This application is based upon and claims the benefit of priority from Japanese patent application No. 2017-169965, filed on Sep. 5, 2017, the disclosure of which is incorporated herein in its entirety by reference.
The present disclosure relates to a nozzle structure for a hydrogen gas burner apparatus.
Japanese Unexamined Patent Application Publication No. 2005-188775 discloses a nozzle structure for a burner in which a combustion gas such as a hydrocarbon gas is premixed with air, so that generation of NOx is suppressed.
The present inventors have found the following problem. That is, there are cases where a hydrogen gas is used as a fuel gas. In such a case, since the hydrogen gas is highly reactive compared to a hydrocarbon gas, a temperature of a combustion flame could locally become high. As a result, a large amount of NOx is sometimes generated.
The present disclosure has been made to reduce an amount of generated NOx.
A first exemplary aspect is a nozzle structure for a hydrogen gas burner apparatus, including an outer tube and an inner tube concentrically disposed inside the outer tube, in which
the inner tube is disposed so that an oxygen-containing gas is discharged from an opened end of the inner tube in an axial direction (e.g., a direction along an axis Y1, a direction roughly parallel to the axis Y1, or the like), and
the outer tube extends beyond the opened end of the inner tube in the axial direction so that a hydrogen gas passes through a space between an inner circumferential surface of the outer tube and an outer circumferential surface of the inner tube.
According to the above-described configuration, after being discharged from the opened end of the inner tube in the axial direction, the oxygen-containing gas proceeds along an inner side of a part of the outer tube that extends beyond the opened end of the inner tube in the axial direction. Meanwhile, after passing through the space between the inner circumferential surface of the outer tube and the outer circumferential surface of the inner tube, the hydrogen gas proceeds along an outer periphery of the oxygen-containing gas. In this way, contact between the oxygen-containing gas and the hydrogen gas is suppressed, thus making it possible to suppress mixture of the oxygen-containing gas and the hydrogen gas. Therefore, it is possible to prevent a temperature of a combustion flame from locally becoming high and thereby to reduce the amount of generated NOx.
Further, the nozzle structure may further include:
an oxygen-containing gas blowing duct configured to blow out the oxygen-containing gas in the axial direction and make the oxygen-containing gas pass through a space inside the inner tube; and
a hydrogen gas blowing duct configured to blow out the hydrogen gas into the space between the inner circumferential surface of the outer tube and the outer circumferential surface of the inner tube in the axial direction, and make the hydrogen gas pass through between the inner circumferential surface of the outer tube and the outer circumferential surface of the inner tube, in which
the oxygen-containing gas blowing duct may have a circular shape, and
the hydrogen gas blowing duct may have an annular shape so as to surround the oxygen-containing gas blowing duct.
According to the above-described configuration, since the hydrogen gas and the oxygen-containing gas are further propelled along the axial direction, the progress of the mixture of the hydrogen gas and the oxygen-containing gas is further suppressed. Therefore, it is possible to further prevent the temperature of the combustion flame from locally becoming high and thereby to further reduce the amount of generated NOx.
Further, in a section between the opened end of the inner tube and a base part thereof, a fin that extends in the axial direction while protruding toward the inner tube may be provided on the inner circumferential surface of the outer tube, or a fin that extends in the axial direction while protruding toward the outer tube may be provided on the outer circumferential surface of the inner tube.
According to the above-described configuration, since the hydrogen gas and the oxygen-containing gas are further propelled along the axial direction, the progress of the mixture of the hydrogen gas and the oxygen-containing gas is further suppressed. Therefore, it is possible to further prevent the temperature of the combustion flame from locally becoming high and thereby to further reduce the amount of generated NOx.
The present disclosure can reduce the amount of generated NOx.
The above and other objects, features and advantages of the present disclosure will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not to be considered as limiting the present disclosure.
Specific embodiments to which the present disclosure is applied are explained hereinafter in detail with reference to the drawings. However, the present disclosure is not limited to embodiments shown below. Further, the following descriptions and the drawings are simplified as appropriate for clarifying the explanation. A right-handed three-dimensional xyz-coordinate system is defined in
A first embodiment is described with reference to
As shown in
The outer tube 1 includes a cylindrical part 1a having an axis Y1. The cylindrical part 1a includes an outer circumferential surface 1e. Specifically, the cylindrical part 1a is attached to the gas blowing part 3 and extends from the gas blowing part 3 roughly in a straight line along the axis Y1. The outer tube 1 is made of a material that receives heat from the inside thereof and radiates radiant heat to the outside. The outer tube 1 is, for example, a radiant tube.
