This invention relates to a nozzle for spraying liquid, especially for atomizing water in a snow production cannon. The nozzle is designed to atomize the liquid of low viscosity and mixtures of such liquids and gases, particularly air. Under conditions of increased contact area with environment liquid enters into effective physical and chemical transformations, for example, by change of state from liquid to solid.
The known spray nozzle, described in the patent specification DE 19723752 has a cylindrical body and a cup nut. A fitting with a spray hole and a swirl insert adhered to it on the back side of the inlet fluid channel are mounted between the body and the cup nut. The spray hole of the fitting is connected to the vortex chamber by means of an inlet cone. The swirl insert divides the fluid inlet channel by means of a wall. In the wall are made two vortex channels which axes are located symmetrically and swirl-oblique down the nozzle axis. The fitting and the swirl insert are made of industrial ceramics or sintered powders, which significantly increases resistance to erosive wear and is technically simpler. These elements are tightened by means of threaded connection of the nut to the body. Between the body and the swirl insert a flat sealing ring is located. The sealing ring is made of elastomeric material having flexible-elastic characteristic. Pressure through an elastic pad reduces the risk of damage to fragile ceramic elements which are sensitive to shock, vibration and exceeding the allowable assembly stress, especially in the state of compressive stress. The location of the nut in relation to the body is transient axially and there is a gap between the face of the nut and the flange of the body. The front surface of the fitting with the spray hole is tangent to the nut, moreover, the nozzle is not sealed in the plane of the contact of the swirl insert and the fitting, which may cause the leakage through threaded connection if the pressure of liquid is high. The effect of that can be adverse, such as causing icing.
There are also known nozzles for spraying liquids in which the spraying is supported by the compressed air energy. The swirl insert has an air nozzle in the axis of its partition wall and said air nozzle is fed with air by means of a coaxial pipe, the outside diameter of which is less than the diameter of the liquid inlet channel and which extends from the back of the body to the outsides. Such solutions are presented among other in the patent descriptions U.S. Pat. No. 4,101,073 and EP0855564. Compressed air introduced into a vortex chamber breaks liquid into fine particles and produces small ice crystals which in snow cannons act as nucleatory, the ice crystal nuclei which initiate the crystallization process of sprayed water.
The solution according to the present invention has, as the above described nozzles, cylindrical body and a cup nut with a fitting having a spray hole which is connected to the vortex chamber by means of an inlet cone. There is a swirl insert between the body and the nut. The swirl insert divides the fluid inlet channel by means of a wall. In the wall are made at least two vortex channels and the axes of said channels are located symmetrically and swirl-oblique down the nozzle axis. These elements of the nozzle are also tightened by means of sealing ring made of elastomeric material having flexible-elastic characteristic.
The essence of the invention consists in that the swirl insert has a flange by means of which it is axially fixed between the nut and the body through front and rear rings having circular cross-sections. The front ring is located in a rectangular groove made on the face of the swirl insert which is tangent to the nut face, while the rear sealing ring is located in a semicircular socket made at the inner corner of the rear surface of the flange. From the adjacent face of the body the rear sealing ring is encircled by a quadrant-of-a-circle socket having a cone input.
When the nut is fully tightened on the body the axial deformation of the rear sealing ring is from 20 to 40% of the diameter of its cross-section and at the same time a gap between the face of the flange and the face of the body is not greater than the deformation. The rear sealing ring is made of elastomeric material which hardness is in the range of 60 to 90 IRHD, and the hardness is grater than the hardness of the front sealing ring.
It is advantageous if the position of fully tightening of the nut on the body is determined by tightening the thread of the nut in the runout zone of the thread—at the specific torque value.
It is also advantageous if embodiment in which the position of fully tightening of the nut is determined by the contact of the face of the nut with the face of an abutment flange, made on the outer surface of the body.
The nut can be made as a single piece of metal, but at high pressures of fluid, it is advantageous if the nut has a fitting glued inside. The fitting is made of ceramic material or sintered powders and it has a spraying hole, a cone input and a flange. The front surface of said flange is tangent to the front surface of the swirl insert.
It is also advantageous if the swirl insert is made of ceramic material or sintered powders.
Further version of the invention consists on that the swirl insert has an air nozzle located in the axis of the partition wall, and said air nozzle is fed by means of a coaxial pipe, the outside diameter of which is less than the diameter of the liquid inlet channel and said pipe outstands from the back of the body.
According to the invention, the sealing rings which fix and seal the swirl insert work in non-standard conditions. The rear sealing ring works in non-closed socket, having non-standard shape and size. The ring is tightened against the surface in the slot zone by an initial tightening of the nut, and when the nozzle is working sealing effect is reinforced by liquid pressure. The space on the back of the ring does not bear any pressure. Initial tightening force is strictly determined by the position of the fully tightening of the nut. As a result, the reproducibility of the axial compression force of the pre-specified value is obtained, and at the same time elasticity of the connection is preserved. Such conditions are particularly advantageous for nozzles with elements made of brittle ceramic material.
Two exemplary embodiments enable complete understanding of the invention. In the first embodiment the nozzle sprays water by energy of pressure, while in the second embodiment, water spraying is supported by compressed air. The nozzles are mounted circumferentially in many rows in the ring of the cylindrical body of snow cannons. The water nozzle is shown in
The nozzle shown in
The swirl insert 4 in this water nozzle is made of industrial ceramics. However, it is obvious that for specific conditions suitable material is selected, suitable due to erosivity of atomized liquid and its pressure, which enables making both the nut 2—instead of the above described example with the ceramic fitting 3 glued inside—and the swirl insert 4 as a single pieces of metal, for example brass.
Number | Date | Country | Kind |
---|---|---|---|
397789 | Jan 2012 | PL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/PL2012/000108 | 10/18/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/043068 | 3/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1183393 | merrell et al. | May 1916 | A |
2378348 | Wilmes et al. | Jun 1945 | A |
3441223 | Lapera | Apr 1969 | A |
3680793 | Tate et al. | Aug 1972 | A |
5829682 | Haruch | Nov 1998 | A |
5934569 | Soule et al. | Aug 1999 | A |
6267301 | Haruch | Jul 2001 | B1 |
20070235564 | Whittaker et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
659 592 | Feb 1987 | CH |
933 235 | Sep 1955 | DE |
202009012364 | Apr 2010 | DE |
2 116 973 | Jul 1972 | FR |
Number | Date | Country | |
---|---|---|---|
20130341423 A1 | Dec 2013 | US |