Nozzle plate assembly of micro-injecting device and method for manufacturing the same

Abstract
A nozzle plate assembly of micro-injecting device and a method for manufacturing the same in which a master plate which defines a nozzle region is dipped into an electrolyte in which NiH2/SO3/H, NiCl2, H3BO3, C12H25SO4/NaS and deionized water are mixed in a predetermined ratio. Then, current having a predetermined density is applied several times, to thereby form a nozzle plate having a plurality of nozzles. The nozzle plate so formed has different roughnesses at inner and outer surfaces, to thereby eliminate ink-crosstalk and the generation of air bubbles in the ink feed channel.
Description




CLAIM OF PRIORITY




This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. § 119 from an application for NOZZLE PLATE ASSEMBLY OF MICRO-INJECTING DEVICE AND METHOD FOR MANUFACTURING THE SAME earlier filed in the Russian Federation Patent Office on the 3


rd


of November 1998 and there duly assigned Serial No. 98119954.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to the field of micro-injecting devices and ink-jet printheads, and particularly to a nozzle plate assembly of a micro-injecting device.




2. Description of the Related Art




Generally, a micro-injecting device refers to a device which is designed to provide printing paper, a human body, or a motor vehicle with a certain amount of liquid, for example, ink, an injection liquid, or petroleum, using the method in which a predetermined amount of electric or thermal energy is applied to the above-mentioned liquid to bring about a volumetric transformation of the liquid. Thus, a predetermined amount of such a liquid can be supplied to a specific object.




Recent developments in electrical and electronic technology have enabled rapid development of such micro-injecting devices. Thus, micro-injecting devices are being widely used in daily life. An example of micro-injecting devices in daily use is the inkjet printer.




The inkjet printer is a form of micro-injecting device which differs from conventional dot printers in the capability of performing print jobs in various colors by using cartridges. Additional advantages of inkjet printers over dot printers are lower noise and enhanced quality of printing. For these reasons, inkjet printers are gaining immensely in popularity.




An inkjet printer is generally provided with a printhead which transforms ink which is in the liquid state to a bubble state by turning on or off an electric signal applied from an external device. Then, the ink so bubbled is expanded and expelled so as to perform a print job on a printing paper.




Examples of the construction and operation of several ink jet print heads of the conventional art are seen in the following U.S. Patents. U.S. Pat. No. 4,490,728, to Vaught et al., entitled Thermal Ink Jet Printer, describes a basic print head. U.S. Pat. No.4,809,428, to Aden et al., entitled Thin Film Device For An Ink Jet Printhead and Process For Manufacturing Same and U.S. Pat. No. 5,140,345, to Komuro, entitled Method Of Manufacturing a Substrate For A Liquid Jet Recording Head And Substrate Manufactured By The Method, describe manufacturing methods for ink-jet printheads. U.S. Pat. No. 5,274,400, to Johnson et al., entitled Ink Path Geometry For High Temperature Operation Of Ink-Jet Printheads, describes altering the dimensions of the ink-jet feed channel to provide fluidic drag. U.S. Pat. No. 5,420,627, to Keefe et al, entitled Ink Jet Printhead, shows a particular printhead design.




In general, such a conventional inkjet printhead includes a nozzle plate having a nozzle with a minute diameter for ejecting ink. During ejection, the nozzle plate serves as a jet gate for finally ejecting ink onto external printing paper, and thus functions as an extremely important component in determining printing quality. Therefore, the substances used in forming a nozzle plate, and the size and shape of the nozzle must be designed in consideration of the characteristics of the ink.




Generally, in such an inkjet printhead, an outer surface of a nozzle plate is formed smooth so as to have low roughness. Thus, the surface tension between the nozzle plate and ink increases and the contact angle between them becomes larger, thereby preventing crosstalk in which ink droplets which are bubbled and ready to be discharged flow to an adjacent nozzle.




