This invention relates generally to gas-cooled plasma arc cutting torches, and more particularly to extending the working life of nozzles for gas-cooled torches with an increased shoulder thickness to decrease the thermal wear rate.
Welding and plasma arc torches are widely used in the welding, cutting and marking of materials. A plasma torch generally includes an electrode and a nozzle having a central exit orifice mounted within a torch body, electrical connections, passages for cooling, passages for arc control fluids (e.g., plasma gas), and a power supply. Optionally, a swirl ring is employed to control fluid flow patterns in the plasma chamber formed between the electrode and nozzle. The torch produces a plasma arc, a constricted ionized jet of a gas with high temperature and high momentum. Gases used in the torch can be non-reactive (e.g., argon or nitrogen) or reactive (e.g., oxygen or air). In operation, a pilot arc is first generated between the electrode (cathode) and the nozzle (anode). Generation of the pilot arc can be by means of a high frequency, high voltage signal coupled to a DC power supply and the torch or any of a variety of contact starting methods.
During operation of the torch, certain consumable parts become worn and have to be replaced. A known problem in the art is increasing the lifespan of consumables. Specifically, these consumables include torch electrodes, nozzles, and shields. Previous patents assigned to Hypertherm, Inc. of Hanover, N.H. teach techniques for prolonging the lifespan of some of these consumables. For example, U.S. Pat. No. 5,317,126, the contents of which are incorporated herein by reference in their entirety, teaches that the life of a nozzle and an electrode can be extended by providing a plasma bypass channel to increase the mass flow rate of the plasma gas through the plasma chamber. U.S. Pat. No. 5,166,494, the contents of which are incorporated herein by reference, describes altering the flow of plasma gas in conjunction with the transfer of the current flow from the nozzle to the workpiece, and U.S. Pat. No. 5,170,033, the contents of which are incorporated herein by reference in their entirety, teaches that a chamber in the swirl ring can be created and sized to favorably affect the dynamic flow characteristics of the flowing gas when torch operating conditions are changed.
Another known problem in the art of gas-cooled plasma arc cutting torches is increasing the line of site from an operator to a workpiece, particularly along the torch head. A limitation to the sharpness of the torch head is the need to include various design parameters and electrical circuitry therein.
An aspect of the invention decreases the thermal wear rate of nozzles. One reason for the increased thermal wear rate relates to the minimum cross-sectional thickness of the shoulder region on the nozzle head. Previous designs do not provide a sufficient heat-conduction path for the heat generated by the plasma arc. It was also discovered that the thermal wear rate of the nozzle can increase as the length to width ratio (i.e., pointiness) of the nozzle head increases. Moreover, by simultaneously providing a sharper, pointier nozzle head, the operator's visibility of the workpiece can be increased.
The invention overcomes these and other problems by using a flared shoulder portion that provides an increased cross-sectional thickness of the shoulder, thereby providing a greater heat-conduction path for the heat generated by the plasma arc. In addition, the flared shoulder portion allows the nozzle head to have a substantially non-conical shoulder, thereby providing a torch operator with a better line of site to the workpiece.
A first aspect of the invention includes a nozzle for a gas-cooled plasma arc cutting torch. The nozzle includes a body comprising a hollow interior having a cylindrical portion that defines a central longitudinal axis and an inside diameter and a nozzle head. The nozzle head defines a plasma exit orifice disposed about the central longitudinal axis and a shoulder portion comprising a generally non-cylindrical portion and a second portion that, in combination, define an external contoured surface, the second portion disposed between the generally non-cylindrical portion and the body.
In an embodiment, the nozzle includes a contour line disposed on the external contoured surface identifies a region of a minimum shoulder thickness. The contour line can be disposed between the generally non-cylindrical portion and the second portion. In some embodiments, the second portion is disposed between the contour line and a second region on the body that identifies the intersection of the body and shoulder portion. The external contoured surface of the shoulder portion can define at least one of a nonlinear or irregular surface.
