The present device relates to a system of nozzles for use on wastewater storage tanks and the like. Particularly, the present device relates to a nozzle system for moving sediment on a tank floor.
Storm water runoff can pose significant issues for sewage water treatment facilities. Often such facilities have a CSO (Combined Sewage Overflow) system. A CSO system is comprised of a big tank, like a huge swimming pool, that collects the storm water runoff so that the runoff does not just get dumped into the local waterways. Typically, local sewage treatment plants cannot handle the added flow from a rain storm, so they bypass the water treatment and dump thousands of gallons of untreated water into local waterways. As an alternative, the CSO system collects this rain and sewage and gradually pumps it to the treatment plant for processing. This approach keeps sewage out of the local rivers and lakes.
Along with pollutants and toxins, the runoff water can carry with it a great deal of debris and unsettled sediment carried from roadways, parking lots, and the like. To the extent that such sediment remains entrained in the water flow, it can be properly filtered at the treatment facility. Likewise, the pollutants and toxins can be removed with proper treatment at the facility. However, where the runoff water is held for long periods of time, the debris and sediment can settle out of the water and deposit on the CSO tank bottom where it may fill the sump and block the pump which sends the water out to the treatment plant.
Even if the sediment and debris does not immediately block pumping action, the buildup will continue to reduce the volume of the CSO tank. For all the reasons described above, a loss of overflow volume could lead to contamination of local waterways, such as ponds, lakes, streams and the like.
Another problem with prior systems has to do with nozzle pressure and clogging. Typical pumps and nozzles for such operations are sized to provide about 10 psi of head pressure at each nozzle, with a nozzle discharge velocity in the range of from about 30 to about 40 feet/second. Systems having six nozzles have been successfully used to entrain debris and wash away deposits of silt, sand and grit (i.e., small particle size sediment). However, to maintain the desired pump and system pressure and nozzle discharge velocity, nozzle openings must be a specific size.
For example, in one known application the nozzle openings have an diameter of no more than 2.5 inches (about 6.4 cm). When larger debris, such as shoes, balls, branches, etc., enter the CSO tank, it can quickly clog the 2.5 inch nozzles. Accordingly, nozzles having larger opening diameters must be used to prevent clogging, but using the same pump (designed for a particular optimum flow with the smaller 2.5 inch nozzles) requires the use of fewer nozzles to prevent a drop in head pressure and discharge velocity.
It is well-known that nozzle flow is related to discharge velocity by the equation:
V=0.408Q/d2
where, V is velocity (ft/sec), Q is flow (U.S. gal/min) and d is nozzle opening diameter (inches). The following chart illustrates the potential drop in velocity by switching from 2.5 inch nozzles to 3.5 inch nozzles with maintained flow.
Using six larger 3.5 inch nozzles also precipitously drops system discharge pressure, allowing the centrifugal pump to create too much flow, which leads to the creation of damaging cavitation inside the pump. As a means to maintain velocity in the 30 to 40 ft/sec range without increasing the pump power and to avoid pump damage from high-flow cavitation, fewer flow nozzles must be used—about half the number of nozzles based on the velocity drop. Unfortunately, the use of fewer nozzles in large CSO tanks presents an issue in that the resulting system will be unable to properly stir the tank contents while also simultaneously washing away settled debris at the tank center.
As illustrated in
The present system, device and methods solve the numerous problems of mixing, discharging settled debris from tanks, surfaces, and the like, and preventing clogging of the nozzles. The present system, device and methods are capable of not only preventing settling of sediment and debris, but may be implemented in tanks already impinged with sediment to remove such from a tank bottom or other surfaces. The present system accomplishes these and other goals without sacrificing coverage area, head pressure, or discharge velocity.
There is disclosed herein an improved tank mixing system and mixing nozzle which avoids the disadvantages of prior devices while affording additional structural and operating advantages. The systems, devices and methods disclosed operate to prevent sediment buildup on a surface, such as a waste-water tank bottom, remove such buildup after it occurs, or both.
In one embodiment, a system for moving solids accumulated on a surface is disclosed. Generally, the system comprises a plurality of liquid dispensing nozzles positioned above the surface, at least one splash plate above the nozzle discharge, a liquid source, and a pump for circulating the liquid through the nozzle where it is deflected and spread when it contacts the splash plate. In this embodiment, each of the nozzles has an inlet for receiving pressurized liquid and an outlet for ejecting a liquid stream along a path. The splash plate is preferably positioned superiorly adjacent to the outlet of at least one nozzle in the path of the liquid stream and at an angle of inclination relative to the path. The splash plate deflects the liquid stream toward the accumulated solids on the surface.
In another embodiment, a system for removing sediment deposited on a surface comprises a supply of liquid, a liquid dispensing nozzle positioned above the surface, a splash plate, and a fluid pump coupling the nozzle and the supply of liquid. The nozzle includes an inlet for receiving pressurized liquid and an outlet for ejecting a liquid stream along a path, while the splash plate is positioned superiorly adjacent to the nozzle outlet in the path of the liquid stream at an angle of inclination relative to the path. This operates to pump material from the supply through the nozzle outlet.