With the outer surface of nozzle plate, the crosstalk problem can be easily rectified by decreasing the surface roughness. However, if an inner surface of nozzle plate decreases in roughness, the surface tension between the inner surface and ink increases. Thus, the contact angle between the nozzle plate and ink becomes larger. As a result, ink which is to be discharged toward a nozzle coheres at an inner surface of the nozzle plate instead of being bubbled. In this case, the cohered ink droplets cut off between an ink feed channel and ink chamber, thereby disturbing the smooth supply of ink.




If the ink supply is not smooth and thus the ink contained in an ink chamber is insufficient, when a high speed driving of a printhead is performed, a large amount of air bubbles is generated in the ink chamber. Then, the generated air bubbles prevent ink droplets from passing through the nozzle, thereby causing a problem in that the ink cannot be ejected onto printing paper. As a result, overall printing quality is significantly lowered.




To overcome such problems, U.S. Pat. No. 5,563,640, to Suzuki, entitled Droplet Ejecting Device, has disclosed a method in which an outer surface of a nozzle plate is formed of substances having poor adhesiveness to ink, for example, polysulfone, polyethersulfone, or polyimide. Meanwhile, an inner surface of the nozzle plate is coated by substances having excellent adhesiveness to ink, for example, SiO


2


film. Thus, different surface tensions can be maintained where the ink contacts the outer surface and the inner surface, thereby overcoming the above-described crosstalk and air bubble generation problems.




In addition, U.S. Pat. No. 5,378,504, to Bayard et al., entitled Method For Modifying Phase Change Ink Jet Printing Heads To Prevent Degradation Of Ink Contact Angles, has disclosed a method in which an additional coating substance having high durability is deposited onto an outer surface of a nozzle plate so as to prevent loss of surface tension and to maintain the state of the outer surface of the nozzle plate.




However, to form a nozzle on a nozzle plate, a complicated process using high cost equipment, for example, an excimer laser, is required. In addition, if SiO


2


film is formed on an inner surface of the nozzle plate, the diameter of the nozzle becomes extremely narrow and the SiO


2


film cannot be formed uniformly. In addition, because an additional coating process for depositing coating substance onto an outer surface of the nozzle plate is required, the overall process becomes extremely complicated.




To overcome this problem, an electroforming method which eliminates the additional coating process and requires a low investment cost facility can be employed. However, in this case, due to a limitation imposed by the electrolyte, the roughness of the inner surface cannot exceed 0.016 μm to 0.025 μm, and a desirable surface tension cannot be obtained.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to provide an improved nozzle plate for a micro-injection device.




It is a further object of the invention to provide a nozzle plate which prevents ink from cohering at the inner surface of the nozzle plate.




It is a yet further object of the invention to provide a nozzle plate which prevents crosstalk between nozzles on the outer surface of the plate.




It is a still further object of the invention to provide a nozzle plate which prevents formation of an air bubble which would cut off the supply of ink.




It is also an object of the present invention to provide an improved method for manufacturing the nozzle plate of a micro-injection device.




It is an additional object to provide a less complicated method for manufacturing the nozzle plate of a micro-injection device which produces different surface tensions on the inner and outer sides of the nozzle plate.




It is a yet additional object to provide a less expensive method for manufacturing the nozzle plate of a micro-injection device.




To accomplish the above objects of the present invention, a master plate which defines a nozzle region is dipped into an electrolyte in which NiH


2


/SO


3


/H, NiCl


2


, H


3


BO


3


, C


12


H


25


SO


4


/NaS and deionized water are mixed at a predetermined ratio. Then, a predetermined current density is sequentially applied several times, to thereby coat a nozzle plate having a plurality of nozzles onto a surface of the master plate.




Here, the surface of the master plate is polished by heat-treatment and surface-treating processes. Thus, the outer surface of the nozzle plate which contacts a surface of the master plate maintains extremely low roughness. In addition, the inner surface of the finally formed nozzle plate is formed rough by performing ionization on electrolyte formed of NiH


2


/SO


3


/H, NiCl


2


, H


3


BO


3


, and sodium lauryl sulfate (C


12


H


25


SO


4


/NaS), to thereby maintain an extremely high roughness. As a result, the surface tension of the ink which contacts an inner surface becomes smaller than that of the ink which contacts an outer surface.











