for use with an exemplary embodiment of a nozzle according to the disclosure or a nozzle set according to the disclosure;



FIG. 6 shows a sectional view of the head region of a main body for an exemplary embodiment of a spray gun according to the disclosure or a main body for use with an exemplary embodiment of a nozzle according to the disclosure or a nozzle set according to the disclosure;



FIG. 7 shows a perspective view of the head region of a main body for an exemplary embodiment of a spray gun according to the disclosure or a main body for use with an exemplary embodiment of a nozzle according to the disclosure or a nozzle set according to the disclosure;



FIG. 8 shows a perspective view of an exemplary embodiment of a nozzle according to the disclosure;



FIG. 9 shows a perspective view of the exemplary embodiment of a nozzle according to the disclosure from FIG. 8 from a different side;



FIG. 10 shows a view from the rear of the exemplary embodiment of a nozzle according to the disclosure from FIG. 8;



FIG. 11 shows a sectional view of the exemplary embodiment of a nozzle according to the disclosure from FIG. 8;



FIG. 12 shows a sectional view of the head region of an exemplary embodiment of a spray nozzle according to the disclosure or a main body equipped with an exemplary embodiment of a nozzle according to the disclosure from FIG. 8 or a main body equipped with an exemplary embodiment of a nozzle set according to the disclosure;



FIG. 13 shows a perspective view of a second exemplary embodiment of a nozzle according to the disclosure;



FIG. 14 shows a perspective view of the exemplary embodiment of a nozzle according to the disclosure from FIG. 13 from a different side;



FIG. 15 shows a view from the rear of the exemplary embodiment of a nozzle according to the disclosure from FIG. 13;



FIG. 16 shows a sectional view of the exemplary embodiment of a nozzle according to the disclosure from FIG. 13; and



FIG. 17 shows a sectional view of the head region of an exemplary embodiment of a spray nozzle according to the disclosure or a main body equipped with the exemplary embodiment of a nozzle according to the disclosure from FIG. 13 or a main body equipped with an exemplary embodiment of a nozzle set according to the disclosure.





DETAILED DESCRIPTION

The part of a spray gun 100, in particular paint spray gun, as is shown in FIG. 1, according to the prior art, has a main body 102 with various accessory parts. An air-distributor ring 104 is shown which can be arranged on the head region 103 of the main body 102. For this purpose, the air-distributor ring 104 has at least one, in the present example two, holding pins 106a and 106b which are inserted into two blind holes 108a and 108b, which correspond to the holding pins 106a and 106b and are illustrated in FIG. 2, in order to fasten the air-distributor ring 104 to the gun head or to the head region 103 of the main body 102 in such a manner that the wall 107 of the air-distributor ring 104 lies in a sealing manner against the front surface 110 of the head region 103 of the main body 102, as is shown in FIG. 3. The head region 103 shown in FIG. 3 is disclosed in Chinese utility model document ZL 2016 2 0911120.1. An atomizer-air outlet opening 114 in the front surface 110 of the head region 103 of the main body 102 lies here within the wall 107 of the air-distributor ring 104. From the atomizer-air outlet opening 114, atomizer air flows into an inner air-distributor chamber 116 which is formed by the air-distributor ring 104 and the main body 102. A horn-air outlet opening 112 in the front surface 110 of the head region 103 of the main body 102 lies outside the wall 107 of the air-distributor ring 104. From the horn-air outlet opening 112, horn air flows into an outer air-distributor chamber 118 of the air-distributor ring 104.


On a surface within the wall 107, the air-distributor ring 104 has a plurality of passages 120 which are distributed over its circumference and through which the atomizer air flows out of the radially inner air-distributor chamber 116. From the passages 120, the atomizer air flows to a plate 124 which is arranged integrally on the paint nozzle 122 and lies in a sealing manner against a wall 109 of the air-distributor ring 104, wherein the wall 109 is arranged on that side of the air-distributor ring 104 which faces away from the front surface 110 of the head region 103 of the main body 102. The plate 124 has a plurality of passage bores 126 distributed over its circumference. The air which is flowed through the passage bores 126 subsequently flows through an annular gap 130 between the central opening of the air cap 132 and the front end of the paint nozzle 122, which can be configured in the form of a spigot.


The outer air-distributor chamber 118 of the air-distributor ring 104 forms a gap together with an outer wall 134 on the head region 103 of the main body 102, through which gap the horn air flows out of the radially outer air-distributor chamber 118. From there, the air flows into the horn-air supply ducts in the air cap 132 and subsequently into the horn-air bores 136, from the openings of which the air emerges.



FIG. 4 shows an exploded view of an exemplary embodiment of a spray gun 1 according to the disclosure or a main body 2 which is equipped with an exemplary embodiment of a nozzle 24 according to the disclosure or a nozzle set according to the disclosure or is equipped with a nozzle produced according to a method of the disclosure and has further accessory parts. The spray gun 1 can have a cup 3 for receiving and dispensing the material to be sprayed, wherein the cup comprises a lid 3b with a valve stopper 3a, a cup body 3c and a plug-in sieve 3d. Furthermore, the spray gun 1 can comprise a material-quantity-regulating device 11, an air micrometer 13, a fan control 9, a trigger guard system 7 consisting of a trigger guard and fastening means, and an air connection which can be configured as a standard connection 4a or as a rotary-joint connection 4b. A nozzle arrangement for a nozzle set comprising a nozzle 24, which can comprise a material nozzle 40, can be arranged on the head region 6 of the main body 2. In addition, the nozzle set can comprise an air cap 76 which can be fastened, in particular can be screwed, to the head region 6 via an air nozzle ring 74. The head region 6, the nozzle 24 and the air cap 76 with an air nozzle ring 74 are arranged or can be arranged here coaxially along an axis Z which here constitutes the abovementioned central or longitudinal axis of the head region 6 of the main body 2, the central or longitudinal axis of the material nozzle 40, the central or longitudinal axis of the upper part of the main body 2 and the central or longitudinal axis of a receiving opening for receiving the material-quantity-regulating device 11.



FIG. 5 illustrates a sectional view of the main body 2 for a spray gun from FIG. 4, wherein the section is undertaken from the top downwards through the axis Z from FIG. 4. The main body which is shown is suitable in particular for use with a nozzle according to the disclosure, a nozzle set according to the disclosure and/or a nozzle produced according to a method according to the disclosure and/or can be used in particular for producing a spray gun according to the disclosure. The main body 2 has a multiplicity of bores; in the upper part of the main body 2 in particular a plurality of bores along an axis Z, which here constitutes the abovementioned central or longitudinal axis of the head region 6 of the main body 2. In the present exemplary embodiment, said axis is the same as the central or longitudinal axis of the material nozzle 40, which can be arranged in or on the main body 2, from FIG. 4 and the same as the central or longitudinal axis of the upper part of the main body 2 and the same as the central or longitudinal axis of a receiving opening 82 for receiving a material-quantity-regulating device 11, which is shown by way of example in FIG. 4.


As can be seen in FIG. 5, the middle wall 12 is clearly set back in the axial direction in relation to the outer wall 14, wherein the direction of the axis Z is meant by axial direction. The spray direction or the side of the main body 2 on which the material nozzle 40 from FIG. 4 can be arranged is considered here to be “at the front”, and the opposite side or opposite direction, here the side with the receiving opening 82 as “at the rear”. The fact that the front end of the middle wall 12 is “set back” in the axial direction in relation to the front end of the outer wall 14 means that the front end of the outer wall 14 is further at the front than the front end of the middle wall 12.


In the present exemplary embodiment, the inner wall 10 is only slightly set back in relation to the middle wall 12.


In FIG. 5, only a single atomizer-air duct 64 can be seen, as can a horn-air duct 66 which intersects a second horn-air duct. In addition, the sectional view shows part of a fan control air-distributor chamber 68.



FIG. 6 shows a sectional view of a part of the main body 2 for a spray gun 1, which part is shown in a different sectional view in FIG. 5. The section shown in FIG. 6 is again undertaken through the axis Z from FIG. 4, but along a section plane which is perpendicular to the section plane used in FIG. 5. In FIG. 6 here, it can be seen that the inner wall 10 of the head region 6 of the main body 2 of the spray gun 1 is set back in the axial direction by a distance d4 in relation to the middle wall 12. The middle wall 12 in turn is set back in the axial direction by a distance d3 in relation to the outer wall 14. In other words, the outer wall 14 projects over the middle wall 12 which, in turn, projects over the inner wall 10. The inner wall 10 and the outer wall 12 delimit a first air-distributor chamber 60, and the middle wall 12 and the outer wall 14 delimit a second air-distributor chamber 62. Towards the front, i.e. in the spray direction, the air-distributor chambers 60 and 62 are open, and, towards the rear, they are bounded at least in regions by a first front surface 16 and a second front surface 18, respectively. In the present exemplary embodiment, a groove 19 is introduced into the second front surface 18, the bottom surface of which groove bounds the air-distributor chamber 62 instead of the second front surface 18 to the rear in regions. The air-distributor chamber 62 is therefore bounded towards the rear, i.e. in regions, by the second front surface 18 and in regions by the bottom surface of the groove 19. The distance d5, i.e. the depth of the groove 19, i.e. the distance between the second front surface 18 and the bottom surface of the groove 19, can be, for example, approx. 1.5 mm to 3.0 mm. The distance d1 between the first front surface 16 and the front end of the outer wall 14 is preferably between 8 mm and 12 mm, particularly preferably between 9 mm and 11 mm. The distance d2 between the second front surface 18 and the front end of the outer wall 14 is preferably between 4 mm and 6 mm. The middle wall 12 here is set back in the axial direction by a distance d3, which is preferably approx. 2 mm to 4 mm, in relation to the outer wall 14. The inner wall 10 is preferably set back in relation to the middle wall 12 only by 0.1 mm to 1.0 mm. This is the distance d4. The exemplary embodiment, shown in FIG. 6, of a head region 6 of a main body according to the disclosure has a mating sealing surface 84 for a sealing element, not shown in FIG. 6. The distance d6 of said mating sealing surface 84 from the first front surface 16 is preferably approximately 1.5 mm to 3.0 mm. The first front surface 16 is set back in the axial direction in relation to the second front surface 18. In the present exemplary embodiment, the distance d7 by which the front surface 16 is set back in relation to the second front surface 18, is approx. 4 mm to 6 mm. In spray tests, the dimensions or dimension combinations mentioned have proven advantageous for good atomization quality, in particular in conjunction with a nozzle according to the disclosure, a nozzle set according to the disclosure and a nozzle produced according to a method of the disclosure.



FIG. 7 shows a perspective view of a part of the main body 2 from FIG. 5 and FIG. 6. In particular the groove 19 in the second front surface 18 can readily be seen here. The width of the groove 19 has approximately the same width as the second front surface 18. The width of the groove 19 or of the second front surface 18 should be understood here as meaning in each case the extent in the radial direction of the head region 6 of the main body 2 or else the distance between the middle wall 12 and the outer wall 14 in the radial direction. In the circumferential direction, the groove 19 extends over approximately 50% of the circumference of the second front surface 18, i.e. here over approximately 180%. In the present main body, the inner wall 10, the middle wall 12 and the outer wall 14 are each of circular configuration and are arranged concentrically with respect to one another and coaxially with respect to the axis Z from the previous drawings. The axis Z runs through the axis of rotation of the walls, and the walls run parallel to the axis Z.


The inner wall 10 here has an internal thread 70 into which a nozzle, not shown in FIG. 7, in particular a nozzle according to the disclosure or a nozzle produced according to a method of the disclosure, wherein said nozzles may comprise a material nozzle, which is frequently also called paint nozzle, can be screwed. The outer wall 14 here has an external thread 72 via which an air nozzle ring, not shown in FIG. 7, can be screwed with an air cap onto the head region 6 of the main body 2. By means of the internal thread 70 and/or the external thread 72, a nozzle set according to the disclosure or at least part thereof can be arranged on the main body. The middle wall 12 here does not have a thread. However, it is conceivable for the middle wall 12 to also be able to have an internal or external thread. Furthermore, it is conceivable that the outer wall 14 has an internal thread for the screwing-in of a component, in particular an air cap, and the inner wall 10 has an external thread for the screwing-on of a component, in particular a nozzle.


The first front surface 16 here has two radially inner air outlet openings 20a and 20b, the second front surface 18 here has two radially outer air outlet openings 22a and 22b. The diameter of the air outlet openings 20a, 20b, 22a and 22b corresponds virtually to the width of the front surfaces 16, 18 or of the groove 19 into which they are introduced. The available space can therefore be used for a maximum throughput of air.



