1. Field of the Invention
The present invention relates to a nozzle tip for a pipetting apparatus, and in particular to an improvement of the shape of the nozzle tip.
2. Description of the Prior Art
In a pipetting apparatus, a nozzle is constructed from a nozzle base of the pipetting apparatus and a nozzle tip removably attached to the nozzle base. This nozzle is used to aspirate and dispense a liquid such as a reagent or a sample or the like. The used nozzle tip is discarded as required, and then a new nozzle is attached to the nozzle base. Normally, the nozzle tip is manufactured as an integrally formed product made of a resin.
An example of a prior art nozzle tip is shown in
However, in the case where the above-described prior art nozzle tip 10 is used, when there is a relative positioning misalignment between the nozzle tip 10 and a target container 20 at the time the nozzle tip 10 is inserted into the target container 20, there is the possibility that the step portion 16, namely, the chin-shaped projection will make contact with or become stuck on a part of a peripheral edge of an upper opening 20A of the target container 20. In such a case, since the peripheral surface of the step portion 16 forms a relatively steep inclined surface with respect to the central axis of the nozzle, there is the problem that it becomes difficult to smoothly insert the cylindrical portion 14 inside the target container 20. This problem can also occur in the same manner in the case when unused nozzle tips are set in a nozzle rack. In addition to the above problems since the tip portion 18 of the nozzle tip 10 generally has a thin thickness, there is a demand that such a portion of the nozzle tip 10 should be structurally reinforced.
Accordingly, it is an object of the present invention to provide a nozzle tip which can be smoothly inserted inside a target container even in the case where the nozzle tip makes contact with a part of a peripheral edge of the upper opening of the target container.
It is another object of the present invention to structurally reinforce the tip portion of the nozzle tip.
In order to achieve these objects, the present invention is directed to an improved nozzle tip for a pipetting apparatus which is adapted to be removably attached to a nozzle base of the pipetting apparatus. The nozzle tip comprises a head portion having an opening adapted to fit onto the nozzle base; a cylindrical portion extending downward from the head portion, the cylindrical portion having a lower end portion; a tip portion provided on the lower side of the cylindrical portion and having a tip opening for aspirating and dispensing a liquid, the tip portion having a diameter smaller than the diameter of the cylindrical portion, and the tip portion having a peripheral surface; a step portion formed between the cylindrical portion and the tip portion, the step portion forming a step-like part between the cylindrical portion and the tip portion; and at least one radially extending part which is provided from the lower end portion of the cylindrical portion to the peripheral surface of the tip portion through the step portion.
According to the above structure, the radially extending part is formed from the lower end portion of the cylindrical portion to the peripheral surface of the tip portion through the step portion (that is, at least on the step portion and its vicinity). Therefore, by appropriately setting the shape of the radially extending part, it is possible to exhibit desired functions such as a guiding function upon insertion into a container and a reinforcing function to the step portion. Here, it is to be noted that the radially extending part may be in the form of a fin, a protrusion, a rib or the like. Further, it is preferred that the radially extending part is formed into a substantially triangle shaped plate extending along the axial direction of the nozzle, but other shapes may be acceptable.
Preferably, the at least one radially extending part is formed into at least one fin extending along the axial direction of the nozzle. When taking removability from a die in an injection molding process or a slope function-of the fin into account, it is preferred that the fin extends along the axial direction of the nozzle.
Preferably, the fin has an upper end and a lower end, and the fin has a shape that its height in the radial direction is gradually lowered from the upper end toward the lower end thereof. In this arrangement, It is preferred that the upper end of the fin is level with the outer periphery of the lower end portion of the cylindrical portion, and the lower end of the fin is level with the outer periphery of the intermediate portion of the tip portion.
According to the above structure, the upper surface of each fin, that is the ridge surface of each fin, forms a gentle slope. This gentle slope of the ridge surface of each fin exhibits guiding function to moderate an impact upon contact of the step portion of the nozzle tip with a part of a peripheral portion of an upper opening of a target container, when the nozzle tip is inserted into the target container. Further, unfavorable contact between the nozzle tip and the container can be prevented in advance. In this connection, it is to be noted that generally such a container is held in a supporting opening in a container rack, and a slight gap is existed between the inner edge of the opening and the container (e.g. 1 to 2 mm). Therefore, when the nozzle tip contacts with the target container, it possible for the container to slightly change its posture or position with respect to the rack to absorb the positional misalignment. Alternatively, the position of the nozzle tip in a horizontal direction may be changed or controlled appropriately. Furthermore, the provision of such a fin also makes it possible to smoothly insert the nozzle tip into a tip receiving hole of a tip rack for setting the tip thereon.