BRIEF DESCRIPTION OF THE DRAWINGS




A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the invention becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:





FIGS. 1

to


4


are views showing a process of manufacturing a nozzle plate assembly according to the present invention;





FIG. 5

illustrates an embodiment of a nozzle plate assembly according to the present invention; and





FIG. 6

is a cross-sectional view taken through VI—VI in

FIG. 5

, showing an operation of a nozzle plate assembly according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention now will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. As the terms mentioned in the specification are determined based upon the function of the present invention, and they can be changed according to the technician's intention or a usual practice, the terms should be determined considering the overall contents of the specification of the present invention.




As shown in

FIG. 1

, a first metal film


203


made preferably of vanadium is formed on a silicon substrate


201


by a chemical vapor deposition method on which a protective film


202


made of SiO


2


is formed. At this time, the first metal layer


203


serves to allow a second metal film


204


, described below, to be firmly fixed onto the protective film


202


.




Then, the second metal layer


204


made preferably of nickel is formed on the first metal layer


203


by a chemical vapor deposition method. Here, the first metal layer


203


for promoting adhesion has been already formed on the protective film


202


. Therefore, the second metal layer


204


can be formed more firmly on the protective film


202


. The second metal layer


204


is formed on the protective film


202


so that a nozzle plate assembly


100


which will be formed by a coating method can be easily separated from master plate


200


.




Then, a pattern film (not shown) is partially formed on the first and second metal layers


203


and


204


, which then are etched using the pattern film as a mask so that the protective film


202


can be partially exposed. Then, the residual pattern film is removed by chemicals, to thereby complete the master plate


200


for defining a nozzle region


10


′.




Then, the surface of the second metal layer


204


is degreased by a degreasing liquid, and the master plate


200


is taken into a heating tank and heat-treated at a temperature of preferably 32° C. to 37° C. for 10 to 14 minutes. When this heat-treatment is finished, the master plate


200


is dipped into chemical passivation liquid so as to perform a process on the surface. Accordingly, the surface of the second metal film


204


that forms the leftmost side surface of the master plate


200


is polished to have a low roughness. Preferably, the treatment on the surface of the master plate


200


is performed at a temperature of 22° C. to 27° C. for 10 to 20 seconds.




Subsequently, if the master plate


200


is ready to assist a formation of the nozzle plate assembly


100


of the present invention, the master plate


200


is dipped into electrolyte in which NiH


2


/SO


3


/H, NiCl


2


, H


3


BO


3


, sodium lauryl sulfate (C


12


H


25


SO


4


/NaS) and deionized water a at a predetermined ratio. Thus, the nozzle plate


8


of the present invention is coated onto a surface of the master plate


200


.




Preferably, the electrolyte is made up of 280 g/l to 320 g/l of NiH


2


/SO


3


/H, 18 g/l to 22 g/l of NiCl


2


, 28 g/l to 32 g/l of H


3


BO


3


and 0.03 g/l to 0.08 g/l of C


12


H


25


SO


4


/NaS, and more preferably, 300 g/l of NiH


2


/SO


3


/H, 20 g/l of NiCl


2


, 30 g/l of H


3


BO


3


, 0.05 g/l of C


12


H


25


SO


4


/NaS. Here, in the electrolyte into which the master plate


200


is dipped, a target substance for coating the nozzle plate


8


, for example, nickel, is present.




Subsequently, the target substance and the master plate


200


are connected to an external power source. Here, the target substance is connected to “+”, while the master plate


200


is connected to “−”.




