This invention relates generally to wireless networks, and more particularly to Multi-media Broadcast and Multi-cast Service (MBMS) in wireless networks.
The Third Generation Partnership Project (3GPP) provides a globally applicable wireless system specification based on GSM (Global System for Mobile communications) and UMTS (Universal Mobile Telecommunication System). In addition to addressing a wide range of wireless features, 3GPP addresses MBMS. MBMS allows unidirectional point-to-multipoint and point-to-point broadcast and multi-cast data transmissions. When operating as a broadcast service, MBMS enables the transmission of data from a single source entity to all mobile stations in a service area. When operating as a multi-cast service, MBMS enables the transmission of data from a single source entity only to subscribing mobile stations.
Currently, to subscribe to or join a multi-cast service, a mobile station generates and transmits a join message to the network. This join message would trigger a procedure in order to create an MBMS context in both the network and the mobile station. During this procedure the mobile station sends a request message which contains mobile-specific information related to a particular multi-cast service, such as an IP multi-cast address, APN (Access Point Name), a mobile-selected NSAPI (Network layer Service Access Point Identifier), etc. As specified by 3GPP, the NSAPI is used for network layer routing. Originally, the NSAPI was used only to index a PDP (Packet Data Protocol) context. However, later releases of 3GPP allow the NSAPI to also be used to index MBMS contexts. Because the NSAPI value space reserves only 11 NSAPI values that are shared by both PDP and MBMS, mobile stations are prevented from subscribing to more than 11 multi-cast services. It would be desirable to provide a mechanism that enables a mobile station to subscribe to more than 11 simultaneous multi-cast services.
The present invention comprises a method and apparatus for increasing the number of multi-cast services available to a mobile station. To receive multi-cast data associated with a multi-cast service, the mobile station first joins or subscribes to the multi-cast service. During a joining phase, the network and the mobile station exchange information to join the mobile station to a particular multi-cast service identified by an IP multi-cast address. After completing the joining phase, the network enters a data transfer phase. During the data transfer phase, the network establishes a multi-cast communication session for the subscribing mobile station, and transmits multi-cast data to the subscribing mobile station.
According to one exemplary embodiment, the mobile station joins the multi-cast service during the joining phase without allocating a multi-cast service identifier, such as a NSAPI, to the multi-cast service. Instead, the network establishes a multi-cast communication session for a subscribing mobile station and allocates a multi-cast service identifier to the multi-cast communication session during a data transfer phase. During the multi-cast communication session, the network transmits the multi-cast data associated with the identified IP multi-cast address. When the multi-cast communication session ends, the network releases the multi-cast service identifier for later use by a newly established multi-cast communication session. In this embodiment, the mobile station can subscribe to an unlimited number of multi-cast services because the multi-cast service identifiers are not assigned until data is ready to be transferred and are released immediately when the data transfer is complete.
According to another exemplary embodiment, the network includes two non-overlapping service identifier value spaces where the first value space is reserved for packet service identifiers, such as PDP NSAPIs, and the second value space is reserved for multi-cast service identifiers, such as multi-cast NSAPIs. During the joining phase, the network receives a multi-cast service identifier from the mobiles station, where the mobile station selects the multi-cast service identifier from the second value space, and assigns the selected multi-cast identifier to the multi-cast service. During the data transmission phase, the network establishes a multi-cast communication session based on the selected multi-cast service identifier, and transmits the corresponding multi-cast data during the established communication session to the subscribing mobile station.
Wireless communication network 10 comprises at least one Serving GPRS Support Note (SGSN) 20 and at least one Radio Access Network (RAN) 30 for interfacing with one or more mobile stations 100. The SGSN 20 is a core network component that connects to one or more external networks, such as a Packet Data Network (PDN), via a Broadcast/Multi-cast Service Center (BM-SC). In general, an SGSN 20 is responsible for the switching and routing of calls between the mobile stations 100 and the external networks.