While one end part 1b of the outer tube 1 in the example shown in
The inner tube 2 is a cylindrical body with an opened end 2b and an opened base-side end part 2c. The inner tube 2 is attached to the gas blowing part 3 and concentrically disposed inside the outer tube 1. Therefore, the inner tube 2 is a cylindrical body having, like the cylindrical part 1a of the outer tube 1, the axis Y1. Since the inner tube 2 is shorter than the outer tube 1, the outer tube 1 extends beyond the opened end 2b of the inner tube 2 in a direction along the axis Y1.
As shown in
The oxygen-containing gas blowing duct 3a has a circular shape. Further, the oxygen-containing gas blowing duct 3a blows out an oxygen-containing gas in a direction along the axis Y1 and makes the oxygen-containing gas pass through the space inside the inner tube 2. The inner tube 2 discharges the oxygen-containing gas from its opened end 2b in the direction along the axis Y1.
The hydrogen gas blowing duct 3b has an annular shape so as to surround the oxygen-containing gas blowing duct 3a. The hydrogen gas blowing duct 3b blows out a hydrogen gas into a space (i.e., a gap) between an inner circumferential surface 1d of the outer tube 1 and an outer circumferential surface 2e of the inner tube 2 in a direction roughly parallel to the axis Y1 and makes the hydrogen gas pass through the space between the inner circumferential surface 1d of the outer tube 1 and the outer circumferential surface 2e of the tube 2. The outer tube 1 and the inner tube 2 discharge the hydrogen gas from the opened end 2b of the inner tube 2 in the direction along the axis Y1.
(Heating Method)
Next, a heating method using the nozzle structure 10 for a hydrogen gas burner apparatus is described with reference to
As shown in
Next, by using an ignition apparatus such as a spark plug (not shown), a spark is made and the hydrogen gas is ignited and burned. As a result, a tubular flame F1 is generated. The tubular flame F1 extends from the opened end 2b of the inner tube 2 toward the one end 1b of the outer tube 1 and converges. The tubular flame F1 heats the outer tube 1, and the outer tube 1 generates radiant heat and thereby generates heat.
The condition for the combustion in the heating method using the nozzle structure 10 for the hydrogen gas burner apparatus is explained hereinafter. Amounts of generated NOx were measured under various conditions by using an example of the heat generation method using the nozzle structure 10 for the hydrogen gas burner apparatus.
As shown in
Further, as shown in
Further, as shown in
As described above, after the oxygen-containing gas is discharged from the opened end 2b of the inner tube 2 in the direction along the axis Y1, it proceeds inside of the part of the outer tube 1 that extends beyond the opened end 2b of the inner tube 2 in the direction along the axis Y1. Meanwhile, after the hydrogen gas passes through the space between the inner circumferential surface 1d of the outer tube 1 and the outer circumferential surface 2e of the inner tube 2, it proceeds along the outer periphery of the oxygen-containing gas. In this way, contact between the oxygen-containing gas and the hydrogen gas is suppressed and hence the hydrogen gas is slowly burned. Therefore, it is possible to prevent the temperature of the tubular flame F1 from locally becoming high and thereby to reduce the amount of generated NOx. Further, a flashback phenomenon hardly occurs.
Further, the nozzle structure 10 includes the gas blowing part 3, and the gas blowing part 3 includes the oxygen-containing gas blowing duct 3a having a circular shape and the hydrogen gas blowing duct 3b having an annular shape. Since the oxygen-containing gas blowing duct 3a enables the oxygen-containing gas to be uniformly blown out therefrom in the direction along the axis Y1, a flow of the oxygen-containing gas having a circular cross section is formed. Further, since the hydrogen gas blowing duct 3b enables the hydrogen gas to be uniformly blown out therefrom in the direction roughly parallel to the axis Y1, a flow of the hydrogen gas having an annular cross section is formed. Therefore, the hydrogen gas having the annular cross section flows around the outer periphery of the oxygen-containing gas having the circular cross section. Consequently, the mixture of the hydrogen gas and the oxygen-containing gas is further prevented from advancing. Accordingly, it is possible to further prevent the temperature of the tubular flame F1 from locally becoming high and thereby to further reduce the amount of generated NOx.
