The invention relates to a nozzle for inflating a spout film bag and a method for inflating a spout film bag.
For inflating a spout film bag, it is known to use a nozzle having a substantially circle-cylindrical outer shape and being inserted into the spout. The diameter of the cylinder is selected such that the spout is substantially sealed by the inserted nozzle and the spout film bag can be inflated by inserting flushing or inflating air.
In case the longitudinal axis of the nozzle and the longitudinal axis of the spout are not aligned with each other upon inserting the nozzle into the spout, the nozzle may seize in the spout due to the elongated cylinder area upon inserting into or removing the nozzle from the spout, thereby possibly damaging the spout. The consequence of such damage may be that the spout may no longer be duly closed with its cap and, thus, for instance, leakage of the closure may result.
It is the object of the present invention to provide a nozzle for inflating a spout film bag such that alignment errors in inserting the nozzle into the spout or removing the nozzle from the spout can be balanced and damage to the spout is avoided.
This object is solved by the nozzle and the method described herein. Preferred embodiments and variants are also disclosed.
The invention relates to a nozzle for inflating a spout film bag, the lateral surface of which is adapted to allow the nozzle to be at least partially inserted into the spout of the spout film bag and also at least partially into the interior of the spout film bag, wherein the lateral surface of the insertable portion of the nozzle is bulged.
To this end, the bulging design may be formed by a convex arc shape having a rounded configuration. In other cases, the bulging design may be formed by a double frustum cone, wherein the two frustum cones have a same maximum radius and abut with the circle area of maximum radius; and the bulging design has an angular configuration.
By providing the lateral surface of the insertable portion of the nozzle with a bulging design, a nozzle inserted into the spout of a spout film bag is able to cooperate with the interior form of the spout at a first position, a so-called sealing position, such that the interior of the spout film bag is substantially sealed. The sealing is achieved by substantially eliminating any space between the lateral surface of the nozzle and the spout due to the maximum outer circumference of the nozzle, i.e., the lateral surface in the vicinity of the bulging portion. That is, the sealing is accomplished substantially along a circle. Therefore, at the first position, the nozzle enables the introduction of flushing or inflating air into the interior of the spout film bag without leakage.
The first position is reached upon insertion of the nozzle into the spout when the maximum bulging of the lateral surface, that is, for example, the maximum outer circumference of the nozzle, is inserted into the spout, and the first position, i.e., the sealing position, is maintained, even when the nozzle within the spout is further lowered, as long as the maximum bulging, that is, for instance, the maximum outer circumference, is positioned within the spout.
Moreover, damage to the spout may be avoided in case the nozzle is inserted into the spout in a non-aligned manner, since contact between the lateral surface of the nozzle and the spout is established along a circle only.
At a second position, a so-called leakage position, at which the nozzle is more deeply inserted into the spout, the lateral surface of the inserted nozzle cooperates with the interior form of the spout such that a spacing is formed through which flushing or inflating air introduced into the spout film bag may at least partially leak from the interior of the spout film bag. The second position is, thus, reached when the maximum bulging of the lateral surface, that is, for example, the maximum outer circumference of the nozzle, is no longer positioned in the spout.
The lateral surface may be defined by a rotating surface of a convex arc curve by rotation around the longitudinal axis of the nozzle.
A first circle of latitude of the lateral surface may correspond to the maximum circumference of the nozzle, wherein any other circles of latitude of the lateral surface have radii that are less than the radius of the first circle of latitude. Preferably, the radii decrease continuously from the first circle of latitude towards the two ends of the nozzle.
The first circle of latitude may be substantially positioned in the center of the nozzle.
According to a method for inflating a spout film bag, the nozzle for inflating a spout film bag as described above or as will be described later on, is used, wherein the method comprises the following steps: providing a nozzle, the lateral surface of which is configured such that the nozzle is at least partially insertable into the spout of the spout film bag and is also at least partially insertable into the spout film bag, wherein the lateral surface of the insertable portion of the nozzle has a bulging configuration or design; inserting the nozzle into the spout of the spout film bag and lowering the nozzle within the spout to a first position, a so-called sealing position; after reaching the first position, wherein the lateral surface of the inserted nozzle cooperates with the interior form of the spout such that the interior of the spout film bag is substantially sealed, inserting flushing or inflating air into the interior of the spout film bag by the nozzle.
