The present application relates generally to gas turbine engines and, more particularly, relates to a turbine nozzle with internal nozzle cavities separated by a rib, in which a rib cap is employed to ensure the installation of an appropriately sized and shaped cavity insert in each nozzle cavity.
Generally described, a heavy duty gas turbine includes alternating rows of stationary nozzles and rotating blades positioned along the hot gas path. Specifically, each turbine stage includes an array of circumferentially spaced, radially extending nozzle vanes. The nozzle vanes include vane airfoils that extend between inner and outer bands. The vane airfoils may be partially hollow and may form a part of a cooling circuit therein. Overall nozzle cooling schemes, however, may be somewhat complex given the three-dimensional aerodynamic profile of the vane airfoils and the varying heat loads therein.
The nozzle cooling schemes may use internal nozzle cavity inserts of varying configurations for use in different stages. The various nozzle cavity inserts may be functionally different but may be physically similar. During installation of the nozzle cavity inserts, attention must be paid to ensure the use of the correct cavity insert because the installation of the wrong insert could have a significant negative impact on overall nozzle cooling and performance. To reduce the likelihood of confusion during the installation, it may be desirable to provide the turbine airfoil with a rib cap, such that only complementary sized nozzle cavity inserts fit into the respective nozzle cavities.
Alternately, or in addition, at some point in the operating life of the turbine, it may be desirable to provide cavity inserts that are configured to improve the cooling of the turbine airfoils. Such an upgrade necessitates the removal of the previously installed cavity inserts and the installation of the improved cavity inserts. It would be desirable to provide additional modifications to the turbine airfoil (such as the installation of a rib cap) to ensure that the improved cavity inserts are not mistaken for the previously installed cavity inserts.
There is thus a desire for an improved turbine nozzle design. Such an improved nozzle design may prevent the installation of physically similar, but functionally different, nozzle cavity inserts in each nozzle cavity for improved overall cooling and performance.
A nozzle assembly includes a first nozzle cavity, a second nozzle cavity, a rib positioned between the first nozzle cavity and the second nozzle cavity, a rib cap positioned on the rib, a first cavity insert, and a second cavity insert. The rib cap has a width greater than a width of the rib, such that the rib cap extends outwardly into portions of the first nozzle cavity and the second nozzle cavity immediately adjacent the rib. The first cavity insert and the second cavity insert include a longitudinal surface offset from the rib. The inlet edges of the offset surfaces of the first cavity insert and the second cavity insert contacting the rib cap are joined to the rib cap. A method of modifying the nozzle assembly is achieved by installing a rib cap wider than the rib, by installing modified cavity inserts having a surface offset from the rib, and by joining rib cap-interface surfaces of the modified cavity inserts to the rib cap.
According to a first embodiment, a nozzle assembly for use in a turbine engine includes a first nozzle cavity, a second nozzle cavity, and a rib separating the first nozzle cavity and the second nozzle cavity. The rib defines a longitudinal axis of the nozzle assembly and has an inlet surface on which a rib cap is installed. The rib cab, having a width greater than a width of the rib, extends outward from the rib into portions of the first nozzle cavity and the second nozzle cavity immediately adjacent the rib. A first cavity insert is installed in the first nozzle cavity, and a second cavity insert is installed in the second nozzle cavity. The first cavity insert and the second cavity insert each include a longitudinal surface offset from the rib, and inlet edges of the offset surfaces of the first cavity insert and the second cavity insert that contact the rib cap are joined to the rib cap.
According to another embodiment, a method of modifying a nozzle assembly includes providing a first nozzle with a first nozzle cavity insert installed in a first nozzle cavity and a second nozzle cavity insert in a second nozzle cavity. The first nozzle cavity and the second nozzle cavity are separated by a rib defining a longitudinal axis of the first nozzle. The method further includes removing the first nozzle cavity insert and the second nozzle cavity insert. A rib cap is installed onto an inlet surface of the rib, the rib cap having a width greater than a width of the rib, such that the rib cab extends outward from the rib into portions of the first nozzle cavity and the second nozzle cavity immediately adjacent the rib. A modified first cavity insert and a modified second cavity insert are provided, each of the modified first cavity insert and the modified second cavity insert including a longitudinal surface complementary to the rib. The modified first cavity insert is positioned into the first nozzle cavity, and the modified second nozzle cavity is positioned into the second nozzle cavity, such that the longitudinal surfaces are offset from the rib. The inlet edges of the longitudinal surfaces of the modified first cavity insert and the modified second cavity insert that contact the rib cap are joined to the rib cap.