Then, the power source is turned on so as to apply current having predetermined density between the target substance and the master plate


200


several times, sequentially. Preferably, the current is applied for 40 to 60 minutes at a density of 0.1 A/m


2


, then 25 to 35 minutes at a density of 0.2 A/m


2


, 18 to 22 minutes at a density of 0.3 A/m


2


, 18 to 22 minutes at a density 8 to 12 minutes at a density of 0.1 A/m


2


. More preferably, the current is applied for 60 minutes at a density of 0.1 A/m


2


, 30 minutes at a density of 0.2 A/m


2


, 20 minutes at a density of 0.3 minutes at a density of 0.4 A/m


2


, and for 10 minutes at a density of 0.1 A/m


2


.




When the current-applying process is performed, the target substance connected to “+” is dissolved and rapidly ionized, and the ionized target substance migrates through the electrolyte as a medium and deposits on the master plate


200


connected to “−”, to thereby form the nozzle plate


8


made of nickel on the master plate


200


, as shown in FIG.


2


. The nozzle plate


8


is coated gradually filling the nozzle region


10


′ of the master plate


200


. When, this process is finished, an inner surface


13


of the nozzle plate


8


is provided with an extremely high roughness.




Meanwhile, the thickness of the nozzle plate


8


being coated can be determined by the following equation.






δ
=




(


P
1

-

P
2


)

×

10
4


S

×
γ











Where δ is a thickness of the nozzle plate, P


1


is the weight of the master plate after the nozzle plate is coated, P


2


is the weight of the master plate before the nozzle plate is coated, S is the coated area of the nozzle plate, and γ is the specific gravity of the nozzle plate.




By substituting relevant values into the above equation, the thickness of the nozzle plate


8


for an actual product can be determined and adjusted. Preferably, the coating thickness of the nozzle plate


8


is in the range of approximately 15 μm to 25 μm.




When a nozzle plate


8


having the desired thickness is completed, a worker turns off the power supply thus completes the coating process of nozzle plate


8


. Then, the master plate


200


on which the nozzle plate


8


is coated is taken out from the electrolyte, and is inserted into a glass tank. Then, the nozzle plate


8


is heat-treated. Preferably, the nozzle plate


8


is stabilized by maintaining it at a temperature in the range of approximately 20° C. to 30° C. for a predetermined time. In this manner, the nozzle plate


8


is provided with relevant mechanical strength. Subsequently, the nozzle plate


8


is dipped into deionized water, cleaned for approximately 5 minutes and dried.




The above-described process for forming the nozzle plate


8


of the present invention adapts a general electroforming method. Such electroforming method is simple and is known as a process which does not require high cost equipment and complicated techniques. Therefore, if the nozzle plate is manufactured according to the present invention, the overall yield of the manufacturing process can be significantly improved.




When the above drying process is completed, a process for forming an ink chamber barrier layer


7


on the nozzle plate


8


starts. As shown in

FIG. 3

, an organic film, for example, a polyimide layer


7


′, is deposited to a thickness of 30 μm, on the nozzle plate


8


. Then, a protection mask layer


20


made of aluminum is deposited to a thickness in the range of approximately 0.8 μm to 1 μm on the polyimide layer


7


′.




Subsequently, a photoresist layer (not shown) is deposited on the protection mask layer


20


which then is patterned using the photoresist layer as a mask. Here, because a pattern of the final ink chamber is defined at the photoresist layer, the exact pattern of the ink chamber can be obtained on the protection mask layer


20


when patterning process is completed.




Subsequently, the photoresist layer is removed by chemicals, and the polyimide layer


7


′ is patterned using the patterned protection mask layer


20


as a mask. Here, as described above, because the exact pattern of the ink chamber has been already obtained on the protection mask layer


20


, the polyimide layer


7


′ is completed as a final ink chamber barrier layer including an ink chamber region, when the patterning process is finished.




As shown in

FIG. 4

, the protection mask layer is removed by chemicals, and the nozzle plate


8


combined with the ink chamber barrier layer


7


for defining the ink chamber


9


is separated from the master plate


200


using chemicals, for example, hydrogen fluoride. When the separating process is finished, the nozzle plate assembly


100


in which a plurality of nozzles for ink injection are formed is completed. Here, the nozzles


10


penetrate through the inner surface


13


of the nozzle plate


8


and are thus exposed toward the outer surface


14


.