The generally non-cylindrical portion can be disposed nearer the longitudinal axis than is the inside diameter of the body. In some embodiments, substantially all of the generally non-cylindrical portion is between an end face of the nozzle head and a point on the nozzle body that corresponds to an insert depth (e.g., blowback position) of the electrode. In an embodiment, substantially all of the generally non-cylindrical portion is between an end face of the nozzle head and a bottom interior surface of the nozzle head.
The nozzle can be defined by a second angle measured between the longitudinal axis and a second tangent line to a second exterior surface of the second portion. The second angle can be greater than a first angle measured between the longitudinal axis and a first tangent line to a first exterior surface of the generally non-cylindrical portion. In some embodiments, the second portion is disposed between the generally non-cylindrical portion and a reference point located by extending the first tangent line to an exterior surface of the nozzle body. In an embodiment, the second tangent line passes through the second portion at a point of the nozzle head furthest from the longitudinal axis. In a preferred embodiment, the second angle is approximately 90 degrees. The second tangent line can substantially parallel the second exterior surface. The first tangent line can substantially parallel the first exterior surface.
In some embodiments, the region of minimum shoulder thickness corresponds to a heat transfer density proportionate to not more than about 2 amperes of torch operating current per square millimeter of nozzle cross-sectional conduction area at the region of minimum shoulder thickness. In a preferred embodiment, at least one of the generally non-cylindrical portion or the second portion is at least substantially conical. The external contoured
In some embodiments, the contour line is between the generally non-cylindrical portion and a point on the nozzle body that corresponds to an insert depth (e.g., blowback position) of the electrode. The contour line can be between the generally non-cylindrical portion and a bottom interior surface of the nozzle head. In an embodiment, the generally non-cylindrical portion and the second portion are at least substantially contiguous.
In another aspect of the invention, a nozzle for a gas-cooled plasma arc cutting torch is provided. The nozzle includes a body and a nozzle head. The body comprises a hollow interior having a cylindrical portion that defines a central longitudinal axis, an inside diameter, and an external body surface. The nozzle head defines a plasma exit orifice disposed about the central longitudinal axis and a shoulder portion defining an external contoured surface. A first section and a second section of the shoulder portion is disposed within a cross section of the shoulder portion that passes through the central longitudinal axis. The first section has a first external contour disposed between an end face of the nozzle head and an external surface of the nozzle body. The second section has a second external shoulder contour disposed between the external surface of the nozzle body and the first external contour, such that an angle φ1 measured between the central longitudinal axis and a first tangent line to a first point on the first external contour is less than an angle φ2 measured between the central longitudinal axis and a second tangent line to a second point on the second shoulder contour.
In an embodiment, a contour point correlates to a region of cross-sectional minimum shoulder thickness. The region of cross-sectional minimum shoulder thickness is identified at a location between the first external contour and the second external contour. In some embodiments, the contour point is disposed between the first external contour and a second region on the body that identifies the intersection of the body and shoulder portion.
The external contoured surface of the shoulder can define a nonlinear or irregular surface. In an embodiment, the second tangent line passes through the second section at a point of the nozzle head furthest from the longitudinal axis. In a preferred embodiment, φ2 is approximately 90 degrees. In some embodiments, the first and second sections of the shoulder are at least substantially conical.
The first and second sections can be at least substantially contiguous. In an embodiment, the first tangent line substantially parallels the first external contour. The second tangent line can substantially parallel the second external contour.
An aspect of the invention includes a nozzle for a gas-cooled plasma arc cutting torch. The nozzle comprises a body and a nozzle head. The body comprises a hollow interior having a cylindrical portion that defines a central longitudinal axis and an inside diameter. The nozzle head defines a plasma exit orifice disposed about the central longitudinal axis and a shoulder portion between an end face of the nozzle head and the body. The shoulder portion comprises an at least substantially frusto-conical portion and a flared portion that, in combination, define an external contoured surface of the shoulder portion. At least a portion of the frusto-conical portion is disposed between an end face of the nozzle head and the flared portion, and the flared portion is disposed between the nozzle body and the frusto-conical portion.