FIG. 8 shows a perspective view of an exemplary embodiment of a nozzle 24 according to the disclosure. The nozzle 24 can have at least one material nozzle 40 with a material outlet opening 28 and a portion for the fitting of a tool, in the present case a hexagonal stub 41, and a disk element 32 with a front surface 34 and a conical surface 35. The front surface 34 here has a plurality of passage openings 36, preferably seven to nine, distributed over the circumference. The material nozzle 40 and the disk element 32 are preferably configured integrally. Arranged thereon, preferably arranged captively, particularly preferably pressed thereon, is a first baffle disk 30 which has a larger outer circumference than the disk element 32. Arranged in turn on said first baffle disk 30, preferably integrally arranged, is a second baffle disk 42 which can be seen in FIG. 9 and has a smaller outer circumference than the first baffle disk. The second baffle disk is arranged on that side of the first baffle disk 30 which faces away from the material outlet opening 28. Like the first baffle disk 30, the second baffle disk 42 is also configured annularly with an inner and an outer circumference. The inner circumference of the second baffle disk 42 does not extend in the radial direction as far as the external thread 46 of the material nozzle 40, and therefore there is a gap between the inner circumference of the second baffle disk 42 and the external thread 46 of the material nozzle 40. The second baffle disk 42 is spaced apart from the passage openings 36 in the axial direction, i.e. in the direction of the central or longitudinal axis of the nozzle 24.


In the radial direction, the second baffle disk 42 virtually completely projects over or overlaps the passage openings 36, as can readily be seen in FIG. 10. In addition, the material outlet opening 28 and the baffle surface 30a of the first baffle disk 30 can be seen in FIG. 10. In the present exemplary embodiment, the first baffle disk 30 and the disk element 32 each have a circular outer circumference and are arranged concentrically with respect to each other. On its side facing away from the material outlet opening 28, the disk element 32 preferably has a recess or a groove in which the passage openings 36 are arranged. This increases the distance between that side of the disk element 32 which faces away from the material outlet opening 28 and that side of the second baffle disk 42 which faces said side, and the air which flows into said region has more volume available in order to be distributed.



FIG. 11 shows the design of the exemplary embodiment of a nozzle 24 according to the disclosure in a sectional view. It can be seen that the material nozzle 40 with its material outlet opening 28 and the disk element 32 are configured integrally. On a surface 32a facing away from the material outlet opening 28, the disk element 32 has an encircling groove 33 which permits or facilitates the pressing of the first baffle disk 30 onto the disk element 32. The first baffle disk 30 has an inner circumference and an outer circumference, wherein the outer circumference of the first baffle disk 30 is larger than the outer circumference of the disk element 32. The inner circumference of the first baffle disk 30 extends approximately as far as the passage openings 36 of the disk element 32. The second baffle disk 42 is arranged integrally on the first baffle disk 30.


An inner collar 43 can be arranged inbetween. The first baffle disk 30, the second baffle disk 42 and optionally the inner collar 43 here form a Z shape. On its side facing the material outlet opening 28, in particular in the region of the inner circumference, the first baffle disk 30 can have a cutout such that a step shape is formed which can form the contact region between the first baffle disk 30 and the disk element 32. On its side facing away from the material outlet opening 28, in particular in the region of the outer circumference, the disk element 32 here likewise has a step which forms the contact region between the first baffle disk 30 and the disk element 32. The disk element 32 and the first baffle disk 30 are connected to each other directly, in particular without a sealing element arranged inbetween, and the connection between the disk element 32 and the first baffle disk 30 is configured to be substantially air-impermeable. In the region between its inner circumference and its outer circumference, the first baffle disk 30 is configured from continuous material; in particular, it does not have any passage openings. In the present exemplary embodiment, the disk element has three contact surfaces which are formed by a first surface 32a of the disk element 32, said surface facing away from the material outlet opening 28, a second surface 32b of the disk element 32, said surface facing away from the material outlet opening 28, and a third surface 32c of the disk element 32, said surface being arranged between the first surface 32a and the second surface 32b. The first baffle disk 30 likewise has three contact surfaces which are formed by the mating surfaces of the first baffle disk 30, said mating surfaces each bearing against the contact surfaces of the disk element 32. The contact surfaces are arranged substantially at right angles to one another. The various contact surfaces can be differentiated from one another by being arranged at an angle unequal to 180° with respect to one another or being separated from one another by grooves. Due to manufacturing tolerances, it is difficult for both the first surface 32a and the second surface 32b to be in contact with the respective mating surface of the first baffle disk 30. A gap caused by the manufacturing technique between the first surface 32a and/or second surface 32b and the respective mating surface of the first baffle disk 30 is not intended to be taken into consideration and is intended also to be considered to be a contact surface. In particular the third surface 32c of the disk element 32 and/or the mating surface of the first baffle disk 30 can be of slightly conical configuration and/or can have a phase in order to facilitate the attaching, in particular pressing of the first baffle disk onto the disk element.


A surface 30a of the first baffle disk 30, said surface facing away from the material outlet opening 28, is set back along an axis Z in relation to that surface 32b of the disk element 32 which faces away from the material outlet opening 28, i.e. the surface 32b of the disk element 32 is closer in the axial direction to the material outlet opening 28 than the surface 30a of the first baffle disk 30.


The nozzle 24 is equipped here with an air-directing disk 38 which can likewise be connected captively to the nozzle 24, in particular the material nozzle 40, in particular can be pressed thereon, and can be arranged downstream of the at least one passage opening 36 of the disk element 32 in the direction of the nozzle longitudinal axis. In addition, the present nozzle 24 has a sealing element 44, the purpose of which will be explained further below. The sealing element 44 which is frequently also referred to as the nozzle or paint nozzle seal, is preferably composed of plastic and is preferably connected interchangeably to the material nozzle 40. Furthermore, the external thread 46 of the material nozzle 40 is indicated in FIG. 11.



FIG. 12 shows a sectional view of the head region 6 of an exemplary embodiment of a spray gun according to the disclosure or a main body equipped with the exemplary embodiment of a nozzle 24 according to the disclosure from FIG. 8 to FIG. 11 or a main body equipped with an exemplary embodiment of a nozzle set according to the disclosure, which comprises the exemplary embodiment of a nozzle 24 according to the disclosure from FIG. 8 to FIG. 11, in the assembled state. The nozzle 24 which is present here as a unit consisting of a material nozzle 40 with a disk element 32, a first baffle disk 30, a second baffle disk 42, an air-directing disk 38 and a sealing element 44, is screwed via the above-described thread into the main body or into the head region thereof. The stop is formed here by the first baffle disk 30, in particular the baffle surface 30a thereof, and the middle wall 12 of the head region 6 of the main body. The baffle surface 30a of the first baffle disk 30 acts here as a sealing surface, and the middle wall 12, in particular the front end of the middle wall 12, acts as a mating sealing surface against which the baffle surface 30a lies in a sealing manner. Alternatively or additionally, the outer surface of the second baffle disk 42 or the outer surface of the inner collar 43 between the first baffle disk 30 and the second baffle disk 42 can also lie in a sealing manner against an inner surface of the middle wall 12.


When the nozzle 24 is screwed in, the sealing element 44 is pressed against a mating sealing surface 84, which is shown in FIG. 6, and seals the material-guiding region of the spray gun, in particular the transition region between the paint duct in the main body and hollow portion of the material nozzle 40 for the passage of the material to be sprayed, in relation to the air-guiding region of the spray gun.


In the installed state, the first baffle disk 30 together with the outer wall 14 forms a gap 86 which is preferably an annular gap having a substantially constant width. The second baffle disk 42 together with the inner wall 10 forms a further gap 88 which is likewise preferably an annular gap having a substantially constant width. The inner collar 43 is arranged in the radial direction directly next to the middle wall 12 of the main body 2, in particular directly next to an inner surface of the middle wall 12 of the main body 2.


The air nozzle ring 74 can be arranged on the head region 6 of the main body via the thread already mentioned above. The air cap 78 is arranged in the air nozzle ring 74, wherein the air cap 78 is fixed in a first direction by means of a flange 90 which lies against a projection on the inner surface of the air nozzle ring 74. In the opposite direction, the air cap 78 is bounded by a securing ring 89 which lies in a groove 91 in the air cap 78 and in a cutout in the inner surface of the air nozzle ring 74. Merely for better visibility, the securing ring 89 in FIG. 12 here is illustrated outside the groove 91, with the securing ring 89 also not having to be completely located in the groove 91. For example, the securing ring 89 can be of polygonal configuration, and therefore it lies only in regions in the circular groove 91.


As can be seen in FIG. 7, in the present exemplary embodiment of the main body according to the disclosure, the first front surface 16 between the inner wall 10 and the middle wall 12 and the second front surface 18 between the middle wall 12 and the outer wall 14 in each case have two air outlet openings 20a and 20b, and 22a and 22b, respectively. Again with reference to FIG. 12, it is apparent that the air flowing out of the two radially inner air outlet openings 20a and 20b between the inner wall 10 and middle wall 12 first of all impinges on the second baffle disk 42 which is arranged downstream of the radially inner air outlet openings 20a, 20b in the main body 2 in the direction of the nozzle longitudinal axis and is spaced apart in the axial direction from the radially inner air outlet openings 20a, 20b and at least partially, preferably completely or virtually completely, projects over the air outlet openings 20a, 20b in the radial direction. On account of the constriction in the form of the gap 88, the air is distributed over the circumference of the air-distributor chamber between the inner wall 10 and the middle wall 12. The air flows through the gap 88 and is thereby restricted before the air flows through the passage openings 36 of the disk element 32. The air emerging to a certain extent “in a punctiform manner” from the passage opening 36 impinges on the air-guiding element 38, as a result of which the air is distributed more extensively, is homogenized and is slightly restricted again by the slight narrowing between the air-directing element 38 and the inner surface of the air cap 78. From the air-cap chamber 80 between the air cap 78 and the material nozzle 40, the air then flows through a gap, in particular annular gap, which arises by the fact that the front end of the material nozzle 40 projects from the inner side into the central opening 79 in the air cap 78. The material to be sprayed which flows out of a material supply device through the paint duct in the main body of the spray gun and the hollow portion of the material nozzle 40 is atomized by the air flowing out of the gap, as a result of which what is referred to as the spray jet is formed. The air with the profile just described is therefore referred to as atomizer air. The two radially inner air outlet openings 20a and 20b between the inner wall 10 and the middle wall 12 may be referred to as atomizer-air outlet openings, the air ducts located therebehind as atomizer-air ducts, and the air-distributor chamber, which can be bounded by the inner wall 10 and the middle wall 12, as atomizer-air distributor chamber. The region through which the atomizer air flows may be referred as the atomizer-air region.


The abovementioned internal nozzle pressure is the pressure prevailing in the air cap-chamber 80.


The air flowing out of the two radially outer air outlet openings 22a and 22b, which although present in the main body shown in FIG. 12, can be particularly readily seen in FIG. 7, first of all impinges on the first baffle disk 30 which is arranged downstream of the radially outer air outlet openings 22a, 22b in the main body 2 in the direction of the nozzle longitudinal axis and is spaced apart in the axial direction from the radially outer air outlet openings 22a, 22b and projects at least partially, preferably completely or virtually completely, over the radially outer air outlet opening 22a, 22b in the radial direction. Due to the constriction in the form of the gap 86, the air is distributed over the circumference of the air-distributor chamber between the middle wall 12 and the outer wall 14. The air flows through the gap 86 and is thereby restricted. The air advantageously subsequently flows into an intermediate chamber 92 and into the horn-air supply ducts 78a in the horns of the air cap 78. From here, the air flows out of the horn-air bores 78b and impinges on the abovementioned spray jet and deforms the latter. In particular, what is referred to as horn air flowing out of the horn-air bores 78b in the diametrically opposite horns of the air cap 78 compresses the spray jet, which originally has circular cross section, on two opposite sides, thus resulting in what is referred to as a wide jet. The quantity of horn air flowing out of the horn-air bores 78b or even the quantity of air flowing out of the radially outer air outlet openings 22a and 22b, which may be referred to as horn-air outlet openings, can be adjusted via a fan control 9, which is shown by way of example in FIG. 4. If the horn air is reduced to zero or virtually zero, the spray gun produces what is referred to as a circular jet with a circular cross section. The air ducts behind what are referred to as the horn-air outlet openings can be referred to as horn-air ducts, the air-distributor chamber which is bounded by the middle wall 12 and the outer wall 14 may be referred to as the horn-air distributor chamber and the region through which the horn air flows may be referred to as the horn-air region. For sealing the horn-air region in relation to the environment, a sealing element 87 can be provided between the air nozzle ring 74 and the head region 6.