RAN 30 operatively connects to an SGSN 20 to provide mobile stations 100 with access to the SGSN 20. The RAN 30 may comprise either a GSM EDGE Radio Access Network (GERAN) or a UMTS Terrestrial Radio Access Network (UTRAN). RAN 30 includes at least one Base Station Controller (BSC) 34 and a plurality of base stations (BSs) 36. The BSC 34 connects RAN 30 to the SGSN 20 and controls most functions of the RAN 30. The interface between the RAN 30 and SGSN 20 is known as the Gb interface for GERAN and as the lu interface for UTRAN. The BSs 36 include the radio equipment for communicating over the air interface with the mobile stations 100. In UTRAN, the BS 36 is referred to as a Node B and the BSC 34 is referred to as a radio network controller (RNC). This application uses the generic terms BS and BSC, instead of the standard-specific terms Node B and RNC.
Multi-media Broadcast and Multi-cast Service (MBMS) is one feature provided by wireless communication network 10 to mobile stations 100. The main purpose of MBMS is to efficiently transmit broadcast and multi-cast data in a wireless communication network 10 to one or more mobile stations 100. MBMS broadcast data is defined as data transmitted from a single source to all mobile stations 100 within a particular area. MBMS multi-cast data is defined as data transmitted from a single source, referenced by an Internet Protocol (IP) multi-cast address, to one or more subscribing mobile stations 100.
MBMS requires the implementation of a subscription phase, also referred to herein as a joining phase, and a data transfer phase. During the joining phase, the mobile station 100 subscribes to a multi-cast service identified by a specific IP multi-cast address. During the data transfer phase, the network 10 establishes a multi-cast session with the subscribing mobile station 100 and transmits multi-cast service data to the subscribing mobile station 100. To better understand the invention described herein, the following first describes the details of the joining and data transfer phases as conventionally implemented by wireless communication network 10.
Users may wish to subscribe to multiple multi-cast services. Because there are only 11 NSAPIs available to identify both PDP and MBMS contexts, the conventional protocol prevents users from subscribing to more than 11 multi-cast services, and realistically limits users to less than 11 multi-cast services. The present invention provides methods for extending the number of simultaneous multi-cast services to which a user may subscribe.
One exemplary embodiment of the present invention, referred to herein as the “extended” embodiment, addresses this problem by removing the NSAPI selection process from the mobile station 100. According to this embodiment, mobile station 100 joins a user-selected multi-cast service without selecting a NSAPI during the joining phase. Instead the network 10 selects a NSAPI during the data transmission phase and establishes a multi-cast communication session using the selected NSAPI. Therefore, according to this exemplary embodiment, the network 10 allocates a different NSAPI to each ongoing multi-cast session, instead of having the mobile station 100 allocate a different NSAPI to each multi-cast service. In this embodiment, the NSAPI is released when the multicast session ends and can be reused for subsequent multicast sessions. Further, this embodiment employs an extended NSAPI that allows up to 16 simultaneous multi-cast sessions. The mobile station 100 may, however, subscribe to an unlimited number of multi-cast services.
During the data transfer phase, SGSN 20 initiates a multi-cast session with the mobile station 100. The SGSN 20 sends a request to RAN 30 to setup a Radio Access Bearer (RAB) for the multi-cast session. RAN 30 selects the NSAPI from an extended NSAPI value space, illustrated in
As discussed above, RAN 30 selects the NSAPI from an extended NSAPI value space defined by the NSAPI-IE, as shown in
When network 10 is setting up a multi-cast communication session for a point-to-point service over the lu interface, RAN 30 sets the lower bits, bits 1-4, to 0001 and selects a 4-bit NSAPI from the extended NSAPI value space to generate the full, 8-bit NSAPI. As such, the 8-bit NSAPI according to the extended embodiment comprises a fixed portion (bits 1-4) and a variable portion (bits 5-8). Due to this implementation, the extended embodiment provides 16 NSAPIs exclusively for 16 simultaneous multi-cast sessions, while maintaining the original 11 NSAPIs allocated by bits 1-4 exclusively for PDP.