In an embodiment, a contour line is disposed on the external contoured surface that identifies a region of a minimum shoulder thickness. The contour line can be disposed at the intersection of the frusto-conical portion and the flared portion. In some embodiments, the contour line is disposed between the end face of the nozzle head and a point on the nozzle body that corresponds to an insert depth (e.g., blowback position) of the electrode. The exterior surface of the flared portion can form a substantial portion of the external contoured surface. In some embodiments, the external contoured surface of the shoulder portion includes at least one of an irregular or non-linear cross-sectional shape. The contour line can be disposed nearer the longitudinal axis than is the inside diameter of the body.
A second angle measured between the central longitudinal axis and a second tangent line to an outermost exterior surface of the nozzle head can be greater than a first angle measured between the central longitudinal axis and a first tangent line to a point on the shoulder that corresponds to the contour line. In an embodiment, the second angle is approximately 90 degrees. The first tangent line can substantially parallel a first exterior surface of the shoulder. The second tangent line can substantially parallel the outermost exterior surface of the nozzle head.
In some embodiments, the region of minimum shoulder thickness corresponds to a heat transfer density proportionate to not more than about 2 amperes of torch operating current per square millimeter of nozzle cross-sectional conduction area at the region of minimum shoulder thickness. In an embodiment, the flared portion is at least substantially conical.
An aspect of the invention includes a torch tip comprising a nozzle and a shield. The nozzle comprises a nozzle body and a nozzle head. The nozzle body comprises a hollow interior having a cylindrical portion that defines a central longitudinal axis and an inside diameter. The nozzle head defines a plasma exit orifice disposed about the central longitudinal axis and a nozzle shoulder portion. The nozzle shoulder portion comprises a first generally non-cylindrical portion and a second nozzle portion that, in combination, define an external contoured surface, the second nozzle portion disposed between the first generally non-cylindrical shoulder portion and the nozzle body.
The shield comprises a shield body and a shield head. The shield body includes a fastener for securing the shield to the torch body in a spaced relationship relative to the nozzle, for routing a shield gas through a space between the shield body and the nozzle. The shield head defines a shield head, which defines a shield exit orifice disposed about the central longitudinal axis and a shield shoulder portion. The shield shoulder portion comprising a second generally non-cylindrical portion and a second shield portion that, in combination, define an internal contoured surface. The second shield portion is disposed between the second generally non-cylindrical portion and the body, the second generally non-cylindrical and second shield portions corresponding to the first generally non-cylindrical and second nozzle portions.
In some embodiments, a second angle measured between the longitudinal axis and a second tangent line to a second external surface of the second nozzle portion is greater than a first angle measured between the longitudinal axis and a first tangent line to a first external surface of the first generally non-cylindrical portion. In an embodiment, the second angle is approximately 90 degrees. In some embodiments, the first tangent line at least substantially parallels the first external surface. The second tangent line can be at least substantially parallels the second external surface.
The first generally non-cylindrical portion and the second nozzle portion can be substantially conical. In an embodiment, the generally non-cylindrical portion and the second nozzle portion are at least substantially contiguous.
Another aspect of the invention includes a gas-cooled plasma arc cutting torch comprising a torch body, an electrode disposed within a swirl ring in the torch body, a nozzle, and a shield. The nozzle comprises a nozzle body and a nozzle head. The nozzle body comprises a hollow interior having a cylindrical portion that defines a central longitudinal axis and an inside diameter. The nozzle head defines a plasma exit orifice disposed about the central longitudinal axis and a nozzle shoulder portion. The nozzle shoulder portion comprises a first generally non-cylindrical portion and a second nozzle portion that, in combination, define an external contoured surface, the second nozzle portion disposed between the first generally non-cylindrical shoulder portion and the nozzle body.