What are referred to as control openings 79a can be introduced into the front surface of the air cap 78, radially outside the central opening 79. The air emerging from the control openings 79a influences the horn air, in particular weakens the impact of the horn air on the spray jet. Furthermore, what is referred to as the control air projects the air cap 78 against soiling by carrying paint droplets away from the air cap 78. In addition, it contributes to the further atomization of the spray jet. The control air also acts on the round jet and brings about a slight preliminary deformation and also here additional atomization.


As can readily be seen in FIG. 12, the separation, in particular the sealing, between the atomizer-air region and the horn-air region takes place by means of the middle wall 12, the first baffle disk 30, the disk element 32 and by means of the air cap 78, in particular by means of a preferably encircling web 78c of the air cap 78. Similarly, the separation of the above-described first air flow path 150 and the above-described second air flow path 155 takes place. The web 78c here has a conical region which lies against the conical surface 35 of the disk element 32. As a result, centring of the air cap 78 also takes place, and it is thereby ensured that the air cap 78 and the material nozzle 40 are arranged concentrically with respect to each other, and the abovementioned gap, in particular annular gap, between the front end of the material nozzle 40 and the air cap 78 has a constant width for letting out the atomizer air.


It is clear that, on account of the particular configuration of the nozzle according to the disclosure and the spray gun according to the disclosure, no additional sealing element for sealing between the atomizer-air region and horn-air region is necessary.


The exemplary embodiment, shown in FIGS. 8 to 12, of a nozzle 24 according to the disclosure is preferably a low-pressure nozzle or HVLP nozzle or a nozzle for use in a low-pressure or HVLP nozzle set or a nozzle for use in a low-pressure or HVLP spray gun.



FIG. 13 shows a perspective view of a second exemplary embodiment of a nozzle 50 according to the disclosure. In comparison with the first exemplary embodiment shown in FIGS. 8 to 12, the present nozzle 50 does not have an air-directing disk, and the disk element 32 has a greater number of passage openings 36 in the front surface 34, for example eleven to thirteen. Otherwise, the nozzle 50 also has a material nozzle 40 with a material outlet opening 28, and the disk element 32 has a conical surface 35. On its side facing away from the material outlet opening 28, the disk element 32 preferably has a recess or a groove in which the passage openings 36 are arranged. In the installed state of the nozzle 50, this increases the distance between that side of the disk element 32 which faces away from the material outlet opening 28 and the first front surface 16 of the head region 6 of the main body 2, and the air which flows into said region has more volume available in order to be distributed.


It can be seen for the first time in FIG. 14 that the first baffle disk 31 of the nozzle 50 is configured differently from the first baffle disk 30 of the previously described nozzle 24. The nozzle 50 does not have a second baffle disk and instead has an inner collar 52 and an outer collar 53 with a baffle surface 31a lying inbetween. The outer collar 53 is arranged on the outer circumference of the first baffle disk 31, and the inner collar 52 is arranged on the inner circumference of the first baffle disk 31. The outer collar 53 has an oblique surface 53a.


It becomes clear in FIG. 15, which shows a view from the rear of the nozzle 50, that the passage openings 36 are completely exposed, i.e. are not concealed or projected over by other components of the nozzle 50. The disk element 32 of the nozzle 50 preferably has a greater number of passage openings 36, in particular between 10 and 14.


The exposed passage openings 36 are also apparent in FIG. 16 which is a section view of the nozzle 50. The material nozzle 40 with the disk element 32 arranged integrally and the sealing element 44 preferably arranged interchangeably is substantially identical to the material nozzle 40 with the disk element 32 arranged integrally and the sealing element 44, which is preferably arranged interchangeably, of the above-described nozzle 24. The statements above with regard to these components apply correspondingly to the nozzle 50. The first baffle disk 31 with the inner collar 52, outer collar 53 and baffle surface 31a lying therebetween differs from the first baffle disk 30 of the previously described nozzle 24.



FIG. 17 shows a section view of the head region 6 of an exemplary embodiment of a spray gun according to the disclosure or a main body equipped with the exemplary embodiment of a nozzle 50 according to the disclosure from FIG. 13 to FIG. 16 or a main body equipped with an exemplary embodiment of a nozzle set according to the disclosure, which comprises the exemplary embodiment of a nozzle 24 according to the disclosure from FIG. 13 to FIG. 16, in the assembled state. The main body is the exemplary embodiment shown in FIG. 12. In particular, the head region 6 is configured identically, and therefore reference can be made to the above statements with regard thereto. It can be seen that the gap 86 between the outer wall 14 and the first baffle disk 31 or outer collar 53 of the first baffle disk 31 is narrower than the gap 86 from FIG. 12, which shows the head region 6 of the main body, said head region being equipped with the previously described nozzle 24. Since the same main body having the same dimensions, in particular having the same inner diameter of the outer wall 14, is involved, it becomes clear that the first baffle disk 31 of the nozzle 50 has a larger outer diameter than the the first baffle disk 30 of the nozzle 24. The inner collar 52 is arranged in the radial direction directly next to the middle wall 12 of the main body 2, in particular directly next to an inner surface of the middle wall 12 of the main body 2. The remaining statements with regard to the arrangement shown in FIG. 12 can also apply to the arrangement shown in FIG. 17.


The lack of a second baffle disk and lack of an air-directing disk in the nozzle 50 in comparison to the nozzle 24 means that the atomizer air in the arrangement shown in FIG. 17, i.e. when the nozzle 50 is used, is restricted to a lesser extent than in the arrangement shown in FIG. 12, i.e. when the nozzle 24 is used. As a result, the internal nozzle pressure, i.e. in particular the pressure in the air-cap chamber 81 between the air cap 78 and the material nozzle 40, when the nozzle 50 is used, is greater than the internal nozzle pressure, i.e. in particular the pressure in the air-cap chamber 80, shown in FIG. 12, between the air cap 78 and the material nozzle 40 when the nozzle 24 is used.


The nozzle 50 shown in FIGS. 13 to 17 is preferably a low-pressure or HVLP nozzle or a nozzle for use in a low-pressure or HVLP nozzle set, or a nozzle for use in a low-pressure or HVLP spray gun.


It should finally be emphasized that the exemplary embodiments described describe only a limited selection of embodiment possibilities and therefore do not constitute any restriction of the present disclosure.