As described above, the surface of the master plate


200


is polished through heat-treatment and surface-treating processes. Therefore, the outer surface


14


of the nozzle plate


8


which contacts surface of the master plate


200


and is finally separated by the above-described separation process can maintain extremely low roughness, preferably in the range of approximately 0.008 μm to 0.016 μm. The inner surface


13


of the finally formed nozzle plate


8


is formed rough by using an electrolyte having NiH


2


/SO


3


/H, NiCl


2


, H


3


BO


3


, C


12


H


25


SO


4


/NaS, to thereby maintain extremely high rough preferably in the range of approximately 1.0 μm to 1.5 μm.




As shown in

FIG. 5

, the nozzle plate assembly


100


including the ink chamber barrier layer


7


which defines the ink chamber


9


disposed on substrate


1


is positioned to face printing paper, to thereby complete the structure of inkjet printhead. Here, an ink feed channel


300


for defining the feed path of ink is formed adjacent to the ink chamber


9


, and the ink fed from an external device flows through the ink feed channel


300


. Thus, the ink chamber


9


is filled with the ink.




Now, the operation of the inkjet printhead employing the nozzle plate assembly


100


of the present invention will be explained. As shown in

FIG. 6

, if an electric signal is applied to an electrode layer (not shown) from an external power source, a heater


1


connected to the electrode layer is fed with the electric energy and is rapidly heated to a high temperature of 500° C. or higher. During this process, the electric energy is converted into a thermal energy of 500° C. to 550° C.




The thermal energy is then transmitted to the ink chamber


9


which contacts the heater


11


, and an ink


400


that fills the ink chamber


9


is rapidly heated and transformed into bubbles. Here, if the thermal energy is continuously transmitted to the ink chamber


9


, the bubbled ink


400


is rapidly transformed in volume and expanded. Thus, the bubbled ink


400


is expelled out through the nozzle


10


of the nozzle plate


8


and ready to be ejected. The ink


400


is transformed into oval and circular shapes in turn due to its own weight, and ejected onto printing paper as shown in arrow


405


, to thereby perform rapid printing.




As described above, the inner surface


13


of the nozzle plate


8


is formed rough employing electrolyte made up of NiH


2


/SO


3


/H, NiCl


2


, H


3


BO


3


, C


12


H


25


SO


4


/NaS, to thereby maintain a high roughness of 1.0 μm to 1.5 μm. Thus, the surface tension between the inner surface


13


of the nozzle plate


8


and the ink


400


can be significantly reduced. Thus, the ink


400


can be prevented from cohering. Then, the ink can be smoothly fed from the ink feed channel


300


into the ink chamber


9


. In addition, the ink chamber


9


can be fed with sufficient amount of ink, thereby preventing formation of air bubbles.




Meanwhile, the outer surface


14


of the nozzle plate


8


contacts a surface of the polished master plate


200


and is finally separated from the surface, to thereby maintain low roughness in the range of approximately 0.008 μm to 0.016 μm. In addition, surface tension with the ink


400


can be greatly increased. As a result, the crosstalk problem where the ink


400


spreads as indicated in line


401


of FIG.


6


and flows toward an adjacent nozzle can be avoided.




In the prior art, to rectify the problems such as crosstalk or generation of air bubbles, a process for forming a film by employing high cost equipment is required and thus the overall yield is lowered. However, in the present invention, the nozzle plate


8


of which inner surface


13


and outer surface


14


have different roughnesses is formed by adapting a low cost electroforming method. Therefore, the above-mentioned problems such as crosstalk or generation of air bubbles can be rectified without the need for a complicated process, for example, a process for forming a film.




Meanwhile, at the state where the ink


400


is ejected, if the electric signal applied from an external device is temporarily cut off, the heater


11


rapidly cools down. Then, the bubbled ink


400


which remains in the ink chamber


9


rapidly contracts and generates a restoring force restoring the ink to the original form. The thus-generated restoring force rapidly lowers the pressure in the ink chamber


9


. Thus, ink which flows through the ink feed channel


300


can rapidly refill the ink chamber


9


. Then, the inkjet printhead repeats the above-described ink injection and refill processes driven by electric signals, to thereby perform a print job on printing paper.