A similar procedure also applies to point-to-multipoint multi-cast services transmitted over a Gb interface. For this case, the joining phase for the point-to-multipoint multi-cast services is identical to that for point-to-point multi-cast services shown in
The extended embodiment has several advantages over multi-cast services offered by conventional MBMS. First, because the mobile station 100 does not allocate a specific NSAPI to a specific multi-cast service during the joining phase, the mobile station 100 can subscribe to an unlimited number of multi-cast services. Further, because network 10 allocates a specific NSAPI to a specific multi-cast session, instead of to a specific multi-cast service, each NSAPI is released at the conclusion of the multi-cast communication session. Therefore, the extended embodiment enables the network 10 to reuse NSAPIs for different multi-cast sessions that do not overlap in time. Further still, because values 0-15, as defined by bits 5-8 of the NSAPI value space are reserved for MBMS, and because values 5-15, as defined by bits 1-4, are reserved for PDP, the extended embodiment eliminates any conflicts between NSAPI allocation for MBMS services (allocated by the RAN 30) and PDP services (allocated by the mobile station 100). This simplifies the implementation of the mobile stations supporting the establishment and release of RABs for multiple MBMS and PDP services in parallel.
According to another exemplary embodiment, referred to herein as the “enhanced” embodiment, mobile station 100 selects an enhanced NSAPI for the multi-cast service as part of the joining phase. As discussed further below, the mobile station 100 selects this enhanced NSAPI from an enhanced NSAPI-IE that is separate from the conventional NSAPI-IE. After establishing a multi-cast communication session based on the selected enhanced NSAPI, network 10 transmits the multi-cast data to mobile station 100 during the established communication session.
Because the network now includes an enhanced NSAPI-IE that is separate from the conventional NSAPI-IE, and because PDP NSAPIs are selected from the value space provided by the conventional NSAPI-IE, the enhanced embodiment provides non-overlapping MBMS and PDP NSAPI value spaces, which prevents MBMS and PDP services from having to share NSAPIs. Further, because the MBMS and PDP NSAPI value spaces do not overlap, there is no risk of the mobile station 100 allocating the same NSAPI value to a PDP context and to an MBMS context.
In addition, the MBMS value space is larger than the PDP value space, which enables mobile station 100 to subscribe to a larger number of multi-cast services. In the exemplary embodiment the enhanced NSAPI value space allocates 128 different NSAPIs for multi-cast services. As a result, a mobile station 100 may subscribe to up to 128 different multi-cast services at a time, a significant improvement over the 11 allowed by the conventional system. Those skilled in the art, however, will appreciate that the enhanced NSAPI value space may allocate additional NSAPIs for MBMS, such as any or all of values 16-127, currently shown in Table 3 as reserved, as long as the NSAPI values allocated for MBMS do not overlap the NSAPI values allocated for PDP.
During the data transfer phase, SGSN 20 establishes a multi-cast session with the mobile station 100. The SGSN 20 maps the enhanced NSAPI to a RAB-ID (step 337), and establishes a multi-cast communication session with mobile station 100 (steps 340-360). During the multi-cast communication session, SGSN 20 transmits multi-cast data associated with the IP multi-cast address to mobile station 100 (step 365).
The enhanced embodiment has several advantages over conventional MBMS. First, the enhanced embodiment provides n different NSAPIs, i.e., 128 different NSAPIs, for multi-cast services defined by MBMS. Further, the n different NSAPIs enable mobile station 100 to subscribe to up to n different multi-cast services. Further still, because the MBMS NSAPIs no longer intersects or overlaps the PDP NSAPIs, the enhanced embodiment eliminates any conflicts between NSAPI allocation for MBMS and PDP services.
The above describes the invention using terms specific to 3GPP, such as MBMS, NSAPI, RAB-ID, etc. However, it will be appreciated that the present invention applies to any wireless communication system that uses multi-cast identifiers, i.e., NSAPIs, and/or connection identifiers, i.e., RAB-IDs, as part of a process for subscribing to and/or receiving data from a multi-cast service.
The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
This application claims priority from U.S. Provisional Patent Application 60/625,087 filed Nov. 4, 2004, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60625087 | Nov 2004 | US |