In another embodiment, a wastewater storage tank system is specifically disclosed. The system comprises a tank, as well as a nozzle, a splash plate, and a pump, as in previous embodiments. The tank is an enclosed volume fed by an inlet for delivering wastewater into the tank and an outlet for discharging wastewater there from. The nozzle is preferably positioned within the tank and includes an inlet for receiving pressurized liquid and an outlet for ejecting a liquid stream along a path. The splash plate is again positioned superiorly adjacent to the nozzle outlet in the path of the liquid stream at an angle of inclination relative to the path. The pump includes an inlet fluidly connected to the tank and operates to pump material from the tank through the nozzle outlet.
In all the described system embodiments, it is an aspect of each to have an angle of inclination in the range of from about 5 degrees to about 30 degrees, preferably in the range of from about 10 degrees to about 20 degrees. The most preferred angle of inclination of the splash plate is about 15 degrees, relative to the stream of liquid. It may be an aspect of the embodiments wherein the nozzle outlet itself is also angled to direct the path of the liquid stream toward the surface, such as a tank or channel bottom.
Also disclosed is a method for removing sediment deposited onto a surface using tank mixing nozzles. An embodiment of the disclosed method comprises the steps of aiming a liquid dispensing nozzle at an area of a surface having deposited sediment, pumping liquid at a sufficient pressure from a liquid source to an outlet of the nozzle, discharging the liquid from the nozzle in a concentrated stream along a path directed substantially at the deposited sediment, and deflecting the liquid stream downward to spread the stream outward in a direction substantially perpendicular to the concentrated stream. Preferably, the step of deflecting the liquid stream comprises the step of securing a splash plate in the path of the concentrated stream. The splash plate is preferably secured at an angle relative to the path of concentrated stream.
In another embodiment of a method, steps for preventing the deposit of sediment onto a surface using tank mixing nozzles is disclosed. The preventative method comprises the steps of aiming a liquid dispensing nozzle at an area of a surface prone to deposition of sediment, pumping liquid at a sufficient pressure from a liquid source to an outlet of the nozzle, discharging the liquid from the nozzle in a concentrated stream along a path directed toward the area of the surface subject to deposition of sediment, and deflecting the liquid stream downward to spread the stream outward in a direction substantially perpendicular to the concentrated stream.
These and other aspects of the invention may be understood more readily from the following description and the appended drawings.
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to embodiments illustrated.
Referring to
Generally speaking, a preferred system 10 has a cylindrical tank 20 having a floor sloped toward a sump 22, a plurality of liquid dispensing nozzles 12, a splash plate 14 attached to at least some of the nozzles, and a pump 16 for circulating a supply of liquid, preferably the liquid or liquid slurry which exists within the tank 20. In a preferred method, the liquid is pumped from the tank 20 and through the plurality of nozzles 12, where the resulting stream is deflected by the splash plates 14 to spread outward in a direction perpendicular to the initial stream. The stream is also deflected downward toward the tank floor. The resulting mixing action is exemplified in the CFD image of
In one configuration, the disclosed system 10 is intended for use in what is known as a “Combined Sewer Overflow” (CSO) system which collects rain and sewer water during storms for holding until such material can be pumped into the sewage treatment plant. Typically, when about ten feet or so of liquid is left in the tank, the nozzle system 10 is activated and mixing begins. This process allows entrainment of any settled and accumulated solids at the tank bottom so such sediment may be pumped out of the tank.
A CSO tank system is illustrated in
Conversely, in the system of
As the contents are drained from the tank 20, another advantage of the system 10 can be recognized. Even in the best of systems some debris and sediment will settle to the tank bottom. The present system 10 will effectively remove such debris and sediment to prepare the CSO tank 20 for the next time it is needed. That is, the downwardly directed spray from the splash plate covered nozzles 12 will wash any residual solids on the tank bottom into a sump 22 located at the low end of the sloped floor.
In other embodiments, it is understood that even a single nozzle 12 equipped with a splash plate 14, as shown in
Placement of even a single splash plate-fitted nozzle 12 at this low-velocity area, or two such nozzles 12 as shown in
The present system 10 is not limited to use in channels and circular mixing or holding tanks. Further, the splash plate 14 equipped nozzle 12 of
For example, tanks are employed in some plants for creating energy from a ground corn (i.e., corn stover) and animal manure slurry for downstream hydrolysis and digester tanks (not shown). One known system, illustrated in
Still referring to
The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
This application is a continuation-in-part and claims the filing priority of co-pending U.S. patent application Ser. No. 12/694,396, filed Jan. 27, 2010, titled “System Having Foam Busting Nozzle and Sub-surface Mixing Nozzle” (the '396 application), the contents also of which are hereby incorporated by reference. The '396 application is assigned to the assignee of the present application.
Number | Name | Date | Kind |
---|---|---|---|
626950 | Wheelwright | Jun 1899 | A |
1043644 | Thomas | Nov 1912 | A |
2628204 | Gray | Feb 1953 | A |
4846582 | Davidsson | Jul 1989 | A |
7025492 | Dorsch et al. | Apr 2006 | B2 |
7628183 | Dorsch et al. | Dec 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20110180152 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12694396 | Jan 2010 | US |
Child | 13004556 | US |