This invention relates in general to injection moulding for plastic materials and, more specifically, to a nozzle for said injection moulding, of the type comprising a generally cylindrical body with a heating resistor wound on the external surface which is operatively connected to a controlling thermocouple.
In nozzles of this kind, the function of the heating resistor is evidently to keep the temperature of the nozzle at predefined values according to the composition of the melt plastic material to be injected. The thermocouple is connected to an automatic moulding process electronic control unit, which controls the electrical power to the heating resistor.
In such nozzles currently in use, an example of which is described and illustrated in European Patent EP-B-0750975 by MOLD MASTERS LIMITED, the efficiency of the moulding process automatic control is closely connected to the functionality, i.e. reliability, of the heating resistor and the respective thermocouple. This is because, in the event of failures to either one of the two components, the temperature of the injected plastic material can no longer be controlled in a suitable fashion, with consequent degrading of the moulding process. On the other hand, replacing the heating resistor or the associated thermocouple would mean stopping the moulding apparatus and be a critical problem, considering the high number of nozzles commonly used in one moulding apparatus.
The object of this invention is to overcome said problem. According to this invention, this object is attained by a nozzle which is provided with a second heating resistor, wound on the external surface, independent from said first heating resistor, and provided with an autonomous control thermocouple.
Thanks to this idea, the nozzle, and consequently the moulding apparatus where the nozzle is fitted, ensures confidence of operation which is double with respect to that of a traditional nozzle. The thermocouples of the two heating resistors are connected to the moulding process electronic control unit so as to selectively activate either one or the other of the two resistors according to their effective functionality. The two thermocouples can also be calibrated to differentiated values.
The invention will be better explained by the following detailed description with reference to the accompanying drawings purely provided as non-limiting example, in which:
With reference to
The body of the nozzle 1, generally indicated by numeral 2, is generically cylindrical with an internal axial passage 3. A spiral-shaped groove 4 is made in the external side of the body 2, in which a first heating resistor 5 and, according to this invention, a second heating resistor 6 are wound.
The resistors 5 and 6 are entirely independent from each other on a functional point of view.
In the shown embodiment the resistors 5 and 6 are arranged in a radially superimposed condition in the spiral-shaped groove 4, which has a depth correspondigly adapted to house both therein.
The two resistors 5, 6 are electrically connected independently one with respect to the other to a source of electrical power, via respective connection terminals which are not visible in the drawing and which are operatively connected (in a way which is known and however within the grasp of sector technicians) each with a respective thermocouple 7, 8.
The two thermocouples 7, 8, arranged in correspondence with the end of the body 2 destined to face inside the injection mould, are in turn independently connected to a moulding process electronic control unit (conventional and not shown in the drawings), which controls the electrical power to either one or the other resistor 5, 6 according to the predefined moulding process parameters. The electronic control unit also selects either one of the two resistors 5, 6 according to their effective functionality. In this way, for example, the first heating resistor 5 will be normally operative, while the second resistor 6 will be kept as a backup, to be made operative in the case of a failure concerning the first resistor 5 or the respective thermocouple 7.
A differentiated operation of the two resistors 5, 6, which are also automatically managed by part of the electronic control unit will be possible, if required by operating on the calibration of the respective thermocouples 7, 8. The variant shown in
Naturally, numerous changes can be implemented to the construction and forms of embodiment of the invention herein envisaged, all comprised within the context of the concept characterising this invention, as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
TO2001A0399 | Apr 2001 | IT | national |
This application is a continuation of U.S. patent application Ser. No. 09/987,749, filed Nov. 15, 2001, now U.S. Pat. No. 7,131,831 entitled “NOZZLE FOR INJECTION MOULDING OF PLASTIC MATERIALS”, Bazzo et al., which claims priority from Italian Patent Application No. T02001A000399, filed Apr. 27, 2001, the entireties of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6394784 | Gellert et al. | May 2002 | B1 |
6638053 | Gellert et al. | Oct 2003 | B2 |
6761557 | Gellert et al. | Jul 2004 | B2 |
20040037913 | Gellert et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
750975 | Jan 1997 | EP |
1252998 | Apr 2002 | EP |
1252998 | Oct 2002 | EP |
1252998 | Oct 2004 | EP |
1484157 | Dec 2004 | EP |
1484157 | Mar 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20060275527 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09987749 | Nov 2001 | US |
Child | 11463374 | US |