The shield comprises a shield body and a shield head. The shield body includes a fastener for securing the shield to the torch body in a spaced relationship relative to the nozzle, for routing a shield gas through a space between the shield body and the nozzle. The shield head defines a shield exit orifice disposed about the central longitudinal axis and a shield shoulder portion. The shield shoulder portion comprises a second generally non-cylindrical portion and a second shield portion that, in combination, define an internal contoured surface. The second shield portion is disposed between the second generally non-cylindrical portion and the body, the second generally non-cylindrical and second shield portions corresponding to the first generally non-cylindrical and second nozzle portions.
A second angle measured between the longitudinal axis and a second tangent line to a second external surface of the second nozzle portion can be greater than a first angle measured between the longitudinal axis and a first tangent line to a first external surface of the first generally non-cylindrical portion. In some embodiments, the second angle is approximately 90 degrees. The first tangent line can at least substantially parallel the first external surface. In an embodiment, the second tangent line can at least substantially parallel the second external surface.
In some embodiments, the first generally non-cylindrical portion and the second nozzle portion are at least substantially conical. In an embodiment, the first generally non-cylindrical portion and the second nozzle portion are at least substantially contiguous.
An aspect of the invention includes a shield for a gas-cooled plasma arc cutting torch. The shield comprises a body and a head. The body includes a fastener for securing the shield to the body of the torch in a spaced relationship relative to a nozzle, the body having a cylindrical portion that defines a central longitudinal axis. The head defines an exit orifice disposed about the central longitudinal axis and a shoulder portion defining an internal contoured surface. The shoulder portion has a first section and a second section in a cross section disposed within a cross section of the shoulder portion that passes through the central longitudinal axis. The first section has a first internal contour disposed between an end face of the shield head and an internal surface of the shield body, the second section has a second internal contour disposed between the internal surface of the shield body and the first internal contour. An angle α1 measured between the central longitudinal axis and a first tangent line to a first point on the first internal contour is less than an angle α2 measured between the central longitudinal axis and a second tangent line to a second point on the second internal contour.
In some embodiments, the angle α2 approximately equals 90 degrees. The first and second shield sections can be at least substantially conical.
Another aspect of the invention comprises a method for increasing the life of a nozzle. The method comprises the step of providing a nozzle having a body and a nozzle head, the nozzle head defining an at least substantially frusto-conical shoulder portion such that a first nozzle wear rate results. The method further includes defining a flared shoulder portion that, in combination with the at least substantially frusto-conical shoulder portion, defines a nozzle shoulder having an external contoured surface. At least a portion of the frusto-conical surface is disposed between an end face of a nozzle head and the flared portion, and the flared portion is disposed between the body and the frusto-conical portion, such that a second nozzle wear rate results, the second nozzle wear rate less than the first nozzle wear rate.
In some embodiments, the method includes the step of forming the flared shoulder portion such that a second angle measured between the central longitudinal axis and a second tangent line to an outermost exterior surface of the nozzle head is greater than a first angle measured between the central longitudinal axis and a first tangent line to a point on the shoulder that corresponds to the contour line. In an embodiment, the method includes defining the second angle to be approximately 90 degrees.
The method can include establishing a contour line on the external contoured surface that identifies a region of a minimum shoulder thickness between the generally non-cylindrical portion and the second portion. In an embodiment, the method includes positioning the contour line to be at the intersection of the frusto-conical portion and the flared portion. In some embodiments, the method includes disposing the contour line nearer the longitudinal axis than an inside diameter of the body.
The method can include the step of defining the external contoured surface with an irregular or non-linear cross-sectional shape. In some embodiments, the method includes defining the flared portion as substantially conical. In an embodiment, the method includes establishing the region of minimum shoulder thickness to with at least a minimum thickness to correspond to a heat transfer density proportionate to not more than about 2 amperes of torch operating current per square millimeter of nozzle cross-sectional conduction area at the region of minimum shoulder thickness.
