Nuclear fuel storage facility

Information

  • Patent Grant
  • 11250963
  • Patent Number
    11,250,963
  • Date Filed
    Friday, June 21, 2019
    4 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
A spent nuclear fuel storage facility. In one embodiment, the invention is directed to a storage facility including an array of storage containers. Each of the storage containers includes a body portion and a lid. The body portion has a storage cavity configured to hold a canister containing spent nuclear fuel. The lid, which may rest atop the body portion in a detachable manner, includes an inlet vent and an outlet vent. Each of the storage containers may be configured to draw air through the inlet vent and into the storage cavity where the air is warmed and passed through the outlet vent as heated air. The body portion of the storage containers may be positioned below grade and the lid of the storage containers may be positioned above grade.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of storing high level waste (“HLW”), and specifically to methods for storing HLW, such as spent nuclear fuel, in ventilated vertical modules.


BACKGROUND OF THE INVENTION

The storage, handling, and transfer of HLW, such as spent nuclear fuel, requires special care and procedural safeguards. For example, in the operation of nuclear reactors, it is customary to remove fuel assemblies after their energy has been depleted down to a predetermined level. Upon removal, this spent nuclear fuel is still highly radioactive and produces considerable heat, requiring that great care be taken in its packaging, transporting, and storing. In order to protect the environment from radiation exposure, spent nuclear fuel is first placed in a canister. The loaded canister is then transported and stored in large cylindrical containers called casks. A transfer cask is used to transport spent nuclear fuel from location to location while a storage cask is used to store spent nuclear fuel for a determined period of time.


In a typical nuclear power plant, an open empty canister is first placed in an open transfer cask. The transfer cask and empty canister are then submerged in a pool of water. Spent nuclear fuel is loaded into the canister while the canister and transfer cask remain submerged in the pool of water. Once fully loaded with spent nuclear fuel, a lid is typically placed atop the canister while in the pool. The transfer cask and canister are then removed from the pool of water, the lid of the canister is welded thereon and a lid is installed on the transfer cask. The canister is then properly dewatered and filled with inert gas. The transfer cask (which is holding the loaded canister) is then transported to a location where a storage cask is located. The loaded canister is then transferred from the transfer cask to the storage cask for long term storage. During transfer from the transfer cask to the storage cask, it is imperative that the loaded canister is not exposed to the environment.


One type of storage cask is a ventilated vertical overpack (“VVO”). A VVO is a massive structure made principally from steel and concrete and is used to store a canister loaded with spent nuclear fuel (or other HLW). VVOs stand above ground and are typically cylindrical in shape and extremely heavy, weighing over 150 tons and often having a height greater than 16 feet. VVOs typically have a flat bottom, a cylindrical body having a cavity to receive a canister of spent nuclear fuel, and a removable top lid.


In using a VVO to store spent nuclear fuel, a canister loaded with spent nuclear fuel is placed in the cavity of the cylindrical body of the VVO. Because the spent nuclear fuel is still producing a considerable amount of heat when it is placed in the VVO for storage, it is necessary that this heat energy have a means to escape from the VVO cavity. This heat energy is removed from the outside surface of the canister by ventilating the VVO cavity. In ventilating the VVO cavity, cool air enters the VVO chamber through bottom ventilation ducts, flows upward past the loaded canister, and exits the VVO at an elevated temperature through top ventilation ducts. The bottom and top ventilation ducts of existing VVOs are located circumferentially near the bottom and top of the VVO's cylindrical body respectively, as illustrated in FIG. 1.


While it is necessary that the VVO cavity be vented so that heat can escape from the canister, it is also imperative that the VVO provide adequate radiation shielding and that the spent nuclear fuel not be directly exposed to the external environment. The inlet duct located near the bottom of the overpack is a particularly vulnerable source of radiation exposure to security and surveillance personnel who, in order to monitor the loaded overpacks, must place themselves in close vicinity of the ducts for short durations.