More preferably, the at least one fin includes a plurality of fins formed around the axis of the nozzle through the same angular spacing. In this case, it is preferred that the number of the plurality of fins is any one of three to eight. According to this arrangement, the above described guiding function can be exhibited even in the case where any circumferential part of the tip part of the nozzle tip contacts with any part of the peripheral edge of the upper opening of the target container.
Preferably, the nozzle tip is an integrally molded resin product.
Further, another aspect of the present invention is directed to an improved nozzle tip for a pipetting apparatus which is adapted to be removably attached to a nozzle base of the pipetting apparatus. The improved nozzle tip comprises a head portion having an opening adapted to fit onto the nozzle base; a cylindrical portion extending downward from the head portion, the cylindrical portion having a lower end portion; a tip portion provided on the lower side of the cylindrical portion and having a tip opening for aspirating and dispensing a liquid, the tip portion having a diameter smaller than the diameter of the cylindrical portion, and the tip portion having a peripheral surface; a step portion formed between the cylindrical portion and the tip portion, the step portion forming a step-like part between the cylindrical portion and the tip portion; and guide means for guiding the cylindrical portion into an upper opening of a target container, the guide means being provided from the lower end portion of the cylindrical portion to the peripheral surface of the tip portion through the step portion.
Furthermore, yet another aspect of the present invention is directed to an improved nozzle tip for a pipetting apparatus which is adapted to be removably attached to a nozzle base of the pipetting apparatus. The nozzle tip comprises a head portion having an opening adapted to fit onto the nozzle base; a cylindrical portion extending downward from the head portion, the cylindrical portion having a lower end portion; a tip portion provided on the lower side of the cylindrical portion and having a tip opening for aspirating and dispensing a liquid, the tip portion having a diameter smaller than the diameter of the cylindrical portion, and the tip portion having a peripheral surface; a step portion formed between the cylindrical portion and the tip portion, the step portion forming a step-like part between the cylindrical portion and the tip portion; and reinforcing means for reinforcing the tip portion, the reinforcing means being provided from the lower end portion of the cylindrical portion to the peripheral surface of the tip portion through the step portion.
Hereinbelow, comparative examples that are conceivable will be discussed for the purpose of making the feature of the present invention clearer.
In order to prevent or reduce the possibility that the step portion contacts with the peripheral edge of the upper opening of the target container, there is an approach that the outer diameter of the cylindrical portion (in particular, the outer diameter of the lower end portion thereof) is formed to have a reduced diameter so that the inclined angle of the surface of the step portion becomes gently. However, this approach involves a problem in that the internal volume of the nozzle tip is decreased.
On the other hand, in order to make the inclined angle of the inclined surface of the step portion gently, there is an approach in that the tip portion is formed to have a large cone angle or the tip portion is formed to have a shorter length (by lengthening the step portion). However, according to these approaches, there is a problem in that an inner diameter of a liquid passage formed in the tip portion is increased or the axial length of the liquid passage is shortened, which may result in significant problems in the pipetting operations. For example, in the case where the narrow liquid passage in the tip portion is excessively shortened, an unfavorable phenomenon that a liquid is spouted out (fountained) inside the cylindrical portion due to abruptly increased flow rate of the liquid upon aspiration is likely to occur, and pressure adjustment upon dispensing the liquid becomes difficult, thus leading to the case that it is not difficult to pipette the liquid accurately. Furthermore, liquid leakage is likely to occur in the state that the inside of the nozzle tip is filled with the liquid. Moreover, in these pipetting apparatuses, there is an apparatus having a function capable of detecting a liquid surface in a nozzle tip, in which the detection is carried out by scanning a beam against the nozzle tip. In this type of apparatus, it is not possible to carry out surface detection for the liquid of which liquid surface is present in the liquid passage in the tip portion of the nozzle tip, since the nozzle tip has a smaller diameter than the cylindrical portion. For this reason, in order to reduce the possibility that liquid surface is present in the liquid passage in the tip portion, the internal volume of the liquid passage within the tip portion should be made as small as possible.
In addition to the above, in order to make the inclined angle of the inclined surface of the step portion gently, there is another approach in that the step portion is formed so as to have an increased thickness by using additional material. However, according to this approach, a raw material is unnecessarily consumed, and dimensional error at molding is likely to occur in the increased thickness part of the step portion, and crack is also likely to be formed at the increased thickness part. For these reasons, this approach involves various demerits and thus it is not practical.