As described above, in the present invention, a nozzle plate is formed to have different roughnesses at inner and outer surfaces by employing a low cost electroforming method. Thus, the overall yield of the manufacturing process is improved and such problems as crosstalk and generation of air bubbles can be rectified.




Although it is explained in this specification in the example of an inkjet printhead, the present invention can be adapted to a micro-pump of a medical appliance or a fuel injecting device. This invention has been described above with reference to the aforementioned embodiments. It is evident, however, that many alternative modifications and variations will be apparent to those having skill in the art in light of the foregoing description. Accordingly, the present invention embraces all such alternative modifications and variations as fall within the spirit and scope of the appended claims.



Claims
  • 1. A method of manufacturing a nozzle plate assembly of a micro-injecting device, comprising the steps of:forming a master plate defining a nozzle region, the master plate including a substrate; polishing a surface of an outer layer of the master plate formed over the substrate of the master plate to provide a polished surface of the master plate; electroforming a nozzle plate on the polished surface of the master plate to form an outer surface of the nozzle plate of a low roughness relative to a roughness of an inner surface of the nozzle plate, the outer surface of the nozzle plate contacting the polished surface of the master plate; and separating the nozzle plate from the master plate.
  • 2. The method of claim 1, further comprised of said step of forming the master plate further comprising the steps of:forming a first metal layer on a protective film formed on the substrate; forming a second metal layer on the first metal layer; and etching the first metal layer and the second metal layer to expose a portion of the protective film to define the nozzle region.
  • 3. The method of claim 2, further comprised of said step of forming the first metal layer comprising forming the first metal layer of vanadium.
  • 4. The method of claim 2, further comprised of said step of forming the second metal layer comprising forming the second metal layer of nickel.
  • 5. The method of claim 2, further comprised of said step of polishing a surface of the outer layer of the master plate further comprising the steps of:degreasing a surface of the second metal layer; heat-treating the surface of the second metal layer; and dipping the master plate into a passivation solution.
  • 6. The method of claim 5, further comprised of said heat-treating being performed at a temperature in a range of approximately from 32 to 37° C.
  • 7. The method of claim 6, further comprised of said heat-treating being performed for a time period in a range of approximately from 10 to 14 minutes.
  • 8. The method of claim 5, further comprised of said dipping the master plate in the passivation solution being performed at a temperature in a range of approximately from 22 to 27° C.
  • 9. The method of claim 8, further comprised of said dipping the master plate in the passivation solution being performed for a time period in a range of approximately from 10 to 20 seconds.
  • 10. The method of claim 1, further comprised of said step of electroforming the nozzle plate being performed in an aqueous solution comprising NiH2/SO3/H, NiCl2, H3BO3 and C12H25SO4NaS.
  • 11. The method of claim 10, further comprised of the aqueous solution including a concentration of NiH2/SO3/H in a range of approximately from 280 to 320 g/liter, a concentration of NiCl2 in a range of approximately from 18 to 22 g/liter, a concentration of H3BO3 in a range of approximately from 28 to 32 g/liter and a concentration of C12H25SO4/NaS in a range of approximately from 0.03 to 0.08 g/liter.
  • 12. The method of claim 11, further comprised of the aqueous solution including the concentration of NiH2/SO3/H to be approximately 300 g/liter, the concentration of NiCl2 to be approximately 20 g/liter, the concentration of H3BO3 to be approximately 30 g/liter and the concentration of C12H25SO4/NaS to be approximately 0.05 g/liter.
  • 13. The method of claim 1, further comprised of said step of electroforming the nozzle plate comprising electroforming nickel metal on the polished surface of the master plate.