Claims
  • 1. A spray gun including: a main body; anda nozzle set including: a nozzle, the nozzle comprising a material nozzle having a hollow portion for the passage of material to be sprayed and a material outlet opening in a front end region of the material nozzle; andan air cap with a central opening and at least one diametrically opposite horn-air bore, the air cap being separate from the nozzle,wherein the material nozzle includes: a disk element extending radially from the material nozzle and having a plurality of passage openings for the passage of air; anda first baffle disk which is arranged on the disk element and has an inner and an outer circumference,wherein the first baffle disk is arranged on the disk element directly, without a sealing element arranged inbetween,wherein the first baffle disk has a greater outer circumference than the disk element,wherein the first baffle disk is configured from continuous material in a region between the inner circumference and the outer circumference without any passage openings between the inner circumference and the outer circumference, such that air that impinges on the region between the inner circumference and the outer circumference of the first baffle disk cannot penetrate or flow through the first baffle disk,wherein the disk element is located in a middle area between the front end region of the material nozzle and a rear end region of the material nozzle, which faces away from the material outlet opening,wherein the disk element and the first baffle disk are not part of the air cap,wherein the main body includes at least one radially outer air outlet opening, at least one radially inner air outlet opening, and a middle wall lying inbetween,wherein the spray gun includes at least one first air flow path which runs from the at least one radially inner air outlet opening, past the inner circumference of the first baffle disk, through the plurality of passage openings of the disk element, into an air cap chamber formed by the air cap and the nozzle, and through a gap which is formed by the front end region of the material nozzle and the central opening in the air cap, andwherein the spray gun further includes at least one second air flow path which is separated from the first air flow path and which runs from the at least one radially outer air outlet opening, past the outer circumference of the first baffle disk, past an outer circumference of the disk element, into at least one horn-air supply duct in the air cap and through the at least one horn-air bore.
  • 2. The spray gun according to claim 1, wherein sealing between the first air flow path and the second air flow path takes place by at least a part of the air cap, the disk element, the first baffle disk and the middle wall of the main body of the spray nozzle.
  • 3. The spray gun according to claim 1, wherein the material nozzle further includes a second baffle disk, which is arranged in the first air flow path.
  • 4. The spray gun according to claim 3, wherein the disk element has at least two contact surfaces arranged substantially at right angles to each other, wherein the first baffle disk has at least two contact surfaces arranged substantially at right angles to one another, and wherein the at least two contact surfaces of the first baffle disk lie directly against the at least two contact surfaces of the disk element.
  • 5. The spray gun according to claim 3, wherein a surface of the first baffle disk facing away from the material outlet opening is set back in a direction of a nozzle longitudinal axis in relation to a surface of the disk element facing away from the material outlet opening.
  • 6. The spray gun according to claim 5, wherein the material nozzle further includes an air-directing disk which is arranged downstream of the plurality of passage openings of the disk element in a direction of the nozzle longitudinal axis.
  • 7. The spray gun according to claim 3, wherein the disk element has a first surface facing away from the material outlet opening and a second surface facing away from the material outlet opening, and wherein the first surface and the second surface are connected to each other in a stepped manner via a third surface.
  • 8. The spray gun according to claim 3, wherein a surface of the disk element facing away from the material outlet opening has a groove in which the plurality of passage openings of the disk element are arranged.
  • 9. The spray gun according to claim 3, wherein the second baffle disk has a smaller outer circumference than the first baffle disk.
  • 10. The spray gun according to claim 3, wherein the second baffle disk has a circular outer circumference and is arranged concentrically with respect to at least one of the first baffle disk and the disk element.
  • 11. The spray gun according to claim 3, wherein the first baffle disk and the second baffle disk are configured integrally as a single component.
Priority Claims (1)
Number Date Country Kind
10 2018 118 737.8 Aug 2018 DE national
US Referenced Citations (579)
Number Name Date Kind
40433 Sees Oct 1863 A
327260 Hart Sep 1885 A
459432 Anderson Sep 1891 A
459433 Avery Sep 1891 A
548816 Paul Oct 1895 A
552213 Troy Dec 1895 A
552715 Lugrin Jan 1896 A
563505 McCornack Jul 1896 A
581107 Emery Apr 1897 A
644803 Justi Mar 1900 A
672012 Ruper Apr 1901 A
574880 Schmidt et al. May 1901 A
1662496 Forsgard Mar 1928 A
1703383 Birkenmaier Feb 1929 A
1703384 Birkenmaier Feb 1929 A
1711221 Blakeslee Apr 1929 A
1751787 Binks Mar 1930 A
1889201 Holveck Nov 1932 A
2004303 Wahlin Jun 1935 A
2008381 Beeg Jul 1935 A
2049700 Gustafsson Aug 1936 A
2051210 Gustafsson Aug 1936 A
2070696 Tracy Feb 1937 A
2116036 Money May 1938 A
2125445 Holveck Aug 1938 A
2198441 Mollart Apr 1940 A
2204599 Jenkins Jun 1940 A
2269057 Jenkins Jan 1942 A
D133223 Tammen Jul 1942 S
2356865 Mason Aug 1944 A
2416856 Thomsen Mar 1947 A
2416923 Jenkins Mar 1947 A
2470718 Peeps May 1949 A
2533953 Peeps Dec 1950 A
2557593 Bjorkman Jun 1951 A
2557606 Liedberg Jun 1951 A
2559091 Reasenberg Jul 1951 A
2609961 Sapien Sep 1952 A
2612899 Webb Oct 1952 A
2646314 Peeps Jul 1953 A
2721004 Schultz Oct 1955 A
2743963 Peeps May 1956 A
2844267 Petriccione Jul 1958 A
2886252 Ehrensperger May 1959 A
3090530 Peeps May 1963 A
D196477 Kelly Oct 1963 S
3159472 Revell Dec 1964 A
D200594 Sass Mar 1965 S
3240398 Dalton, Jr. Mar 1966 A
D204306 Hamm Apr 1966 S
D205760 Hocutt et al. Sep 1966 S
D208903 Zadron et al. Oct 1967 S
3344992 Norris Oct 1967 A
3381845 MacDonald May 1968 A
3417650 Varrin Dec 1968 A
3420106 Keller et al. Jan 1969 A
3435683 Keller et al. Apr 1969 A
3482781 Sharpe Dec 1969 A
D217928 Felske Jun 1970 S
3524589 Pelton, Jr. Aug 1970 A
3527372 Manning Sep 1970 A
3583632 Schaffer Jun 1971 A
3622078 Gronert Nov 1971 A
3645562 Fandetti et al. Feb 1972 A
3656493 Black et al. Apr 1972 A
3714967 Zupan et al. Feb 1973 A
3746253 Walberg Jul 1973 A
3747850 Hastings et al. Jul 1973 A
3771539 De Santis Nov 1973 A
3840143 Davis et al. Oct 1974 A
3848807 Partida Nov 1974 A
3857511 Govindan Dec 1974 A
3870223 Wyant Mar 1975 A
3873023 Moss et al. Mar 1975 A
3938739 Bertilsson et al. Feb 1976 A
4000915 Strom Jan 1977 A
D245048 Pool Jul 1977 S
D252097 Probst et al. Jun 1979 S
4160525 Wagner Jul 1979 A
4171091 van Hardeveld et al. Oct 1979 A
4210263 Bos Jul 1980 A
4273293 Hastings Jun 1981 A
4278276 Ekman Jul 1981 A
4411387 Stern et al. Oct 1983 A
4478370 Hastings Oct 1984 A
D276472 Harrison Nov 1984 S
D278543 Gintz Apr 1985 S
4545536 Avidon Oct 1985 A
4562965 Ihmels et al. Jan 1986 A
4572437 Huber et al. Feb 1986 A
4580035 Luscher Apr 1986 A
4585168 Even et al. Apr 1986 A
4614300 Falcoff Sep 1986 A
4643330 Kennedy Feb 1987 A
4653661 Buchner et al. Mar 1987 A
4667878 Behr May 1987 A
4713257 Luttermoeller Dec 1987 A
D293950 Ogden et al. Jan 1988 S
4730753 Grime Mar 1988 A
4767057 Degli Aug 1988 A
D298372 Taylor, Jr. Nov 1988 S
4784184 Gates Nov 1988 A
4806736 Schirico Feb 1989 A
4826539 Harpold May 1989 A
4832232 Broccoli May 1989 A
4844347 Konhäuser Jul 1989 A
4854504 Hedger, Jr. Aug 1989 A
4863781 Kronzer Sep 1989 A
4877144 Thanisch Oct 1989 A
D305057 Morgan Dec 1989 S
4887747 Ostrowsky et al. Dec 1989 A
4901761 Taylor Feb 1990 A
4906151 Kubis Mar 1990 A
4917300 Gloviak et al. Apr 1990 A
4946075 Lundback Aug 1990 A
4964361 Aebersold Oct 1990 A
4967600 Keller Nov 1990 A
4969603 Norman Nov 1990 A
4973184 La Salle Nov 1990 A
D314421 Tajima et al. Feb 1991 S
D314588 Denham Feb 1991 S
4989787 Nikkel et al. Feb 1991 A
5020700 Krzywdziak et al. Jun 1991 A
D318877 Miranda et al. Aug 1991 S
5042840 Rieple et al. Aug 1991 A
D321597 Cerny Nov 1991 S
5064119 Mellette Nov 1991 A
5071074 Lind Dec 1991 A
5074334 Onodera Dec 1991 A
5078323 Frank Jan 1992 A
5080285 Toth Jan 1992 A
5088648 Schmon Feb 1992 A
5090623 Burns et al. Feb 1992 A
5102045 Diana Apr 1992 A
5119992 Grime Jun 1992 A
5125391 Srivastava et al. Jun 1992 A
5135124 Wobser Aug 1992 A
5143102 Blaul Sep 1992 A
5165605 Morita Nov 1992 A
5170941 Morita et al. Dec 1992 A
5190219 Copp, Jr. Mar 1993 A
5191797 Smith Mar 1993 A
5209405 Robinson May 1993 A
5228488 Fletcher Jul 1993 A
5232299 Hiss Aug 1993 A
5236128 Morita et al. Aug 1993 A
5249746 Kaneko et al. Oct 1993 A
D341186 Albers Nov 1993 S
5289974 Grime et al. Mar 1994 A
5322221 Anderson Jun 1994 A
5325473 Monroe et al. Jun 1994 A
5332156 Wheeler Jul 1994 A
5333506 Smith et al. Aug 1994 A
5333908 Dorney et al. Aug 1994 A
5344078 Fritz et al. Sep 1994 A
5367148 Storch et al. Nov 1994 A
D353836 Carvelli et al. Dec 1994 S
5381962 Teague Jan 1995 A
5435491 Sakuma Jul 1995 A
5443642 Bienduga Aug 1995 A
5456414 Burns Oct 1995 A
D365952 Gagnon et al. Jan 1996 S
5503439 LaJeunesse et al. Apr 1996 A
5529245 Brown Jun 1996 A
5533674 Feyrer et al. Jul 1996 A
5540385 Garlick Jul 1996 A
5540386 Roman Jul 1996 A
D376637 Kieffer Dec 1996 S
5582350 Kosmyna et al. Dec 1996 A
5584899 Shorts Dec 1996 A
5588562 Sander et al. Dec 1996 A
5592597 Kiss Jan 1997 A
5609302 Smith Mar 1997 A
5613637 Schmon Mar 1997 A
D380301 Kogutt Jul 1997 S
5655714 Kieffer et al. Aug 1997 A
5662444 Schmidt, Jr. Sep 1997 A
5667143 Sebion et al. Sep 1997 A
5695125 Kumar Dec 1997 A
5704381 Millan et al. Jan 1998 A
5718767 Crum et al. Feb 1998 A
D391403 Josephs Mar 1998 S
5725161 Hartle Mar 1998 A
RE35769 Grime et al. Apr 1998 E
5755363 Gantner et al. May 1998 A
5762228 Morgan et al. Jun 1998 A
5803360 Spitznagel Sep 1998 A
5816501 LoPresti et al. Oct 1998 A
5829682 Haruch Nov 1998 A
5836517 Burns et al. Nov 1998 A
