This invention relates to the retrieving of chemical, radioactive, hazardous and/or other waste and/or material from storage tanks; and in particular, to nuclear waste slurry pump systems, devices, and methods for retrieving waste materials and/or other material from storage tanks with liquefied tank material, the systems, devices and methods can work with tanks having high temperature conditions up to approximately 212 degrees Fahrenheit or low temperature conditions down to approximately 32 degrees Fahrenheit.
At nuclear waste storage facilities, radioactive material is stored in underground storage tanks. These tanks typically have small openings down to 12″ in diameter for access of equipment. Various cleaning methods have been used to break up and retrieve waste material located in these tanks. A high flow of water liquefies and motivates waste into a stream. Typically, a pump sits in the stream to capture and transfer the waste to a remote storage tank. Traditional abrasive slurry pumps are sized to keep fluid velocities at a minimum, thus reducing wear on the pump.
However, these pumps are too large to fit through a 12-inch diameter riser pipe. To fit, the pump can be reduced in size, but this also reduces the pump output and won't meet flow requirements to prevent solids from settling during transfer. To make up for the decreased flow rates, the pump can be sped up; however, this causes excessive wear on the pump.
Also, when a stream of waste is flowing towards the pump, a large portion of the liquid and particles can flow past the pump. Once the stream passes the pump, multiple steps must be implemented to properly capture the waste greatly increasing operation costs and the overall time to effectively clean a tank.
Furthermore, particles in the abrasive slurry can be too large to pass into the pump requiring additional methods or operational time to remove.
Thus, the need exists for solutions to the above problems with the prior art.
A primary objective of the invention is to provide nuclear abrasive slurry waste pump systems, devices, and methods for retrieving waste materials and/or other material from storage tanks with liquefied tank material.
A secondary objective of the invention is to provide pumping solution systems, devices and methods for the removal of liquid and solid waste from nuclear waste tanks through existing riser pipes approximately 12-inch in diameter. Keeping solids suspended in the waste stream as it is pumped out of a tank requires a high-power density, which this invention achieves via a 4-stage, hydraulically-driven pump.
A third objective of the invention is to provide hydraulically driven pump systems, devices, and methods which eliminate an ignition source and potential in-tank explosion that is associated with electrical power.
The pump hydraulic motor can be located on the pump within the tank, which allows for the mechanical seals separating the hydraulic fluid from the waste stream to also be located in the tank, eliminating the possibility of hazardous or nuclear waste leaking out and being transported above ground through the hydraulic system in the event of a seal failure.
In case of a leak at the mechanical seals, the seal housing has windows to allow for any waste to leak back into the tank and not leak across the bearing housing seal faces and into the hydraulic motor.
Mechanical seals are used to prevent radioactive fluid from leaking into the hydraulic fluid. Because the mechanical seals must remain operational for the life of the pump, barrier fluid is provided at the seal faces to cool and lubricate, and thus, reduce wear. Barrier fluid becomes hot as it is circulated around the seals, which limits its ability to reduce wear. A helical heat exchanger to cool the barrier fluid is integrated around the discharge piping.
In tanks with large amounts of liquid waste the pump must be fully submerged. This causes an increase in differential pressure between the waste and the seal barrier fluid. To keep a positive differential pressure between the waste and the barrier fluid, an accumulator has a piston which compensates pressure in the barrier fluid providing the positive pressure to prevent radioactive material from entering the system.
The portions of the pump that will become wetted when the pump is submerged are constructed out of stainless steel to prevent rust, corrosion, and allow for decontamination. Fasteners used have a 12-point socket head to limit the pockets on the machine to prevent waste from accumulating, to further help with decontamination when removing equipment for disposal.
Operation of the pump can be controlled by a hydraulic power unit located outside of the tank. The onsite radioactive transport piping attached to the discharge of the pump system has pressure requirements that must not be exceeded. The hydraulic power unit oil pump is displacement limited to prevent the pump from creating enough pressure to exceed the discharge piping requirements.
When the pump is stopped, the abrasive waste in the line drains back into the pump. This can cause abrasive particles to become wedged in the small spaces between impellers and housings. Hardened impellers are used to prevent the particles from jamming the pump.
Being designed for a radioactive environment requires the pump to be installed for the duration of a tank campaign. Because no maintenance may be performed during that time, greased bearings are used to ensure proper function for the full campaign.
Many of the tanks have flat bottoms; therefore, reducing the waste level to an acceptable volume requires the drawdown capability of the pump to be less than approximately ½-inch of liquid. This invention incorporates a flat shaped inlet at the suction end, mounted very close to the base of the pump, that allows a pump drawdown of approximately ⅜″.
For pumping thicker liquids, dilution ports are provided at the pump suction to add water to the waste stream to meet the criticality required for the waste.