An aspect of the invention includes a method of manufacturing a nozzle. The method comprises providing a nozzle having an at least substantially cylindrical body and a substantially cylindrical nozzle head disposed about a central longitudinal axis. The method further includes removing a section of the nozzle head to define a shoulder portion between an end face of the nozzle head and the body. The shoulder portion produced thereby comprises a generally non-cylindrical portion and a second portion that, in combination, define an external contoured surface between the generally non-cylindrical portion and the body.
In some embodiments, the method includes establishing a region of minimum thickness between the generally non-cylindrical portion and the second portion such that the shoulder region has a contour line that identifies the region of minimum shoulder thickness. The method can include defining the second angle to be approximately 90 degrees. In an embodiment, the generally non-cylindrical portion and the second portion are substantially conical.
In some embodiments, the method includes a step of establishing the contour line nearer the longitudinal axis than an inside diameter of the body. In an embodiment, the method includes, during the removing step, defining the generally non-cylindrical portion and second portion such that a second angle measured between the longitudinal axis and a second tangent line to a second exterior surface of the second portion is greater than a first angle measured between the longitudinal axis and a first tangent line to a first exterior surface of the generally non-cylindrical portion. The method can include disposing the second portion between the generally non-cylindrical portion and a reference point located by extending the first tangent line to an exterior surface of the nozzle body.
The foregoing and other objects, features, and advantages of the present invention, as well as the invention itself, will be more fully understood from the following description of various embodiments, when read together with the accompanying drawings.
A shield 170 can be disposed in a spatial relationship with the nozzle 100. The shield 170 defines a channel 173 for flowing a shield gas 175 to cool the nozzle 100 and to minimize material spatter on the nozzle tip 180.
It was discovered that for a given torch operating current, as the diameter 160 of the nozzle head 125 is decreased, the nozzle 100 lifespan decreases. It was also discovered that as the length 163 to diameter 160 ratio (i.e., the pointiness) of the nozzle head 125 increases, the nozzle 100 lifespan decreases. The nozzle 100 lifespan decrease seems to occur due to thermal wear, as the minimum cross-sectional thickness 165 of the nozzle head 140 does not provide a sufficient heat conducting path to remove the heat generated by the plasma arc near the tip 180 of the nozzle head 125.
The generally non-cylindrical portion 145 and the second portion 150 can be at least substantially contiguous. In some embodiments, such as the embodiment depicted in
In some embodiments, substantially all of the generally non-cylindrical portion 145 is disposed between an end face 215 of the nozzle head 125 and a point 210 on the nozzle body 105 that corresponds to an insert depth of the electrode 115 when the electrode 115 is in a blowback position. U.S. Pat. Nos. 4,791,268 and 4,902,871, the contents of which are incorporated herein by reference in their entirety, teach that a plasma can be ignited by contact starting. An electrode can be in a first position, close to the nozzle head, to start the plasma, and then slide backwards to a blowback position due to gas pressure buildup at the nozzle head.
In some embodiments, a contour line 200 disposed on the external contoured surface 155 correlates and corresponds to a region of minimal cross-sectional thickness 165. In an embodiment, the region of minimal cross-sectional thickness 165 corresponds to a heat transfer density proportionate to about 45 amperes of operating current per 24 square millimeters of nozzle 100 cross-sectional conduction area, i.e., a heat conduction transfer rate that corresponds to less than about 2 amps of torch operating current per square millimeter of minimum nozzle heat conduction area at the region of minimum shoulder thickness. In some embodiments, the contour line 200 is disposed at the intersection of the frusto-conical portion 245 and the flared portion 250. In some embodiments, the contour line 200 is disposed between an end face 215 of the nozzle head 125 and a point 210 on the nozzle body 105 that corresponds to the insert depth of the electrode 115 at the blowback position. In some embodiments, the external contoured surface 155 includes at least one of an irregular or non-linear cross-sectional shape.