D402820 Morison et al. Dec 1998 S
5843515 Crum et al. Dec 1998 A
5853014 Rosenauer Dec 1998 A
D405503 Endo Feb 1999 S
5874680 Moore Feb 1999 A
5884006 Frohlich et al. Mar 1999 A
D409719 Kaneko May 1999 S
5941461 Akin et al. Aug 1999 A
5951190 Wilson Sep 1999 A
5951296 Klein Sep 1999 A
5954268 Joshi et al. Sep 1999 A
D414636 Wiese Oct 1999 S
5979797 Castellano Nov 1999 A
5992763 Smith et al. Nov 1999 A
6006930 Dreyer et al. Dec 1999 A
6010082 Peterson Jan 2000 A
6017394 Crum et al. Jan 2000 A
6019294 Anderson Feb 2000 A
6036109 DeYoung Mar 2000 A
6039218 Beck Mar 2000 A
6050499 Takayama Apr 2000 A
6053429 Chang Apr 2000 A
6056213 Ruta et al. May 2000 A
6056215 Hansinger May 2000 A
6089471 Scholl Jul 2000 A
6089607 Keeney et al. Jul 2000 A
6091053 Aonuma Jul 2000 A
6092740 Liu Jul 2000 A
6132511 Crum et al. Oct 2000 A
D435379 Nguyen Dec 2000 S
6230986 Vacher et al. May 2001 B1
6250567 Lewis et al. Jun 2001 B1
6267301 Haruch Jul 2001 B1
6276616 Jenkins Aug 2001 B1
D448451 Turnbull et al. Sep 2001 S
6308991 Royer Oct 2001 B1
D457599 Karwoski May 2002 S
D459432 Schmon Jun 2002 S
D459433 Schmon Jun 2002 S
6402058 Kaneko et al. Jun 2002 B2
6402062 Bending et al. Jun 2002 B1
6431466 Kitajima Aug 2002 B1
6435426 Copp, Jr. Aug 2002 B1
6442276 Doljack Aug 2002 B1
6450422 Maggio Sep 2002 B1
6494387 Kaneko Dec 2002 B1
6536684 Wei Mar 2003 B1
6536687 Navis et al. Mar 2003 B1
D472730 Sparkowski Apr 2003 S
6540114 Popovich et al. Apr 2003 B1
6543632 McIntyre et al. Apr 2003 B1
6547160 Huang Apr 2003 B1
6547884 Crum et al. Apr 2003 B1
6553712 Majerowski et al. Apr 2003 B1
6554009 Beijbom et al. Apr 2003 B1
D474528 Huang May 2003 S
6585173 Schmon et al. Jul 2003 B2
6595441 Petrie et al. Jul 2003 B2
6612506 Huang Sep 2003 B1
6626382 Liu Sep 2003 B1
6626383 Campbell Sep 2003 B1
6647997 Mohn Nov 2003 B2
6661438 Shiraishi et al. Dec 2003 B1
D485685 Zupkofska et al. Jan 2004 S
6675845 Volpenheim et al. Jan 2004 B2
6692118 Michele et al. Feb 2004 B2
6712292 Gosis et al. Mar 2004 B1
6717584 Kulczycka Apr 2004 B2
6732751 Chiang May 2004 B2
6763964 Hurlbut et al. Jul 2004 B1
6766763 Crum et al. Jul 2004 B2
6786345 Richards Sep 2004 B2
6796514 Schwartz Sep 2004 B1
6801211 Forsline et al. Oct 2004 B2
6820824 Joseph et al. Nov 2004 B1
6843390 Bristor Jan 2005 B1
6845924 Schmon Jan 2005 B2
6855173 Ehrnsperger et al. Feb 2005 B2
6863310 Petkovsek Mar 2005 B1
6863920 Crum et al. Mar 2005 B2
6874656 Rohr et al. Apr 2005 B2
6874664 Montgomery Apr 2005 B1
6874708 Reetz, III Apr 2005 B2
6877677 Schmon et al. Apr 2005 B2
6929019 Weinmann et al. Aug 2005 B2
6945429 Gosis et al. Sep 2005 B2
6955180 Kocherlakota et al. Oct 2005 B2
6962432 Hofeldt Nov 2005 B2
6963331 Kobayashi et al. Nov 2005 B1
7017838 Schmon Mar 2006 B2
7018154 Schmon Mar 2006 B2
D519687 Zahav Apr 2006 S
7032839 Blette et al. Apr 2006 B2
7036752 Hsiang May 2006 B1
7083119 Bouic et al. Aug 2006 B2
7090148 Petrie et al. Aug 2006 B2
7097118 Huang Aug 2006 B1
D528192 Nicholson Sep 2006 S
7106343 Hickman Sep 2006 B1
7165732 Kosmyna et al. Jan 2007 B2
7172139 Bouic et al. Feb 2007 B2
7175110 Vicentini Feb 2007 B2
7182213 King Feb 2007 B2
D538050 Tardif Mar 2007 S
D538493 Zimmerle et al. Mar 2007 S
D538886 Huang Mar 2007 S
7194829 Boire et al. Mar 2007 B2
D541053 Sanders Apr 2007 S
D541088 Nesci Apr 2007 S
7201336 Blette et al. Apr 2007 B2
7216813 Rogers May 2007 B2
D545943 Rodgers et al. Jul 2007 S
7246713 King Jul 2007 B2
7249519 Rogers Jul 2007 B2
D548816 Schmon Aug 2007 S
7255293 Dodd Aug 2007 B2
7264131 Tsutsumi et al. Sep 2007 B2
D552213 Schmon Oct 2007 S
D552715 Schmon Oct 2007 S
D554703 Josephson Nov 2007 S
7328855 Chatron Feb 2008 B2
D563505 Schmon Mar 2008 S
7374111 Joseph et al. May 2008 B2
D571463 Chesnin Jun 2008 S
7384004 Rogers Jun 2008 B2
RE40433 Schmon Jul 2008 E
D573227 Mirazita et al. Jul 2008 S
D574926 Huang Aug 2008 S
D575374 Huang Aug 2008 S
7410106 Escoto, Jr. et al. Aug 2008 B2
7416140 Camilleri et al. Aug 2008 B2
7422164 Matsumoto Sep 2008 B2
D579213 Aipa Oct 2008 S
D581107 Schmon Nov 2008 S
D581483 Bass et al. Nov 2008 S
D583013 Wang Dec 2008 S
7458612 Bennett Dec 2008 B1
7472840 Gregory Jan 2009 B2
D588231 Pellin Mar 2009 S
7533678 Rosa May 2009 B2
7540434 Gohring et al. Jun 2009 B2
7542032 Kruse Jun 2009 B2
7568638 Gehrung Aug 2009 B2
D604394 Wang Nov 2009 S
7614571 Camilleri et al. Nov 2009 B2
D607086 Kosaka Dec 2009 S
7624869 Primer Dec 2009 B2
D607972 Wang Jan 2010 S
D608858 Baltz et al. Jan 2010 S
D614731 Wang Apr 2010 S
7694893 Zittel et al. Apr 2010 B2
7694896 Turnbull et al. Apr 2010 B2
D615586 Kudimi May 2010 S
D616022 Kudimi May 2010 S
D616527 Anderson et al. May 2010 S
7765876 Chen Aug 2010 B1
D624668 Noppe Sep 2010 S
7810744 Schmon et al. Oct 2010 B2
7819341 Schmon et al. Oct 2010 B2
D627039 Yu Nov 2010 S
D627432 Escoto et al. Nov 2010 S
7823806 Schmon Nov 2010 B2
D629623 Lampe Dec 2010 S
7856940 Wendler Dec 2010 B2
7913938 Cooper Mar 2011 B2
7922107 Fox Apr 2011 B2
D637269 Wang May 2011 S
D638121 Villasana May 2011 S
D639863 Langan Jun 2011 S
D641067 Wang Jul 2011 S
D644716 Gehrung Sep 2011 S
D644803 Schmon Sep 2011 S
D645094 Langan Sep 2011 S
8042402 Brown et al. Oct 2011 B2
D649196 Langan Nov 2011 S
8052071 Kruse Nov 2011 B2
D655347 Gehrung Mar 2012 S
8127963 Gerson et al. Mar 2012 B2
D657276 Brose Apr 2012 S
D661492 Ranschau Jun 2012 S
D661742 Clark Jun 2012 S
D663960 Jeronimo Jul 2012 S
8225892 Ben-Tzvi Jul 2012 B2
D664773 Papin Aug 2012 S
8240579 Bennett Aug 2012 B1
8297536 Ruda Oct 2012 B2
D670085 Brookman Nov 2012 S
D671988 Leipold Dec 2012 S
D672012 Brose Dec 2012 S
D674880 Schmon Jan 2013 S
8352744 Kruse Jan 2013 B2
8360345 Micheli Jan 2013 B2
D681162 Kruse Apr 2013 S
8444067 Schmon et al. May 2013 B2
8454759 Selsvik Jun 2013 B2
8481124 Nolte et al. Jul 2013 B2
D689590 Brose Sep 2013 S
D689593 Schmon Sep 2013 S
D690799 Maier Oct 2013 S
D692530 Gehrung Oct 2013 S
D692532 Li et al. Oct 2013 S
8616434 Wilen Dec 2013 B2
D697584 Schmon Jan 2014 S
D698008 Schmon et al. Jan 2014 S
8626674 Whitehouse Jan 2014 B2
8642131 Nolte et al. Feb 2014 B2
D704300 Li May 2014 S
8757182 Schmon Jun 2014 B2
8807460 Charpie et al. Aug 2014 B2
8857732 Brose Oct 2014 B2
D720015 Kruse Dec 2014 S
D720041 Robinson Dec 2014 S
8899501 Fox et al. Dec 2014 B2
D721785 Gehrung Jan 2015 S
8925836 Dettlaff Jan 2015 B2
D733369 Tschan Jun 2015 S
D733453 Tschan Jul 2015 S
D734428 Wang Jul 2015 S
D734429 Wang Jul 2015 S
D734571 Tschan Jul 2015 S
9073068 Krayer et al. Jul 2015 B2
D737126 Tschan Aug 2015 S
D740393 Gehrung Oct 2015 S
D745636 Lin Dec 2015 S
9220853 Vogt Dec 2015 B2
D757216 Gherung May 2016 S
D758533 Dettlaff Jun 2016 S
D758537 Gehrung Jun 2016 S
D768820 Binz Oct 2016 S
D770593 Gehrung Nov 2016 S
9498788 Kosaka Nov 2016 B2
9533317 Gehrung Jan 2017 B2
D792557 Wang Jul 2017 S
D794756 Wang Aug 2017 S
9782784 Schmon et al. Oct 2017 B2
9878336 Gehrung Jan 2018 B2
9878340 Schmon et al. Jan 2018 B2
D835235 Gehrung et al. Dec 2018 S
10189037 Schmon et al. Jan 2019 B2
10247313 Chien Apr 2019 B2
10464076 Kruse Nov 2019 B2
10471449 Gehrung Nov 2019 B2
10702879 Gehrung Jul 2020 B2
D929838 Tschan Sep 2021 S
11141747 Schmon Oct 2021 B2
20010004996 Schmon Jun 2001 A1
20010040192 Kaneko et al. Nov 2001 A1
20020092928 Conroy Jul 2002 A1
20020134861 Petrie et al. Sep 2002 A1
20020148501 Shieh Oct 2002 A1
20020170978 Mohn Nov 2002 A1
20030006322 Hartle et al. Jan 2003 A1
20030025000 Schmon Feb 2003 A1
20030066218 Schweikert Apr 2003 A1
20030121476 McIntyre et al. Jul 2003 A1
20030127046 Zehner et al. Jul 2003 A1
20030164408 Schmon Sep 2003 A1
20030173419 Huang Sep 2003 A1
20030177979 Crum et al. Sep 2003 A1
20030189105 Schmon Oct 2003 A1
20030209568 Douglas et al. Nov 2003 A1
20030213857 Schmon et al. Nov 2003 A1
20030218596 Eschler Nov 2003 A1
20030230636 Rogers Dec 2003 A1
20040046051 Santa Cruz et al. Mar 2004 A1
20040050432 Breda Mar 2004 A1
20040104194 Dennison Jun 2004 A1
20040129738 Stukas Jul 2004 A1
20040140373 Joseph et al. Jul 2004 A1
20040155063 Hofeldt Aug 2004 A1
20040159720 Komornicki Aug 2004 A1
20040177890 Weinmann Sep 2004 A1
20040191406 Crum et al. Sep 2004 A1
20040217201 Ruda Nov 2004 A1
20040233223 Schkolne et al. Nov 2004 A1
20040245208 Dennison Dec 2004 A1
20050001060 Robinson Jan 2005 A1
20050056613 King Mar 2005 A1
20050082249 King Apr 2005 A1
20050127201 Matsumoto Jun 2005 A1
20050145723 Blette et al. Jul 2005 A1
20050145724 Blette et al. Jul 2005 A1
20050161525 Johansson Jul 2005 A1
20050178854 Dodd Aug 2005 A1
20050189445 Hartle et al. Sep 2005 A1
20050215284 Su Sep 2005 A1
20050218246 Chatron Oct 2005 A1
20050220943 Abrams et al. Oct 2005 A1
20050248148 Schenck et al. Nov 2005 A1
20050252993 Rogers Nov 2005 A1
20050252994 Rogers Nov 2005 A1
20050268949 Rosa Dec 2005 A1
20050284963 Reedy Dec 2005 A1
20060000927 Ruda Jan 2006 A1
20060007123 Wilson et al. Jan 2006 A1
20060048803 Jessup et al. Mar 2006 A1
20060081060 Forster Apr 2006 A1
20060108449 Sodemann May 2006 A1
20060113409 Camilleri et al. Jun 2006 A1
20060118661 Hartle Jun 2006 A1
20060131151 Marchand Jun 2006 A1
20060171771 Kruse Aug 2006 A1
20060192377 Bauer et al. Aug 2006 A1
20060196891 Gerson et al. Sep 2006 A1
20070029788 Adler Feb 2007 A1
20070055883 Kruse Mar 2007 A1
20070131795 Abbate et al. Jun 2007 A1
20070158349 Schmon et al. Jul 2007 A1
20070205305 Vagedes Sep 2007 A1
20070221754 Gehrung Sep 2007 A1
20070228190 Tanner Oct 2007 A1
20070252378 Chambers Nov 2007 A1
20070262169 Wang Nov 2007 A1
20070262172 Huffman Nov 2007 A1
20080011879 Gerson et al. Jan 2008 A1
20080019789 Dunaway et al. Jan 2008 A1
20080029619 Gohring et al. Feb 2008 A1
20080128533 Gehrung Jun 2008 A1
20080179763 Schmon et al. Jul 2008 A1
20080251607 Krayer Oct 2008 A1
20080251977 Naruse et al. Oct 2008 A1
20080264892 Nozawa Oct 2008 A1
20080272213 Ting Nov 2008 A1
20080296410 Carey et al. Dec 2008 A1
20090014557 Schmon et al. Jan 2009 A1
20090026288 Shih Jan 2009 A1
20090026290 Fox Jan 2009 A1
20090045623 Schmon Feb 2009 A1
20090072050 Ruda Mar 2009 A1
20090078789 Kruse Mar 2009 A1
20090078790 Camilleri et al. Mar 2009 A1
20090143745 Langan et al. Jun 2009 A1
20090152382 Charpie Jun 2009 A1
20090179081 Charpie Jul 2009 A1
20090183516 Appler et al. Jul 2009 A1
20090235864 Khoury et al. Sep 2009 A1
20090266915 Fedorov Oct 2009 A1
20100021646 Nolte et al. Jan 2010 A1
20100059533 Unger et al. Mar 2010 A1
20100084493 Troudt Apr 2010 A1
20100108783 Joseph et al. May 2010 A1
20100126541 Schmon May 2010 A1
20100163649 Bass et al. Jul 2010 A1
20100206963 Huang Aug 2010 A1
20100270390 Reitz Oct 2010 A1
20100270400 Evar et al. Oct 2010 A1
20110024524 Fox Feb 2011 A1