The system includes an integrated, retractable backstop that captures and directs the flow of the waste liquid into the pump suction for flat bottom tanks. The backstop also reduces the number of particles that bypass the pump suction and therefore increases the overall efficiency of the pumping system. The backstop can also be rotated to align with the flow stream and so the suction of the pump can be de-fouled with the cleaning nozzle.
A suction strainer with ⅜-inch openings is typically provided with the pump to classify particles and meet the disposal processing requirements to prevent larger particles from entering the pump suction.
The system can also include an integrated macerator beneath the pump suction to breakdown and classify particles prior to the waste liquid entering the suction strainer. The macerator works in concert with the rotatable pump backstop to improve the volume of waste material that can be captured by the pump. The macerator can swing out of the way when not needed or it becomes fouled to increase pumping performance.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
The drawing figures depict one or more implementations in accord with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In the Summary above and in the Detailed Description of Preferred Embodiments and in the accompanying drawings, reference is made to particular features (including method steps) of the invention. It is to be understood that the disclosure of the invention in this specification does not include all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
A list of components will now be described.
Referring to
Referring to
Referring to
To further improve the efficiency of the pumping system, a macerator 9 of
The bottom of the macerator 9 can be actuated to evacuate any debris that has collected. Additionally, the macerator can be rotated out of the way in the event it becomes inoperable, for cleaning, or if not being employed at all. When the macerator 9 is rotated away, the nuclear abrasive slurry waste pump assembly 1 is still operable with the suction strainer to classify the particle size to approximately ⅜″ or smaller.
Referring to
Referring to
In one embodiment, the backstop 7 can be rotated independently about the pumps longitudinal axis to allow alignment with the flow of liquid. In another embodiment, the backstop 7 can be rotated with the pump as whole.
The backstop 7 can be raised and lowered to accommodate the strainer or the macerator 9 (
Referring to
Referring to
The term “approximately” can be +/−10% of the amount referenced. Additionally, preferred amounts and ranges can include the amounts and ranges referenced without the prefix of being approximately.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/630,026 filed Feb. 13, 2018, which is incorporated by reference in its' entirety.
Number | Name | Date | Kind |
---|---|---|---|
1611326 | Abbe | Dec 1926 | A |
2461433 | Moulten et al. | Feb 1949 | A |
2611523 | Aines | Sep 1952 | A |
2668625 | Garland | Feb 1954 | A |
2669941 | Stafford | Feb 1954 | A |
2682886 | Paxton | Jul 1954 | A |
2761297 | Buchsteiner | Sep 1956 | A |
2819803 | Obenchain | Jan 1958 | A |
2833422 | Ferwerda et al. | May 1958 | A |
2985192 | Taylor et al. | May 1961 | A |
2999600 | Gates | Sep 1961 | A |
3060972 | Sheldon | Oct 1962 | A |
3095044 | Medlock | Jun 1963 | A |
3116021 | Born | Dec 1963 | A |
3155048 | Mandelbaum et al. | Nov 1964 | A |
3161490 | Dudek | Dec 1964 | A |
3162214 | Bazinet, Jr. | Dec 1964 | A |
3190286 | Stokes | Jun 1965 | A |
3224376 | Schade | Dec 1965 | A |
3266059 | Stelle | Aug 1966 | A |
3274850 | Tascio | Sep 1966 | A |
3305220 | Nevulis | Feb 1967 | A |
3469712 | Haulotte | Sep 1969 | A |
3497083 | Anderson et al. | Feb 1970 | A |
3580099 | Mosher | May 1971 | A |
3599871 | Ruppel | Aug 1971 | A |
3757697 | Phinney | Sep 1973 | A |
3788338 | Burns | Jan 1974 | A |
3845596 | Veenstra | Nov 1974 | A |