U.S. Patent Publication No. 2007/0007256, the contents of which are incorporated herein by reference in their entirety, teaches that a first angle φ1 can be between 20-60 degrees, and preferably, between 30-50 degrees. In some embodiments, the second angle φ2 can be between 44-90 degrees.
Referring back to
In some embodiments, the external contoured surface 155 of the shoulder portion 140 defines a nonlinear or irregular surface. In some embodiments the first section 345 and the second section 350 are at least substantially conical. In some embodiments, the first section 345 and the second section 350 are at least substantially contiguous.
A shield 170 includes a shield body 605 and a shield head 625. The shield body 605 includes a fastener (not shown) for securing the shield 170 to the torch body 105 in a spaced relationship relative to the nozzle 100, for routing a shield gas through a space 615 between the shield body 605 and the nozzle 100. The shield head 625 defines a shield exit orifice 630 and a shield shoulder portion 640. The shield shoulder portion comprises a second generally non-cylindrical portion 645 and a second shield portion 650 that, in combination, define an internal contoured surface 655. The second shield portion 650 can be disposed between the second generally non-cylindrical portion 645 and the shield body 605, such that the second shield portion 650 and the second generally non-cylindrical portion 645 correspond to the first shield portion 150 and the first generally non-cylindrical portion 145 respectively.
Still referring to
The first section 647 and the second section 650 are configured such that a first angle α1 measured between the central longitudinal axis 135 and a first tangent line 665 to a first point 675 on the first internal contour 695 is less than an angle α2 between the central longitudinal axis 135 and a second tangent line 670 to a second point 680 on the second internal contour 697. In some embodiments, α2 approximately equals 90 degrees. In some embodiments, the first section 647 and the second section 653 are at least substantially conical.
The method includes a step of providing a nozzle (e.g., 100) having a body (e.g., 105) and a nozzle head (e.g., 125), the nozzle head defining an at least substantially frusto-conical shoulder portion (e.g., 245) such that a first nozzle wear rate results. The method also includes a step of defining a flared shoulder portion (e.g., 250) that, in combination with the at least substantially frusto-conical shoulder portion, defines a nozzle shoulder (e.g., 140) having an external contoured surface (e.g., 155), at least a portion of the frusto-conical surface disposed between an end face (e.g., 215) of a nozzle head (e.g., 125) and the flared portion, the flared portion disposed between the body and the frusto-conical portion, such that a second nozzle wear rate results, the second nozzle wear rate less than the first nozzle wear rate.
The method can include at least some optional steps. In some embodiments, the method includes a step of forming the flared shoulder portion such that a second angle (e.g., φ2) measured between the central longitudinal axis (e.g., 135) and a second tangent line (e.g., 370) to an outermost exterior surface (e.g., 445) of the nozzle head is greater than a first angle (e.g., φ1) measured between the central longitudinal axis and a first tangent line (e.g., 365) to a point on the shoulder that corresponds to the contour line (e.g., 200). In addition, the method can include a step of defining the second angle to be approximately 90 degrees.
In some embodiments, the method can include a step of establishing a contour line on the external contoured surface that identifies a region of a minimum shoulder thickness (e.g., 165) between the generally non-cylindrical portion and the second portion. The method can include a step of positioning the contour line to be at the intersection of the frusto-conical portion and the flared portion. In some embodiments, the method can further include a step of disposing the contour line nearer the longitudinal axis than an inside diameter of the body (e.g., 117).
The method can include a step of defining the external contoured surface with an irregular or non-linear cross-sectional shape. In some embodiments the method includes a step of defining the flared portion as substantially conical. The method can include a step of establishing the region of minimum shoulder thickness with at least a minimum thickness to correspond to a heat transfer density proportionate to about 45 amperes of torch operating current per 24 square millimeters of nozzle cross-sectional conduction area, i.e., a heat conduction transfer rate that corresponds to less than about 2 amps of torch operating current per square millimeter of minimum nozzle heat conduction area at the region of minimum shoulder thickness.
Referring to
Still referring to
Still referring to
While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.