20110121103 Carleton et al. May 2011 A1
20110125607 Wilen May 2011 A1
20110127767 Wicks et al. Jun 2011 A1
20110168811 Fox et al. Jul 2011 A1
20110174901 Dettlaff et al. Jul 2011 A1
20120012671 Brose et al. Jan 2012 A1
20120097762 Gehrung et al. Apr 2012 A1
20120132550 Gerson et al. May 2012 A1
20120160935 Krayer et al. Jun 2012 A1
20120187220 Micheli et al. Jul 2012 A1
20130056556 Schmon et al. Mar 2013 A1
20130074864 Nuzzo et al. Mar 2013 A1
20130092760 Joseph Apr 2013 A1
20130266734 Nolte et al. Oct 2013 A1
20130320110 Brose et al. Dec 2013 A1
20130327850 Joseph Dec 2013 A1
20140034757 Kaneko Feb 2014 A1
20140048627 Schmon et al. Feb 2014 A1
20140059905 Raming Mar 2014 A1
20140145003 Schmon et al. May 2014 A1
20140263686 Hedger Sep 2014 A1
20140305962 Tschan Oct 2014 A1
20140339322 Freers Nov 2014 A1
20140346257 Reetz, III et al. Nov 2014 A1
20150108254 Commette Apr 2015 A1
20150165463 Gehrung Jun 2015 A1
20150231655 Adams et al. Aug 2015 A1
20160030960 Gehrung Feb 2016 A1
20170252771 Young Sep 2017 A1
20170304852 Bierie Oct 2017 A1
20180050355 Delsard Feb 2018 A1
20180050356 Gehrung Feb 2018 A1
20180050361 Gehrung Feb 2018 A1
20180050362 Gehrung Feb 2018 A1
20180133727 Schmon et al. May 2018 A1
20180200740 Rossbach et al. Jul 2018 A1
20200038889 Volk Feb 2020 A1
20200038892 Volk et al. Feb 2020 A1
20210379612 Volk Dec 2021 A1
20220048054 Maier Feb 2022 A1
20220080448 Volk Mar 2022 A1
20230107860 Maier Apr 2023 A1
Foreign Referenced Citations (349)
Number Date Country
153883 Jun 1997 AT
163577 Mar 1998 AT
250467 Oct 2003 AT
322645 Apr 2006 AT
383910 Feb 2008 AT
461752 Apr 2010 AT
461753 Apr 2010 AT
475488 Aug 2010 AT
637187 May 1993 AU
2002352235 Sep 2003 AU
2004315547 Aug 2005 AU
2005205899 Aug 2005 AU
2011257605 Nov 2012 AU
2011361295 May 2013 AU
521511 Feb 1956 CA
2126957 Jan 1995 CA
2277096 Jul 1998 CA
2445183 Oct 2002 CA
2552390 Aug 2005 CA
2555607 Aug 2005 CA
2690112 May 2009 CA
2797990 Dec 2011 CA
2812684 Sep 2012 CA
102917803 Feb 2013 CA
2850401 May 2013 CA
200754 Oct 1938 CH
203 668 Jun 1939 CH
523 098 May 1972 CH
523098 May 1972 CH
542104 Sep 1973 CH
676208 Dec 1990 CH
2136077 Jun 1993 CN
1738310 Feb 2006 CN
1899704 Jan 2007 CN
1902002 Jan 2007 CN
1909970 Feb 2007 CN
1909971 Feb 2007 CN
1917960 Feb 2007 CN
200954482 Oct 2007 CN
101125316 Feb 2008 CN
201064746 May 2008 CN
100430150 Nov 2008 CN
100455360 Jan 2009 CN
101367066 Feb 2009 CN
100478080 Apr 2009 CN
101516523 Aug 2009 CN
101646500 Feb 2010 CN
102211070 Apr 2011 CN
102139249 Aug 2011 CN
102211069 Oct 2011 CN
103 521 378 Jan 2014 CN
103521378 Jan 2014 CN
203508251 Apr 2014 CN
203737474 Jul 2014 CN
204074345 Jan 2015 CN
204294401 Apr 2015 CN
105377447 Mar 2016 CN
205966208 Feb 2017 CN
107427851 Dec 2017 CN
107666966 Feb 2018 CN
108223901 Jun 2018 CN
207493903 Jun 2018 CN
108438227 Aug 2018 CN
259621 May 1913 DE
460381 May 1928 DE
510362 Oct 1930 DE
611325 Mar 1935 DE
1425890 Nov 1968 DE
2559036 Sep 1976 DE
2653981 Jun 1978 DE
2950341 Jul 1980 DE
2926286 Jan 1981 DE
3016419 Nov 1981 DE
8024829.9 Sep 1982 DE
3111571 Oct 1982 DE
3238149 Apr 1984 DE
34 02 097 Aug 1985 DE
3402945 Aug 1985 DE
3517122 May 1986 DE
3505618 Aug 1986 DE
3526819 Feb 1987 DE
3016419 Aug 1987 DE
8702559 Oct 1987 DE
3708472 Oct 1988 DE
8902223 May 1989 DE
3742308 Jun 1989 DE
8905681 Nov 1989 DE
G 90 01 265 May 1990 DE
3906219 Aug 1990 DE
4302911 Aug 1993 DE
4208500 Sep 1993 DE
4230535 Mar 1994 DE
G 94 16 015.5 Nov 1994 DE
4321940 Jan 1995 DE
692 11 891 Oct 1996 DE
69211891 Oct 1996 DE
19516485 Nov 1996 DE
19727884 Feb 1999 DE
69505433 Apr 1999 DE
19807973 Jul 1999 DE
19824264 Dec 1999 DE
19832990 Jan 2000 DE
20000483 Aug 2000 DE
10004105 Oct 2000 DE
19958569 Feb 2001 DE
199 41 362 Mar 2001 DE
199 45 760 Mar 2001 DE
19945760 Mar 2001 DE
10103221 Aug 2001 DE
10031857 Jan 2002 DE
10031858 Jan 2002 DE
20114257 Feb 2002 DE
10059406 Jun 2002 DE
10135104 Sep 2002 DE
10135104 Sep 2002 DE
102 05 831 Aug 2003 DE
10205831 Aug 2003 DE
10311238 Oct 2004 DE
10 2004 027 789 Feb 2005 DE
29825120 Feb 2005 DE
102004027789 Feb 2005 DE
69827994 Apr 2005 DE
20320781 Jun 2005 DE
10 2004 014 646 Jul 2005 DE
10 2004 003 438 Aug 2005 DE
102004003439 Aug 2005 DE
10 2004 007 733 Sep 2005 DE
10 2004 021 298 Nov 2005 DE
699 28 944 Sep 2006 DE
69928944 Sep 2006 DE
69535077 Nov 2006 DE
202007001031 Mar 2007 DE
60200500 1173 Aug 2007 DE
60206956 Aug 2008 DE
102007006547 Aug 2008 DE
102007013628 Sep 2008 DE
102007039106 Feb 2009 DE
102007052067 May 2009 DE
10 2009 020 194 Nov 2010 DE
20 2010 012 449 Dec 2010 DE
202010012449 Dec 2010 DE
202010012449 Dec 2010 DE
10 2009 032 399 Jan 2011 DE
102009032399 Jan 2011 DE
102009053449 Feb 2011 DE
102010060086 Apr 2012 DE
10 2010 056 263 Jun 2012 DE
102010056263 Jun 2012 DE
102011106060 Jan 2013 DE
102011118120 May 2013 DE
10 2011 120 717 Jun 2013 DE
112007001824 Jul 2013 DE
10 2012 013 464 Nov 2013 DE
102015114202 Jan 2017 DE
10 2018 118 737 Feb 2020 DE
10 2018 118737 Feb 2020 DE
102018118737 Feb 2020 DE
002066910-0001 Mar 2013 EM
002066910-0002 Mar 2013 EM
002066910-0003 Mar 2013 EM
002066910-0004 Mar 2013 EM
002066910-0005 Mar 2013 EM
002066910-0006 Mar 2013 EM
002066910-0007 Mar 2013 EM
002066910-0008 Mar 2013 EM
002066910-0009 Mar 2013 EM
002066910-0010 Mar 2013 EM
0092043 Oct 1983 EP
0092392 Oct 1983 EP
0114064 Jul 1984 EP
0313958 May 1989 EP
524408 Jan 1993 EP
567325 Oct 1993 EP
0631821 Jan 1995 EP
0650766 May 1995 EP
0650766 May 1995 EP
678334 Oct 1995 EP
0706832 Apr 1996 EP
0706832 Apr 1996 EP
0710506 May 1996 EP
801002 Oct 1997 EP
0846498 Jun 1998 EP
987060 Mar 2000 EP
1081639 Mar 2001 EP
1106262 Jun 2001 EP
1 247 586 Oct 2002 EP
1247586 Oct 2002 EP
1277519 Jan 2003 EP
1294490 Mar 2003 EP
1299194 Apr 2003 EP
1366823 Dec 2003 EP
1412669 Apr 2004 EP
1424135 Jun 2004 EP
1477232 Nov 2004 EP
1479447 Nov 2004 EP
1504823 Feb 2005 EP
1563913 Aug 2005 EP
1574262 Sep 2005 EP
1602412 Dec 2005 EP
1658902 May 2006 EP
1708822 Oct 2006 EP
1708823 Oct 2006 EP
1718415 Nov 2006 EP
1880771 Jan 2008 EP
1902766 Mar 2008 EP
1902786 Mar 2008 EP
1902876 Mar 2008 EP
1930084 Jun 2008 EP
1964616 Sep 2008 EP
1964616 Sep 2008 EP
1987886 Nov 2008 EP
1997561 Dec 2008 EP
2017010 Jan 2009 EP
2027931 Feb 2009 EP
2092987 Aug 2009 EP
2106298 Oct 2009 EP
2111920 Oct 2009 EP
2127758 Dec 2009 EP
2451586 May 2012 EP
2490819 Aug 2012 EP
2576079 Apr 2013 EP
2608890 Jul 2013 EP
2 669 213 Dec 2013 EP
2703089 Mar 2014 EP
2736651 Jun 2014 EP
2 828 000 Jan 2015 EP
2 828 000 Jan 2015 EP
3184177 Jun 2017 EP
2828000 Aug 2019 EP
398333 Jun 1909 FR
789762 Nov 1935 FR
1410519 Sep 1964 FR
2444501 Jul 1980 FR
2462200 Feb 1981 FR
2 570 140 Mar 1986 FR
2 774 928 Aug 1999 FR
2 863 512 Jun 2005 FR
2863512 Jun 2005 FR
2927824 Aug 2009 FR
190900523 Jun 1909 GB
657854 Sep 1951 GB
2 132 916 Jul 1984 GB
2153260 Aug 1985 GB
2372465 Aug 2002 GB
2411235 Aug 2005 GB
2416141 Jan 2006 GB
2444909 Jun 2008 GB
1100405 Jun 2009 HK
1096057 Jul 2009 HK
1125067 Aug 2012 HK
1138533 Nov 2012 HK
S49-136868 Nov 1974 JP
S55-107258 Jul 1980 JP
S5654328 May 1981 JP
S57-75246 May 1982 JP
S57128346 Aug 1982 JP
58-119862 May 1983 JP
S5998757 Jun 1984 JP
S601722 Jan 1985 JP
S62160156 Jul 1987 JP
H01-87805 Jun 1989 JP
H02258076 Oct 1990 JP
H04-176352 Jun 1992 JP
H0530749 Apr 1993 JP
H05172678 Jul 1993 JP
674850 Mar 1994 JP
H06215741 Aug 1994 JP
H07204542 Aug 1995 JP
H08196950 Aug 1996 JP
H08196950 Aug 1996 JP
H09117697 May 1997 JP
11-047643 Feb 1999 JP
2000015150 Jan 2000 JP
2000070780 Mar 2000 JP
2001259487 Sep 2001 JP
2003042882 Feb 2002 JP
2003088780 Mar 2003 JP
2004-501763 Jan 2004 JP
2004017044 Jan 2004 JP
2005000735 Jan 2005 JP
2005138885 Jun 2005 JP
2007516831 Jun 2007 JP
2008018296 Jan 2008 JP
2008161789 Jul 2008 JP
2010-528837 Aug 2010 JP
2014124274 Jul 2014 JP
20140064644 May 2014 KR
2523816 Jan 2014 RU
491092 Jun 2002 TW
510253 Nov 2002 TW
I220392 Aug 2004 TW
I303587 Dec 2008 TW
I309584 May 2009 TW
90008456 Aug 1990 WO
9116610 Oct 1991 WO
199207346 Apr 1992 WO
9522409 Aug 1995 WO
199832539 Jul 1998 WO
01012337 Feb 2001 WO
200112337 Feb 2001 WO
0166261 Sep 2001 WO
01099062 Dec 2001 WO
02000355 Jan 2002 WO
0202242 Jan 2002 WO
02018061 Mar 2002 WO
02085533 Oct 2002 WO
03007252 Jan 2003 WO
03045575 Jun 2003 WO
03069208 Aug 2003 WO
03069208 Aug 2003 WO
03086654 Oct 2003 WO
04037433 May 2004 WO
200437433 May 2004 WO
04052552 Jun 2004 WO
05018815 Mar 2005 WO
05068220 Jul 2005 WO
05070557 Aug 2005 WO
05070558 Aug 2005 WO
05077543 Aug 2005 WO
05115631 Dec 2005 WO
2006065850 Jun 2006 WO
07128127 Nov 2007 WO
2007133386 Nov 2007 WO
2007149760 Dec 2007 WO
2008093866 Aug 2008 WO
2009015260 Jan 2009 WO
2009015260 Jan 2009 WO
2009054986 Apr 2009 WO
2009056424 May 2009 WO
2010019274 Feb 2010 WO
2010044864 Apr 2010 WO
2011047876 Apr 2011 WO
2011147555 Dec 2011 WO
2012013574 Feb 2012 WO
2012052255 Apr 2012 WO
2012119664 Sep 2012 WO
2013000524 Jan 2013 WO
2013016474 Jan 2013 WO
2013131626 Sep 2013 WO
2013142045 Sep 2013 WO
2014006593 Jan 2014 WO
2015125619 Aug 2015 WO
2016127106 Aug 2016 WO
2016188804 Dec 2016 WO
2017096740 Jun 2017 WO
2018197025 Oct 2017 WO
2020053153 Mar 2020 WO
20200053153 Mar 2020 WO
2020086977 Apr 2020 WO
Non-Patent Literature Citations (246)
Entry
Response restriction requirement filed May 23, 2016 for Design U.S. Appl. No. 29/516,082.
Canadian Office Action dated Nov. 21, 2012 for related application CA2741703.
Chinese Search Report dated Dec. 5, 2012 for related application CN200980135429.9.
Chinese Office Action dated Dec. 13, 2012 for related application CN200980135429.9.
German Search Report for DE 20 2008 014 389.6 completed Jul. 13, 2009.
Response to Office Action dated Jun. 25, 2018 for U.S. Appl. No. 14/815,210.
Response to Final Office Action dated Aug. 22, 2018 for U.S. Appl. No. 14/113,649.
Chinese Search Report for Application No. 2017107135569 dated Aug. 24, 2020 and English translation.
International Preliminary Report on Patentability for PCT/EP2015/001728 filed Aug. 25, 2015.
Final Office Action dated Mar. 16, 2017 from U.S. Appl. No. 13/698,417, 9 pages.
German Search Report for Application No. 10 2016 009 957.7 dated Apr. 21, 2017.
Final Office Action dated Dec. 7, 2017 for U.S. Appl. No. 14/815,210.
Response to Final Office Action, for U.S. Appl. No. 15/679,533, filed Jan. 4, 2021.
European Search Report dated Feb. 21, 2020 for Application No. 19183382.1.
Response dated Feb. 19, 2020 for U.S. Appl. No. 15/575,549.
Response to Final Office Action and RCE dated Nov. 29, 2016 in U.S. Appl. No. 14/113,649.
Written Opinion dated Sep. 8, 2016 for International Application No. PCT/EP2016/061057 filed May 18, 2016.