3863844 | McMillan | Feb 1975 | A |
3889818 | Wennerstrom | Jun 1975 | A |
3932065 | Ginsberg et al. | Jan 1976 | A |
3951572 | Ray, Jr. et al. | Apr 1976 | A |
4106671 | Sharples | Aug 1978 | A |
4132041 | Van Den Broek | Jan 1979 | A |
4156331 | Lester et al. | May 1979 | A |
4250933 | Olson | Feb 1981 | A |
4339232 | Campbell | Jul 1982 | A |
4393728 | Larson et al. | Jul 1983 | A |
4396093 | Zimmerman | Aug 1983 | A |
4415297 | Boring | Nov 1983 | A |
4494417 | Larson et al. | Jan 1985 | A |
4534869 | Seibert | Aug 1985 | A |
4540869 | Yasuoka | Sep 1985 | A |
4630741 | Stevens | Dec 1986 | A |
4661039 | Brenholt | Apr 1987 | A |
4685349 | Wada et al. | Aug 1987 | A |
4817653 | Krajicek et al. | Apr 1989 | A |
4828461 | Laempe | May 1989 | A |
4848179 | Ubhayakar | Jul 1989 | A |
4893986 | Catterfeld | Jan 1990 | A |
4898513 | Hon | Feb 1990 | A |
4944535 | Maupin | Jul 1990 | A |
4945955 | Murphy | Aug 1990 | A |
4977790 | Nishi et al. | Dec 1990 | A |
5007803 | Divito et al. | Apr 1991 | A |
D326336 | Christ | May 1992 | S |
5172710 | Harrington | Dec 1992 | A |
5174168 | Takagi et al. | Dec 1992 | A |
5297443 | Wentz | Mar 1994 | A |
5439020 | Lockhart | Aug 1995 | A |
5451135 | Schempf et al. | Sep 1995 | A |
5515654 | Anderson | May 1996 | A |
5518553 | Moulder | May 1996 | A |
5540172 | Goldbach et al. | Jul 1996 | A |
5607000 | Cripe et al. | Mar 1997 | A |
5659214 | Guardiani | Aug 1997 | A |
5715852 | Jepsen | Feb 1998 | A |
5740821 | Arnold | Apr 1998 | A |
5913320 | Varrin, Jr. et al. | Jun 1999 | A |
6213135 | Moulder | Apr 2001 | B1 |
6264434 | Frank | Jul 2001 | B1 |
6273790 | Neese et al. | Aug 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6361272 | Bassett | Mar 2002 | B1 |
6561368 | Sturm, Jr. et al. | May 2003 | B1 |
6651837 | Stradinger et al. | Nov 2003 | B2 |
6830079 | Ahrens et al. | Dec 2004 | B1 |
6889920 | Nance et al. | May 2005 | B2 |
6938691 | Face | Sep 2005 | B2 |
7021675 | Lawson | Apr 2006 | B2 |
7032628 | Guillemette et al. | Apr 2006 | B2 |
7100631 | Liu et al. | Sep 2006 | B2 |
7241080 | Klobucar et al. | Jul 2007 | B2 |
7708504 | Heckendorn et al. | May 2010 | B2 |
7998251 | Pondelick et al. | Aug 2011 | B2 |
8069747 | Buckingham et al. | Dec 2011 | B2 |
8205522 | Buckingham et al. | Jun 2012 | B2 |
8347563 | Anderson | Jan 2013 | B2 |
8414246 | Tobey | Apr 2013 | B2 |
8702399 | Krohn | Apr 2014 | B2 |
8727671 | Sundholm | May 2014 | B2 |
8763855 | Harvey et al. | Jul 2014 | B1 |
8840087 | Guyard | Sep 2014 | B2 |
9195238 | Roden et al. | Nov 2015 | B2 |
10280063 | Innes et al. | May 2019 | B2 |
10406571 | Innes et al. | Sep 2019 | B2 |
20020002426 | Burkhard | Jan 2002 | A1 |
20020191488 | Araoka | Dec 2002 | A1 |
20050025573 | Waldman et al. | Feb 2005 | A1 |
20050109376 | Gregory | May 2005 | A1 |
20050166413 | Crampton | Aug 2005 | A1 |
20060054189 | Luke et al. | Mar 2006 | A1 |
20060054202 | Luke et al. | Mar 2006 | A1 |
20080148876 | Hock et al. | Jun 2008 | A1 |
20100221125 | Fulkerson et al. | Sep 2010 | A1 |
20100229544 | Bollinger | Sep 2010 | A1 |
20100234988 | Buckingham et al. | Sep 2010 | A1 |
20100264013 | Burton | Oct 2010 | A1 |
20110186657 | Haviland | Aug 2011 | A1 |
20110197692 | Bayer | Aug 2011 | A1 |
20110315165 | McWhorter | Dec 2011 | A1 |
20120106882 | Ponnouradjou et al. | May 2012 | A1 |
20120279537 | Peeters et al. | Nov 2012 | A1 |
20140079573 | Pabst | Mar 2014 | A1 |
20140147299 | Tomter | May 2014 | A1 |
20150034176 | Garcia Arguelles et al. | Feb 2015 | A1 |
20150124242 | Pierce et al. | May 2015 | A1 |
20150139792 | Ramsey | May 2015 | A1 |
20150299636 | Virtanen | Oct 2015 | A1 |
20150362000 | Schmidt et al. | Dec 2015 | A1 |
20160010648 | Han | Jan 2016 | A1 |
20160055268 | Bell et al. | Feb 2016 | A1 |
20160107207 | Desormeaux | Apr 2016 | A1 |
20160145980 | Cunningham | May 2016 | A1 |
20170173617 | Zilai et al. | Jun 2017 | A1 |
20170259309 | Innes et al. | Sep 2017 | A1 |