The nozzle may be arranged at an inflating device, wherein the inflating device may comprise a support or leverage configured such that the nozzle may be moved up and down parallel to its longitudinal axis along a vertical direction. In this manner, the nozzle may be inserted into the spout by lowering and may be lowered within the spout to a first position. Introducing flushing or inflating air into the interior of the spout film bag by means of the nozzle may be accomplished by a feeding system that connects to the nozzle. Consequently, the first position is reached upon inserting the nozzle into the spout when the maximum bulging of the lateral surface, that is, for example, the maximum outer circumference of the nozzle, is inserted into the spout, and the first position, that is, the sealing position, is maintained even when the nozzle in the spout is further lowered as long as the maximum bulging, that is, for example, the maximum outer circumference, is positioned within the spout.
Furthermore, the method may comprise the following steps: further lowering the nozzle within the spout to a second position, a so-called leakage position; after reaching the second position, wherein the lateral surface of the inserted nozzle cooperates with the interior form of the spout such that a spacing is formed, causing introduced flushing or inflating air introduced into the interior of the spout film bag to leak at least partially from the interior of the spout film bag.
Therefore, the second position is reached when the maximum bulging of the lateral surface, that is, for example, the maximum outer circumference of the nozzle, is no longer positioned in the spout. Hence, the spacing is formed by not having the maximum circumference of the nozzle within the spout, but having the maximum circumference positioned below the spout, that is, in the interior of the spout film bag.
In a subsequent step, the nozzle may be removed from the spout, preferably by an upward movement of the nozzle. Removal of the nozzle may be accomplished starting from the first position or starting from the second position.
To gain a better understanding and visualization of the invention, aspects of the invention are illustrated as example in the attached figures. In the figures:
In the illustration, the lateral surface 9 of the nozzle 8 is bulged such that a maximum outer circumference, indicated by reference numeral 13, is positioned approximately at the middle of the nozzle. This maximum outer circumference 13 and, thus, the maximum outer diameter of the nozzle 8, are dimensioned such that the nozzle 8 is insertable into the spout of a spout film bag. The outer circumference and, thus, the outer diameter of the nozzle 8, decreases continuously, starting from the maximum outer circumference 13 in the middle of the nozzle having the corresponding maximum outer diameter, towards the two ends 14, 15 of the nozzle 8.
Typically, the nozzle has a length L between 2 cm and 5 cm and the maximum outer diameter of the nozzle is typically less than the inner diameter of the spout, into which the nozzle should be inserted by 0.2 mm to 0.5 mm. In this case, it is assumed that the inner diameter of the spout is substantially constant along the length of the spout.
In step 100, a nozzle is provided, the lateral surface of which is configured such that the nozzle is insertable at least partially into the spout of the spout film bag and at least partially into the spout film bag, wherein the lateral surface of the inserted portion of the nozzle is configured so as to have a bulging configuration,
In step 101, the nozzle is inserted into the spout of the spout film bag and the nozzle within the spout is lowered to a first position.
After arrival at the first position in step 102, wherein the lateral surface of the inserted nozzle cooperates with the interior form of the spout such that the interior of the spout film bag is substantially sealed, flushing or inflating air is introduced into the interior of the spout film bag by means of the nozzle. Introducing the flushing or inflating air may be performed when the lowering of the nozzle after arrival at the first position is stopped or during a continuous lowering as long as the nozzle is at the first position, that is, as long as the interior of the spout film bag is substantially sealed.
In step 103, the nozzle within the spout is further lowered to a second position. This further lowering may be the continuation of the lowering after a stopping in step 102 or may be the continuation of a continuous lowering of the nozzle in the spout.
After arrival at the second position in step 104, wherein the lateral surface of the inserted nozzle cooperates with the interior form of the spout such that a spacing is formed, flushing or inflating air introduced into the interior of the spout film bag at least partially leaks from the interior of the spout film bag.
Starting from the first position or starting from the second position in step 105, the nozzle may be removed from the spout.
While there have been shown and described fundamental novel features of the invention as applied to the preferred and exemplary embodiments thereof, it will be understood that omissions and substitutions and changes in the form and details of the disclosed invention may be made by those skilled in the art without departing from the spirit of the invention. Moreover, as is readily apparent, numerous modifications and changes may readily occur to those skilled in the art. Hence, it is not desired to limit the invention to the exact construction and operation shown and described and, accordingly, all suitable modification equivalents may be resorted to falling within the scope of the invention as claimed. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
15180153.7 | Aug 2015 | EP | regional |
This application is a U.S. national stage entry of International Application No. PCT/EP2016/068754, filed Aug. 5, 2016, which claims priority to European Application No. 15180153.7, filed Aug. 7, 2015, the contents of both of which are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/068754 | 8/5/2016 | WO | 00 |