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,533.
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,461.
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 29/618,945.
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 14/113,649.
U.S. Appl. No. 14/815,210 Office Action dated Apr. 3, 2018.
U.S. Appl. No. 14/113,649 Response filed Mar. 3, 2018.
German Search Report dated Apr. 10, 2018 for Application No. 10 2017 118 599.2.
For U.S. Appl. No. 15/679,533: Interview Summary dated Jun. 17, 2020 Response to Office Action, filed Jun. 30, 2020.
Office Action dated Jun. 12, 2020, for U.S. Appl. No. 15/575,549.
Final Office Action dated Feb. 27, 2020 for U.S. Appl. No. 15/575,549.
Response to Restriction Requirement filed Jul. 27, 2015 to Restriction Requirement dated May 27, 2015 for U.S. Appl. No. 13/991,285.
Application filed Jul. 31, 2015 for U.S. Appl. No. 14/815,210.
Final Office Action dated Aug. 4, 2015 for U.S. Appl. No. 13/380,949.
Notice of Allowance dated Aug. 3, 2015 for U.S. Appl. No. 29/486,232.
Office Action dated Jun. 30, 2017 for U.S. Appl. No. 14/815,210.
Final Office Action in U.S. Appl. No. 14/113,649 dated Jun. 22, 2017.
Response filed in U.S. Appl. No. 15/143,698 dated Jul. 3, 2017.
Restriction Requirement Office Action dated Apr. 17, 2017 for U.S. Appl. No. 14/815,210.
Notice of Allowance dated Apr. 10, 2017 for U.S. Appl. No. 29/579,824.
Response to Final Office Action filed May 9, 2017 in U.S. Appl. No. 13/698,417.
Response to Office Action filed May 17, 2017 in U.S. Appl. No. 14/113,649.
Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285.
Response to Restriction Requirement filed in U.S. Appl. No. 14/815,210 dated Jun. 19, 2017.
Japanese Office Action dated Sep. 25, 2019, for Japanese Publication No. 2015-149405, 4 pages.
Search Report dated Feb. 22, 2019 for German Patent Application No. 10 2018 118 738.6.
Search Report dated Feb. 8, 2019 for German Patent Application No. 10 2018 118 737.8.
Notice of Allowance dated Jul. 1, 2019 for U.S. Appl. No. 15/379,972.
Notice of Allowance dated Jul. 9, 2019 for U.S. Appl. No. 15/679,482.
Restriction Requirement dated Mar. 18, 2019, for U.S. Appl. No. 29/596,869.
Office Action dated Mar. 15, 2019, for U.S. Appl. No. 14/815,210.
Office Action dated Feb. 19, 2016 for U.S. Appl. No. 14/113,649.
Final Office Action dated Feb. 25, 2016 for U.S. Appl. No. 13/698,417.
Restriction Requirement dated Mar. 25, 2016 for Design U.S. Appl. No. 29/516,082.
Response filed Mar. 31, 2016 to Office Action dated Dec. 31, 2016 for U.S. Appl. No. 14/572,998.
International Search Report dated Jul. 14, 2016 for International Application No. PCT/EP2016/000809, filed May 17, 2016.
Written Opinion for International Application No. PCT/EP2016/000809, filed May 17, 2016.
International Search Report dated Aug. 31, 2016 for PCT/EP2016/061057 filed May 18, 2016.
Written Opinion for PCT/EP2016/061057 filed May 18, 2016.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/005381 file May 19, 2004.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/011998 filed Oct. 23, 2004.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/000435 filed Jan. 18, 2005.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/00437 filed Jan. 18, 2005.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2008/063344, filed Oct. 6, 2008.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/002392 filed Apr. 20, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/002544 filed May 21, 2011.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/066665 filed Sep. 26, 2011.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/003399 filed Jun. 7, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/5842 filed Dec. 2, 2010.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2012/01939 filed May 5, 2012.
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2009/06992 filed Sep. 29, 2009.
Internet Archive Wayback Machine [online] [captured Sep. 25, 2012] [retrieved on Sep. 8, 2014] retrieved from the Internet URL:http://web.archive.org/web/20120925210554/http://www.sata.com/index.php?id=sal-check&no cache=1&L=11.
JP Office Action issued against JP Patent App. 2012-508926 dated Feb. 25, 2014 with English translation.
Notice of Allowance dated Sep. 17, 2020 for U.S. Appl. No. 15/679,461.
Second Chinese Office Action dated Jun. 24, 2015 for Chinese Application No. 2011800266029.
Third Chinese Office Action dated Nov. 30, 2015 for Chinese Application No. 2011800266029.
Final Office Action dated Aug. 29, 2016 for U.S. Appl. No. 14/113,649.
Office Action dated Nov. 2, 2016 for U.S. Appl. No. 11/949,122.
Response filed May 28, 2019 for U.S. Appl. No. 15,379,972.
Final Office Action for U.S. Appl. No. 15/679,461 dated Jun. 11, 2019.
Final Office Action for U.S. Appl. No. 15/679,533 dated Jul. 12, 2019.
Office Action dated Jan. 25, 2019 for U.S. Appl. No. 15/379,972.
Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649.
Notice of Allowance dated Nov. 19, 2014 for U.S. Appl. No. 29/486,223.
Office Action dated Dec. 31, 2014 for U.S. Appl. No. 13/380,949.
Restriction Requirement dated Jan. 9, 2015 for Design U.S. Appl. No. 29/469,049.
Response to Office Action filed Dec. 2, 2014 for U.S. Appl. No. 29/487,679.
Notice of Allowance dated Jan. 15, 2015 for Design U.S. Appl. No. 29/490,620.
Office Action dated Jan. 14, 2015 for Design U.S. Appl. No. 29/447,887.
Hercules Paint Gun Washers brochure publish date Jan. 2012, [online], [site visited Jan. 7, 2015], <http://www.herkules.us/pdfs/L00761-Hercules-Gun_Washers-4-page-brochure.pdf>.
Jetclean GUn Cleaner Terry's Auto Supply, google publish date Aug. 4, 2011, [online], [site visited Jan. 7, 2015], <http://secure.terrys.net/viewProduct.php?productID=FT.FHAZ1005>.
Restriction Requirement dated Feb. 6, 2015 for Design U.S. Appl. No. 29/486,232.
Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417.
Responde to Office Action filed Apr. 14, 2015 to Office Action dated Jan. 14, 2015 for U.S. Appl. No. 29/447,887.
Response filed Jul. 20, 2015 for Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417.
Notice of Allowance dated Apr. 30, 2015 for U.S. Appl. No. 29/447,887.
Chinese Office Action dated Oct. 28, 2014 and Search Report dared Oct. 15, 2014 for Chinese Application No. 2011800266029.
Australian Examination Report dated Oct. 30, 2012 for Australian Application No. 2010268870.
Notice of Allowance dated Apr. 24, 2015 for Design U.S. Appl. No. 29/486,232.
Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417.
Response filed Mar. 23, 2015 to Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417.
Response filed Apr. 6, 2015 to Office Action dated Feb. 6, 2015 for Design U.S. Appl. No. 29/486,232.
Response filed Mar. 31, 2015 to Office Action dated Dec. 31, 2014 for U.S. Appl. No. 13/380,949.
Japanese Office Action dated Jun. 11, 2014 for Japanese Patent Application No. 2012-518769.
Australian Examination Report dated Nov. 11, 2014 for Australian patent Application No. 2011257605.
Japanese Notice of Allowance dated Jan. 13, 2015 for Japanese Patent Application No. 2012/518769.
Application filed Dec. 11, 2011 for U.S. Appl. No. 13/380,949.
Chinese Office Action dated Jan. 28, 2014 and Search Report dated Jan. 21, 2014 for Chinese Application No. 201080030935.4.
Search Report dated. Apr. 24, 2010 for German Application No. 10 2009 032 399.6-51.
Application filed Oct. 24, 2013 for U.S. Appl. No. 14/113,649.
Response filed May 18, 2015 to Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649.
Application filed Dec. 17, 2014 for U.S. Appl. No. 14/572,998.
German Search Report dated Mar. 25, 2014 for German Application No. 202013105779-7.
Application filed Nov. 16, 2012 for U.S. Appl. No. 13/698,417.
Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285.
English translation of application filed Aug. 13, 2013 for Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285.
Restriction Requirement dated May 27, 2015 for U.S. Appl. No. 13/991,285.
Application filed Jan. 29, 2015 for Design U.S. Appl. No. 29/516,073.
Application filed Jan. 29, 2015 for Design U.S. Appl. No. 29/516,082.
Application filed Mar. 3, 2015, 2015 for Design U.S. Appl. No. 29/519,198.
Final Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649.
Response filed Dec. 21, 2015 to Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649.
Response filed Oct. 6, 2015 to Notice of Non-Compliant Amendment for U.S. Appl. No. 13/698,417.
Notice of Non-Compliant Amendment dated Aug. 10, 2015 for U.S. Appl. No. 13/698,417.
Final Office Action dated Oct. 16, 2015 for U.S. Appl. No. 13/698,417.
Extended European Search Report dated Apr. 17, 2015 for European Application No. 14004167.4.
Response to Election of Species Requirement and Amendment filed Oct. 15, 2018 from U.S. Appl. No. 15/679,482.
Chinese Search Report dated Jul. 18, 2018 for Application No. 2014103745834 filed Jul. 31, 2014.
DesignView of CN302452159 registered Jun. 5, 2013, printed Oct. 18, 2018.
Response to Restriction Requirement, filed Oct. 29, 2019, for U.S. Appl. No. 15/575,549.
Response to Final Office Action, dated Nov. 11, 2019, for U.S. Appl. No. 14/815,210, 20 pages.
Office Action, dated Nov. 20, 2019, for U.S. Appl. No. 15/575,549, 12 pages.
Office Action, dated Dec. 9, 2019, for U.S. Appl. No. 14/815,210, 6 pages.
German Search Report dated Apr. 21, 2017 for application No. 10 2016 009 957.7.
Final Office Action dated Sep. 4, 2020 for U.S. Appl. No. 15/679,533.
Restriction/Species requirement dated Dec. 7, 2020 for U.S. Appl. No. 16/524,838.
Notice of Allowance dated Apr. 18, 2016 for U.S. Appl. No. 14/572,998.
Response filed Apr. 27, 2016 to Office Action dated Jan. 29, 2016 for U.S. Appl. No. 13/380,949.
German Search Report dated Apr. 12, 2016 for related German Application No. 10 2015 008 735.5.
Notification of the First Office Action with search report dated Aug. 24, 2015 for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 13 pages.
Notification of the Second Office Action dated May 16, 2016, for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 5 pages.
Japanese Office Action for JP2014-517485 (related to U.S. Appl. No. 14/113,649), dated Jul. 5, 2016, 16 pages.
International Search Report dated Apr. 12, 2019 for PCT/DE2018/100679 filed Aug. 1, 2018.
Written Opinion for PCT/DE2018/100679 filed Aug. 1, 2018.
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/572,998.
Notice of Allowance dated Jan. 19, 2016 for Design U.S. Appl. No. 29/539,615.
Notice of Allowance dated Jan. 22, 2016 for U.S. Appl. No. 13/991,285.