20190195020 | Kapoor | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2618951 | Nov 1976 | DE |
1166903 | Jan 2002 | EP |
3151246 | Apr 2017 | EP |
1568888 | Aug 2005 | GB |
201741036558 | Oct 2017 | IN |
2004301665 | Oct 2004 | JP |
2009018599 | Feb 2009 | WO |
2014019852 | Feb 2014 | WO |
Entry |
---|
Machine Translation of German Patent DE 2618951 A1 to Bleijenberg, Gerrit published Nov. 11, 1976. |
Pearson, M.J., et al., “Biomimetic Vibrissal Sensing for Robots,” Philosophical Transactions of the Royal Society B (2011), vol. 366, pp. 3085-3096, 12 pages. |
Innes, Alex, G., PCT Patent Application No. PCT/US/19/068359, filed Dec. 23, 2019, Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration dated Feb. 25, 2020, 14 pages. |
Bullseye Pumps, Bullseye B200-SPDK Vacuum Loading Solids Pump, 2017, retrieved from http://www.bullseyepumps.com/products/bullseye-b200-spdk-vacuum-loading-solids-pump?variant=31478670788, 10 pages. |
Sykes Pumps, General Purpose, GP50 Pump Performance, 2017, retrieved from http://www.sykespumps.com.sa/pumps/product-specs/gp_50_75.html, 2 pages. |
Pentair Southern Cross, SX60 Portable Slurry Pump, 2017, retrieved from http://www.southerncross.pentair.com.au/product/market/pumps/vacuum-pumps/sx60-portable-slurry-pump/, 3 pages. |
Wastecorp. Pumps, Super Duty, TVP-65 Series Vacuum Pumps, 2017, brochure, 1 page. |
RITCHIESpecs, Gradall 534D-9-45 Telescopic Forklift, 2017, retrieved from www.ritchiespecs.com, 2 pages. |
Boom, Gradall Material Handler 534 D-61534 D-6 Turbo, Jul. 2002, 1 page. |
Manitowoc, National Crane 600H Series Product Guide, 2012, 16 pages. |
Manitowoc, National Crane 680H-TM, Aug. 2015, 4 pages. |
Festo, Bionic Handling Assistant, Apr. 2012, 6 pages. |
Schutz, Maxon Motor, Robotic Snake-Arm Flies into Tight Spaces, 2012, 4 pages. |
McMahan, W., et al., Field Trials and Testing of the OctArm Continuum Manipulator, IEEE, May 2006, pp. 2336-2341, 6 pages. |
Li, Z., et al., A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery, Engineering Research Robotics Article, Mar. 2015, pp. 073-078, vol. 1, issue 1, 6 pages. |
Li, Z., et al., Kinematic Comparison of Surgical Tendon-Driven Manipulators and Concentric Tube Manipulators, Mechanism and Machine Theory, 2017, pp. 148-165, vol. 107, 18 pages. |
Military Elevation Solutions and Tactical Trailers, KVL and KVR Telescopic Cable-Drive Masts, Sep. 2016, 3 pages. |
OCRobotics, Laser Snake 2, Snake-arm robot and high-power laser integration, www.ocrobotics.com, 2016, 4 pages. |
OCRobotics, Nuclear decommissioning case-study: Laser Snake, Snake-arm robot and high-power laser integration, www.ocrobotics.com, 2016, 4 pages. |
Bauer, et al., Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste—14206 (Draft), U.S. Department of Energy, Assistant Secretary for Environmental Management, Washington River Protection Solutions, Nov. 2013, 19 pages. |
Innes, PCT Patent Application No. PCT/US17/18120 filed Feb. 16, 2017, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated May 10, 2017, 14 pages. |
Innes, PCT Patent Application No. PCT/US17/18120 filed Feb. 16, 2017, Notification Concerning Transmittal of International Preliminary Report on Patentability, 12 pages. |
Oceaneering International, Inc., PCT Patent Application No. PCT/US18/060093, filed Nov. 9, 2018, Notification of Transmittal of the International Search Report and The Written Opinion of the International Searching Authority, or the Declaration dated Feb. 5, 2019, 3 pages. |
Innes, Alex. G., PCT Patent Application No. PCT/US/19/036567, filed Jun. 11, 2019, Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration dated Sep. 17, 2019, 7 pages. |
Lane, et al. “FY10 Engineering Innovations, Research and Technology Report” In: Lawrence Livermore National Lab. Jan. 31, 2011 (Jan. 31, 2011) Retrieved on Aug. 10, 2019 (Aug. 10, 2019) from https://e-reports-ext.llnl.gov/pdf/461932.pdf, 99 pages. |
Number | Date | Country | |
---|---|---|---|
62630026 | Feb 2018 | US |