  • 14. The method of claim 1, further comprised of said step of electroforming the nozzle plate being performed by applying power in steps to the nozzle plate and a target substance in an electrolyte so as to draw a current density of approximately 0.1 A/m2 for a time period in a range of approximately from 40 to 60 minutes, then to draw a current density of approximately 0.2 A/m2 for a time period in a range of approximately from 25 to 35 minutes, then to draw a current density of approximately 0.3 A/m2 for a time period in a range of approximately from 18 to 22 minutes, then to draw a current density of approximately 0.4 A/m2 for a time period in a range of approximately from 18 to 22 minutes, and then to draw a current density of approximately 0.1 A/m2 for a time period in a range of approximately from 8 to 12 minutes.
  • 15. The method of claim 1, further comprised of said step of electroforming the nozzle plate being performed by applying power in steps to the nozzle plate and a target substance in an electrolyte so as to draw a current density of approximately 0.1 A/m2 for approximately 60 minutes, then to draw a current density of approximately 0.2 A/m2 for approximately 30 minutes, then to draw a current density of approximately 0.3 A/m2 for approximately 20 minutes, then to draw a current density of approximately 0.4 A/m2 for approximately 20 minutes, and then to draw a current density of approximately 0.1 A/m2 for approximately 10 minutes.
  • 16. The method of claim 1, further comprised of said step of electroforming the nozzle plate being stopped when a desired thickness of the nozzle plate is achieved.
  • 17. The method of claim 16, further comprised of the desired thickness of the nozzle plate being determined from a weight gain of the master plate using the equation: δ=(P1-P2)×104S×γwhere δ is the desired thickness of the nozzle plate, P1 is a weight of the master plate and the nozzle plate after said step of electroforming the nozzle plate, P2 is a weight of the master plate before said step of electroforming the nozzle plate, S is an electroformed area of the nozzle plate, and γ is a specific gravity of the nozzle plate.
  • 18. The method of claim 1, farther comprised of said step of electroforming the nozzle plate being performed to deposit the nozzle plate of a thickness in a range of approximately from 15 to 25 μm.
  • 19. The method of claim 16, farther comprising the steps of:removing the nozzle plate from an electrolyte; treating the nozzle plate at a temperature in a range of from 20 to 30° C.; and dipping the nozzle plate into deionized water for approximately 5 minutes.
  • 20. The method of claim 1, farther comprising the step of:before separating the nozzle plate from the master plate, forming an ink chamber barrier layer on the nozzle plate.
  • 21. The method of claim 20, further comprised of said step of forming the ink chamber barrier layer on the nozzle plate further comprising the step of:depositing an organic film on the nozzle plate.
  • 22. The method of claim 21, further comprised of:the organic film being made of polyimide.
  • 23. The method of claim 21, further comprised of:depositing the organic film to a thickness of approximately 30 μm.
  • 24. The method of claim 21, further comprising the steps of:depositing a protection mask on the organic film; depositing a photoresist on the protection mask; photoetching the photoresist to define a pattern of the ink chamber barrier layer; and removing the photoresist, patterning the organic film using the protection mask, and removing the protection mask.
Priority Claims (1)
Number Date Country Kind
98119954 Nov 1998 RU
US Referenced Citations (13)
Number Name Date Kind
4490728 Vaught et al. Dec 1984 A
4801955 Miura et al. Jan 1989 A
4809428 Aden et al. Mar 1989 A
5140345 Komuro Aug 1992 A
5255017 Lam Oct 1993 A
5274400 Johnson et al. Dec 1993 A
5378504 Bayard et al. Jan 1995 A
5420627 Keefe et al. May 1995 A
5435896 Hardee et al. Jul 1995 A
5560837 Trueba Oct 1996 A
5563640 Suzuki Oct 1996 A
5859655 Gelorme et al. Jan 1999 A
6054011 Radke et al. Apr 2000 A
Non-Patent Literature Citations (1)
Entry
Stewell et al. The Think Jet Orifice Plate: A Port With Many Functions Hewlett-Packard Journal, May 1985, pp. 33-37.