International Search Report (dated Jun. 20, 2008), Written Opinion (dated Jun. 20, 2008), and International Preliminary Report on Patentability (dated Sep. 14, 2010) from PCT/US2008/03318 filed Mar. 12, 2008.
Response filed Dec. 7, 2015 to Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285.
European Search Report dated May 8, 2017 for Application No. EP16203544.
“Spray Guns/sata.com”, Oct. 18, 2015, XP055364928 URL:http://web.archive.org/web/20151018205307/http://www.sata.com/index.php?id=lackierpistolen&L=11 [gefunden am Apr. 13, 2017]; reprinted on Dec. 8, 2017.
“SATAjet 5000 B Lackierpistolen | Bechersysteme | Atemschutz | Filtertechnik | Zubehor So flexibel wie Ihre Aufgaben” Apr. 11, 2017, XP055364477 Gefunden im Internet: URL:https/www.sata.com/uploads/tx_pxspecialcontent/00_SATAjet_5000_B.pdf [gefunden am Apr. 12, 2017]; English translation of full brochure attached.
Amendments submitted to European Patent Office dated Dec. 3, 2017 for Application No. EP16203544 (with English translation of chart on p. 3).
Response to Office Action dated Mar. 9, 2020 for U.S. Appl. No. 14/815,210.
Notice of Allowance for U.S. Appl. No. 14/815,210 dated Mar. 25, 2020.
Office Action of U.S. Appl. No. 15/679,461 dated Mar. 31, 2020.
Reply to Office Action filed Oct. 11, 2019 for U.S. Appl. No. 15/679,461.
Notice of Allowance dated Jan. 27, 2016 for Design U.S. Appl. No. 29/510,723.
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,533.
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,461.
European Search Report, dated Jan. 20, 2020, for European Application No. 19183380.
Office Action dated Mar. 30, 2020, for U.S. Appl. No. 15/679,533.
Response to Office Action dated Apr. 5, 2019 for U.S. Appl. No. 15/679,461 (29 pages).
Response to Office Action dated Apr. 9, 2019 for U.S. Appl. No. 15/679,533 (22 pages).
Final Office Action dated Sep. 12, 2018 in U.S. Appl. No. 14/815,210.
European Search Report dated Jan. 24, 2018 for U.S. Appl. No. 17/186,905.
Response to Office Action filed Feb. 16, 2016 for U.S. Appl. No. 13/698,417.
Screen shot of a SATA product (SATAjet B) description retrieved on Feb. 12, 2016 from www.sata.com/index.php.
“The Hot Rolling Process;” California Steel; retrieved on Feb. 12, 2016 from http://www.californiasteel.com/GetPublicFile.aspx?id=53.
German Search Report dated Mar. 15, 2016 for Application No. 20 2015 003 664.3, 8 pages.
Chinese Search Report dated Feb. 21, 2019 for Application No. 2016800293781, 3 pages.
Final Office Action dated Aug. 12, 2019 from U.S. Appl. No. 14/815,210.
Office Action from U.S. Appl. No. 15/143,698 dated Jan. 5, 2017.
German Search Report for German Application No. 10 2015 016 474.0 dated Aug. 9, 2016, 14 pages.
Notice of Allowance in U.S. Appl. No. 29/556,463, filed Mar. 1, 2016, 9 pages.
Notice of Allowance in U.S. Appl. No. 29/555,656, filed Feb. 24, 2016, 5 pages.
Printout from Internet www.ehow.com explaining how to choose a spray gun and stating in item 2 “Nozzle sizes vary between about 1 mm and 2 mm.”, printed Sep. 7, 2012 (Exhibit 1023 in IPR 2013-0111).
Printout from Internet www.bodyshopbusiness.com explaining how to choose nozzle setup in paragraph bridging pp. 1 and 2, giving general rule of thumb of nozzle sizes from 1.3 mm to 2.2 mm, depending on material being sprayed, printed Sep. 7, 2012 (Exhibit 1024 in IPR 2013-0111).
Printout from Internet of pages from brochure of Walther Pilot showing nozzle sizes for spray guns ranging from 0.3 mm to 2.5 mm, dated 2007, (Exhibit 1025 in IPR 2013-0111).
Printout from Internet www.alsacorp.com showing in the paragraph bridging pp. 2 and 3, Model VS-7200 Saber LVLP spray gun with nozzle size 1.3 mm with sizes 1.3 to 2.0 available, printed Aug. 26, 2012 (Exhibit 1026 in IPR 2013-0111).
Printout from Internet of copy of p. 28 from current 3Mtm brochure showing Tip/Nozzle/Air Cap Selection Guide with nozzle sizes from 0.5 mm to 3.0 mm., (Exhibit 1027 in IPR 2013-0111).
Decision by EPO regarding opposition proceedings to revoke patent No. 99926841.0-2425/ 1108476, corresponding to '387 patent, 2012, (Exhibit 1029 in IPR 2013-0111).
SATA News Publication Dan-Am Jul.-Sep. 1996, (Exhibit 1034 in IPR 2013-0111).
SATA News Publication Dan-Am Oct.-Dec. 1996, (Exhibit 1035 in IPR 2013-0111).
SATA News Publication Dan-Am Apr.-Jun. 1998 (Exhibit 1036 in IPR 2013-0111).
Dan-Am SATA Catalog 6 for spray guns 1991 (Exhibit 1037 in IPR 2013-0111).
Dan-Am SATA Catalog 8 for spray guns 1994 (Exhibit 1038 in IPR 2013-0111).
Dan-Am Catalog 6—51pp published 1991, (Exhibit 1042 in IPR 2013-0111).
Japanese Industrial Standards B 9809 English translation, 1992 (Exhibit 1049 in IPR 2013-0111).
Japanese Industrial Standards B 9809 revised Mar. 1, 1991 (Exhibit 1050 in IPR 2013-0111).
SATA News, vol. 21, 2009 (Exhibit 2010 in IPR 2013-0111).
Collision Hub TV Document (image from video clip) printed Oct. 9, 2013 (Exhibit 2011 in IPR 2013-0111).
MyRielsMe.com document from press release printed Oct. 9, 2013 (Exhibit 2012 in IPR 2013-0111).
How to set Air pressure, Utube screenshot printed Oct. 9, 2013 (Exhibit 2013 in IPR 2013-0111).
Ohio EPA Letty to Tony Larimer, response to letter dated Aug. 2006 (Exhibit 2014 in IPR 2013-0111).
Pinahs Ben-Tzvi et al, A conceptual design . . . , Mechatronics 17 (2007) p. 1-13 (Exhibit 2015 in IPR 2013-0111).
On line ad from Amazon.com printed Oct. 14, 2013 (Exhibit 2017 in IPR 2013-0111).
Rone et al, MEMS-Baed Microdroplet Generation with Integrated Sensing, COMSOL, 2011 (Exhibit 2018 in IPR 2013-0111).
Final Office Action dated Sep. 23, 2020, for U.S. Appl. No. 15/575,549.
May 22, 2018 Final Office Action for U.S. Appl. No. 14/113,649.
Jun. 25, 2018 Response to Office Action for U.S. Appl. No. 14/815,210.
Office Action, dated Jan. 9, 2019, for U.S. Appl. No. 15/679,482.
Office Action dated Feb. 19, 2021, for U.S. Appl. No. 15/575,549.
International Preliminary Report on Patentability with Written Opinion dated Mar. 9, 2021 for PCT/EP2019/074000 filed Sep. 9, 2019.
Office Action dated Aug. 12, 2021 for U.S. Appl. No. 15/679,533.
Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/524,740.
International Preliminary Report on Patentability, dated Mar. 9, 2021,with Written Opinion for PCT/EP2019/074000, filed Sep. 9, 2019 (English translation) (7 pages).
Notice of Allowance dated Jul. 26, 2021 for U.S. Appl. No. 15/575,549.
International Search Report dated Apr. 12, 2019 and Written Opinion for PCT/DE18/100679, filed Aug. 1, 2018 (21 pages).
German Search Report dated May 26, 2021, for DE 10 2020 123 769.3, with machine translation.
For U.S. Appl. No. 16/524,740: Interview Summary and Advisory Action dated Aug. 30, 2021.
Office Action dated Nov. 24, 2021 for U.S. Appl. No. 16/524,740.
International Search Report dated Nov. 13, 2019 for PCT/EP2019/074000, filed Sep. 9, 2019.
Written Opinion or PCT/EP2019/074000, filed Sep. 9, 2019.
Response filed May 5, 2021 for U.S. Appl. No. 16/524,740.
International Preliminary Report on Patentability dated Feb. 2, 2021 and Written Opinion for PCT/DE2018/100679 filed Aug. 1, 2018 (English Translation).
Notice of Allowance dated May 18, 2021 for U.S. Appl. No. 29/730,873.
Anonymous: “DeVilbiss Automotive RefinishingSpray Gun Setup”, Jan. 27, 2015 (Jan. 27, 2015), XP055580418, retrieved from the Internet: URLhttps:/ /web.archive.org/web/20150127025402lhttp://www.autorefinishdevilbiss.com.spray-gun-setup.aspx.
Anonymous: “DeVilbiss—Spray Gun Tool on the AppStore”, Oct. 19, 2015 (Oct. 19, 2015), XP055580448, retrieved from the Internet: URLhttps://itunes .apple.comlus/app/ devilbiss-spray-gun-tool/id590404917?mt=8.
Final Office Action dated Jun. 1, 2021 for U.S. Appl. No. 16/524,740.
Search Report dated Jan. 29, 2022, for Chinese Patent Appl. No. 201910704447X, with translation.
Final Office Action dated May 2, 2022 for U.S. Appl. No. 16/524,740.
Search Report dated Jan. 26, 2022, for Chinese Patent Appl. No. 2019107032612 with translation.
Search Report dated Jan. 7, 2022, for Chinese Patent Appl. No. 2018800961965, with translation.
Office Action dated Apr. 26, 2022 for U.S. Appl. No. 15/679,533.
Examination Report from the European Patent Office dated Nov. 23, 2021 for European Patent Application No. 19183380.5.
Examination Report from the European Patent Office dated Nov. 8, 2021 for European Patent Application No. 19183382.1.
German Search Report dated May 7, 2019 for Application No. 10 2018 122 004.9.
International Search Report and Written Opinion for PCT/EP2021/53940, filed Feb. 18, 2021.
International Search Report and Written Opinion for PCT/EP2021/054061, filed Apr. 16, 2021.
Zhu Zhifu, “Simulation and Experimental Study on Spray Characteristics of Gas-Assisted Urea Spray Gun”, Aug. 6, 2019, pp. 1-6.
International Search Report and Written Opinion for PCT/EP2021/54059, filed Feb. 18, 2021.
Second Office Action, dated Aug. 12, 2022, for Chinese Application No. 2018800961965 (English translation).
Search Report, dated Aug. 1, 2022, or Chinese Application No. 2018800961965.
Notification of the Second Office Action dated Aug. 26, 2022 for Chinese Patent Application No. 2019107032612.
European Search Report dated Feb. 4, 2022 for Application No. 21191428.8.
For Chinese Application No. 201910704447.X: Search Report, dated Aug. 25, 2022 Second Office Action, dated Sep. 1, 2022.
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/053940 (English Translation).
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/054059 (English Translation).
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/054061 (English Translation).
Office Action dated Mar. 29, 2023 for U.S. Appl. No. 17/264,372.
Third Office Action dated Feb. 15, 2023 for Chinese Patent Application No. 20191070444.X.
Chinese Notification of the Third Office Action dated Feb. 14, 2023 for Chinese Patent Application No. 2019107032612, 15 pages.
European Office Action dated Mar. 21, 2023 for European Patent Application No. 19 183 382.1 (12 pages).
Decision on Rejection dated Feb. 10, 2023 for Chinese Patent Application No. 2018800961965.
Search Report dated Jan. 30, 2023 for Chinese Patent Application No. 2018800961965.
For Chinese Patent Application No. 2019800593031 First Office Action dated Apr. 25, 2022 (Eng. translation) Chinese Search Report dated Apr. 19, 2022.
Office Action dated Feb. 24, 2023 for U.S. Appl. No. 16/524,740.
Office Action dated Dec. 2, 2022 for U.S. Appl. No. 16/524,838.
Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 15/679,533.
Related Publications (1)
Number Date Country
20200038889 A1 Feb 2020 US