According to the present invention, it is possible to enjoy the advantages such smooth insertion and reinforced structure and the like by the provision of the radially extending parts or fins, while solving the above mentioned problems.
The preferred embodiment of the present invention will be described below with reference to the appended drawings.
As shown in
The head portion 30 has an opening 30A adapted to fit onto a nozzle base of a pipetting apparatus (not shown in the drawing) Further a plurality of ridges are formed on the peripheral surface of the head portion 30, and the diameter of the head portion 30 is larger than the diameter of an upper end portion 32B of the cylindrical portion 32.
The cylindrical portion 32 is formed into a roughly elongated straight cylindrical shape as a whole, but in actuality the cylindrical portion 32 is tapered so that the peripheral surface thereof has a tapering angle of 1 degree, for example.
The tip portion 36 has a tapered shape, and a tip opening 36A for aspirating and dispensing a liquid is formed at the lower end of the tip portion 36. As shown in the drawings, a lower end portion 32A of the cylindrical portion 32 has a larger diameter than an upper end portion 36B of the tip portion 36, so that a step portion 34 is formed between the lower end portion 32A of the cylindrical portion 32 and the upper end portion 36B of the tip portion 36. The peripheral surface of the step portion 34 is formed into a steep inclined surface inclined with respect to the central axis of the nozzle tip 28.
In the present embodiment, as shown in
As shown in the drawings, the fins 40 function as sloping plates to moderate the inclined surface of the step portion 34. Each of the fins 40 has a rough triangular shape. Each fin 40 has an upper end 40A which is level with the peripheral surface of the lower end portion 32A of the cylindrical portion 32. Further, a lower end portion 40B of each fin 40 is level with the peripheral surface of the intermediate portion 36C of the tip portion 36.
When each portion shown in
As described above, the nozzle tip 28 shown in
Further, even though the tip portion 36 is formed to have a relatively thin thickness, the plurality of fins 40 also function as reinforcing ribs (that is, the reinforcing means as claimed), thus It becomes possible to reinforce the structure of the tip portion 36. For example, the plurality of fins 40 make it possible to prevent the central axis of the tip portion 36 from being slightly bent when an external force or the like is exerted thereto.
Further, in a molding process for manufacturing the nozzle tip, such plurality of fins 40 contribute to significantly reducing molding errors of the tip portion 36. Furthermore, as compared with the case where the entire step portion 34 is made thick, it is possible to reduce the cost for material because a gap 34A is provided between the adjacent fins 40. Further, it is also possible to prevent problems such as dimensional distortion, breakage and the like which would occur in the case where the step portion 34 is made thick.
As described above, the present invention provides a nozzle tip which can be smoothly inserted inside a target container. Further, the present invention also makes it possible to reinforce the structure of the tip portion of the nozzle tip.
Finally, it is to be noted that the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various changes and modifications may be made without departing from the scope of the present invention which is determined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-056182 | Mar 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4267729 | Eddelman et al. | May 1981 | A |
4347875 | Columbus | Sep 1982 | A |
4917274 | Asa et al. | Apr 1990 | A |
4931257 | Quenin et al. | Jun 1990 | A |
4973450 | Schluter | Nov 1990 | A |
4999164 | Puchinger et al. | Mar 1991 | A |
5232669 | Pardinas | Aug 1993 | A |
5334348 | Saito et al. | Aug 1994 | A |
5487997 | Stolp | Jan 1996 | A |
5874048 | Seto et al. | Feb 1999 | A |
6066297 | Torti et al. | May 2000 | A |
6286678 | Petrek | Sep 2001 | B1 |
6343717 | Zhang et al. | Feb 2002 | B1 |
6531098 | Kenney | Mar 2003 | B1 |
6566145 | Brewer | May 2003 | B2 |
6596240 | Taggart et al. | Jul 2003 | B2 |
6635201 | Kopaciewicz et al. | Oct 2003 | B1 |
6780381 | Yiu | Aug 2004 | B2 |
6803021 | Bertling | Oct 2004 | B1 |
6878346 | DeYoung et al. | Apr 2005 | B2 |
20020085958 | Nemcek et al. | Jul 2002 | A1 |
20020086440 | Lehtinen et al. | Jul 2002 | A1 |
20020094302 | Taggart et al. | Jul 2002 | A1 |
20020143293 | Francavilla et al. | Oct 2002 | A1 |
20020164273 | Harrop | Nov 2002 | A1 |
20030129089 | Arnold et al. | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030165408 A1 | Sep 2003 | US |