These and other features and improvements of the present disclosure will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The gas turbine engine 10 may use natural gas, various types of liquid fuels, various types of syngas, and/or other types of fuels. The gas turbine engine 10 may be any one of a number of different gas turbine engines offered by General Electric Company of Schenectady, New York, including, but not limited to, 7-series or 9-series heavy duty gas turbine engines and the like. The gas turbine engine 10 may have different configurations and may use other types of components. Other types of gas turbine engines also may be used herein. Multiple gas turbine engines, other types of turbines, and other types of power generation equipment also may be used herein together.
As best seen in
The cavities 212, 214 may be defined by a longitudinal rib 216. Any number of ribs 216 may be used herein in any size, shape, or configuration. In one embodiment, the rib 216 may be provided with at least one air flow aperture 217 for permitting fluid communication between the aft cavity 212 and the forward cavity 214. In other embodiments, the rib 216 may not be provided with at least one air flow aperture 217.
An inlet surface 218 of the rib 216 is machined to create a recessed area 220 slightly below a surrounding surface of a platform 224 of the nozzle 205. The machining may occur as part of an original assembly or may occur as part of an upgrade (replacement) of the original nozzle cavity inserts. The recess 220 may extend outward of the inlet surface 218 of the rib 216 into adjacent portions of the platform surface 224, as shown, to facilitate installation of a rib cap 230 (shown in
The modified inserts 240, 250 include a rib cap-interfacing surface 246, 256 that contacts the rib cap 230, when the inserts 240, 250 are installed. An outwardly projecting lip 244, 254, extends from one edge 245, 255 of the rib cap-interfacing surface 246, 256 to the opposite edge 247, 257 of the rib cap-interfacing surface 246, 256. The outwardly projecting lip 244, 254 extends outward from the body 241, 251 of the insert 240, 250 and, when installed, extends radially beyond the nozzle platform 224. Notably, the rib cap-interface surface 246, 256 of the insert 240, 250 is complementary to the rib cap 230, such that the surface 246, 256 abuts the rib cap 230 (as shown in
As shown in
The use of the rib cap 230 thus modifies the size and shape of the cavities 212, 214. By installing the rib cap 230 onto the rib 216 and thus altering the perimeter of the cavities 212, 214, only the corresponding modified inserts 240, 250 may be positioned in the respective cavities 212, 214. The rib cap 230 largely “murphy-proofs” each nozzle 205 in that only the correct modified insert 240, 250 will fit therein. For instance, in the case where the modified inserts 240, 250 (e.g., inserts having a modified cooling hole pattern) are to be installed, the use of the rib cap 230 prevents the previously removed inserts 94, 96 from fitting into the truncated cavities 212, 214.
Moreover, the ability to provide and correctly install modified inserts 240, 250 without having to change the casting tool for the nozzle 205 offers a significant advantage in material and time savings. The modified inserts 240, 250 improve the performance of the nozzle 205, as compared to original inserts 94, 96, and the correct installation of the inserts 240, 250 is made possible by the use of the rib cap 230 to define the appropriate inlet perimeter of the cavities 212, 214.
It should be apparent that the foregoing relates only to certain embodiments of the present disclosure. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the disclosure, as defined by the following claims and the equivalents thereof.
The present application is a Continuation-In-Part of co-pending U.S. patent application Ser. No. 13/908,039, filed Jun. 3, 2013, entitled “Nozzle Insert Rib Cap,” the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5145315 | North et al. | Sep 1992 | A |
6120244 | Fukura | Sep 2000 | A |
6428273 | Keith et al. | Aug 2002 | B1 |
6453557 | Burdgick | Sep 2002 | B1 |
6461109 | Wedlake et al. | Oct 2002 | B1 |
6503054 | Bielek et al. | Jan 2003 | B1 |
6773229 | Itzel et al. | Aug 2004 | B1 |
7121796 | Burdgick et al. | Oct 2006 | B2 |
7465152 | Nigmatulin | Dec 2008 | B2 |
7798773 | Pellet et al. | Sep 2010 | B2 |
7819628 | Dervaux et al. | Oct 2010 | B2 |
8052378 | Draper | Nov 2011 | B2 |
8210544 | Waddell et al. | Jul 2012 | B2 |
8257032 | Beeck et al. | Sep 2012 | B2 |
8500405 | Jones | Aug 2013 | B1 |
20040170499 | Powis | Sep 2004 | A1 |
20070231150 | Dervaux | Oct 2007 | A1 |
20090293495 | Correia et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
07217404 | Aug 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20160312630 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13908039 | Jun 2013 | US |
Child | 15203098 | US |