Next, a modified example of the nozzle structure according to the first embodiment is described with reference to
As shown in
Note that the nozzle structure 20 comprises the fins 4, and the fins 4 guide the hydrogen gas blown out from the hydrogen gas blowing duct 3b so that the hydrogen gas is further propelled in a direction roughly parallel to the axis Y1 toward the one end part 1b of the outer tube 1. Further, the fins 4 prevent the hydrogen gas from flowing in such a manner that it is rotated around the axis Y1. Therefore, the mixture of the hydrogen gas and the oxygen-containing gas is further prevented from advancing. Consequently, it is possible to further prevent the temperature of the tubular flame F1 from locally becoming high and thereby to further reduce the amount of generated NOx.
Next, another modified example of the nozzle structure according to the first embodiment is described with reference to
As shown in
Note that the nozzle structure 30 comprises the fins 5, and the fins 5 guide the hydrogen gas blown out from the hydrogen gas blowing duct 3b so that the hydrogen gas is further propelled in a direction roughly parallel to the axis Y1 toward the one end part 1b of the outer tube 1. Further, the fins 5 prevent the hydrogen gas from flowing in such a manner that it is rotated around the axis Y1. Therefore, the progress of the mixture of the hydrogen gas and the oxygen-containing gas is further suppressed. Consequently, it is possible to further prevent the temperature of the tubular flame F1 from locally becoming high and thereby to further reduce the amount of generated NOx.
Next, a combustion experiment was carried out by using an example of the nozzle structure 10 (see
Note that in a comparative example 1, a combustion experiment was carried out by using a publicly-known nozzle structure having a configuration different from that of the nozzle structure 10 and by using a hydrocarbon gas as a fuel gas. This known nozzle structure is commonly used in cases where a hydrocarbon gas is used as a fuel gas. In a comparative example 2, a combustion experiment was carried out by using a publicly-known nozzle structure having a configuration different from that of the nozzle structure 10 and by using a hydrogen gas as a fuel gas. In each of the comparative examples 1 and 2, amounts of generated NOx were measured for different combustion load factors.
As shown in
Note that the present disclosure is not limited to the above-described embodiments and they can be modified as desired without departing from the spirit of the present disclosure. For example, although the nozzle structures 20 and 30 (see
From the disclosure thus described, it will be obvious that the embodiments of the disclosure may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-169965 | Sep 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5129333 | Frederick | Jul 1992 | A |
5609781 | Kaga | Mar 1997 | A |
5692891 | Chow | Dec 1997 | A |
5997595 | Yokohama | Dec 1999 | A |
6113389 | Joshi | Sep 2000 | A |
6142764 | Anderson | Nov 2000 | A |
6682339 | Cho | Jan 2004 | B2 |
7588074 | White | Sep 2009 | B1 |
7959708 | Mahoney | Jun 2011 | B2 |
8066509 | Eroglu | Nov 2011 | B2 |
8328885 | Lee | Dec 2012 | B2 |
9017067 | Cao | Apr 2015 | B2 |
10041666 | Luka | Aug 2018 | B2 |
10337732 | Faulkinbury | Jul 2019 | B2 |
10627107 | Hirata | Apr 2020 | B2 |
10648662 | Maitani | May 2020 | B2 |
20070092847 | Okazaki | Apr 2007 | A1 |
20090220899 | Spangelo | Sep 2009 | A1 |
20100159410 | Hwang | Jun 2010 | A1 |
20110027739 | Colin et al. | Feb 2011 | A1 |
20120181355 | Corry et al. | Jul 2012 | A1 |
20130032250 | Sato | Feb 2013 | A1 |
20130291772 | Mine | Nov 2013 | A1 |
20150068438 | Taniguchi et al. | Mar 2015 | A1 |
20150176840 | Tamura | Jun 2015 | A1 |
20160107914 | Baker et al. | Apr 2016 | A1 |
20180058688 | Faulkinbury | Mar 2018 | A1 |
20180156451 | Hirata | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
53-9531 | Jan 1978 | JP |
2003-279001 | Oct 2003 | JP |
2005-188775 | Jul 2005 | JP |
2007-10173 | Jan 2007 | JP |
4910129 | Apr 2012 | JP |
2013-194993 | Sep 2013 | JP |
5331713 | Oct 2013 | JP |
2019045083 | Mar 2019 | JP |
2013024783 | Feb 2013 | WO |
2014193390 | Dec 2014 | WO |
Entry |
---|
Machine Translation of Communication issued Dec. 1, 2020 by the Japanese Patent Office in application No. 2017-169965. |
Number | Date | Country | |
---|---|---|---|
20190072273 A1 | Mar 2019 | US |