Additionally, when a canister loaded with spent nuclear fuel is transferred from a transfer cask to a storage VVO, the transfer cask is stacked atop the storage VVO so that the canister can be lowered into the storage VVO's cavity. Most casks are very large structures and can weigh up to 250,000 lbs. and have a height of 16 ft. or more. Stacking a transfer cask atop a storage VVO/cask requires a lot of space, a large overhead crane, and possibly a restraint system for stabilization. Often, such space is not available inside a nuclear power plant. Finally, above ground storage VVOs stand at least 16 feet above ground, thus, presenting a sizable target of attack to a terrorist.



FIG. 1 illustrates a traditional prior art VVO 2. Prior art VVO 2 comprises flat bottom 17, cylindrical body 12, and lid 14. Lid 14 is secured to cylindrical body 12 by bolts 18. Bolts 18 serve to restrain separation of lid 14 from body 12 if prior art VVO 2 were to tip over. Cylindrical body 12 has top ventilation ducts 15 and bottom ventilation ducts 16. Top ventilation ducts 15 are located at or near the top of cylindrical body 12 while bottom ventilation ducts 16 are located at or near the bottom of cylindrical body 12. Both bottom ventilation ducts 16 and top ventilation ducts 15 are located around the circumference of the cylindrical body 12. The entirety of prior art VVO 2 is positioned above grade.


As understood by those skilled in the art, the existence of the top ventilation ducts 15 and/or the bottom ventilation ducts 16 in the body 12 of the prior art VVO 2 require additional safeguards during loading procedures to avoid radiation shine.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a system and method for storing HLW that reduces the height of the stack assembly when a transfer cask is stacked atop a storage VVO.


It is another object of the present invention to provide a system and method for storing HLW that requires less vertical space.


Yet another object of the present invention is to provide a system and method for storing HLW that utilizes the radiation shielding properties of the subgrade during storage while providing adequate ventilation of the high level waste.


A further object of the present invention is to provide a system and method for storing HLW that provides the same or greater level of operational safeguards that are available inside a fully certified nuclear power plant structure.


A still further object of the present invention is to provide a system and method for storing HLW that decreases the dangers presented by earthquakes and other catastrophic events and virtually eliminates the potential of damage from a World Trade Center or Pentagon type of attack on the stored canister.


It is also an object of the present invention to provide a system and method for storing HLW that allows for an ergonomic transfer of the HLW from a transfer cask to a storage container.


Another object of the present invention is to provide a system and method for storing HLW below or above grade.


Yet another object of the present invention is to provide a system and method of storing HLW that reduces the amount of radiation emitted to the environment.


Still another object of the present invention is to provide a system and method of storing HLW that eliminates the dangers of radiation shine during loading procedures and/or subsequent storage.


A still further object of the present invention is to provide a system and method of storing HLW that locates openings for both the inlet and outlet vents in a removable lid.


A yet further object of the present invention is to provide a system and method of storing HLW that leads to convenient manufacture and site construction.


These and other objects are met by the present invention which, in some embodiments, is a system for storing high level waste comprising: an inner shell forming a cavity for receiving high level waste, the cavity having a top and a bottom; an outer shell surrounding the inner shell so as to form a space between the inner shell and the outer shell; at least one opening in the inner shell at or near the bottom of the cavity, the at least one opening forming a passageway from the space into the cavity; a lid positioned atop the inner and outer shells, the lid having at least one inlet vent forming a passageway from an ambient atmosphere to the space and at least one outlet vent forming a passageway from the cavity to the ambient atmosphere. Depending on the exact storage needs, the apparatus can be adapted for either above or below grade storage of high level waste.


In other embodiments, the invention is a method of storing high level waste comprising: (a) providing an apparatus comprising an inner shell forming a cavity having a top and a bottom, an outer shell concentric with and surrounding the inner shell so as to form a space therebetween, and at least one opening in the inner shell at or near the bottom of the cavity, the at least one opening forming a passageway from the space into the cavity; (b) placing a canister of high level waste into the cavity; (c) providing a lid having at least one inlet vent and at least one outlet vent; (d) positioning the lid atop the inner and outer shells so that the at least one inlet vent forms a passageway from an ambient atmosphere to the space and the at least one outlet vent forms a passageway from the cavity to the ambient atmosphere; and (e) cool air entering the cavity via the at least inlet vent and the space, the cool air being warmed by the canister of high level waste, and exiting the cavity via the at least one outlet vent in the lid.


In still other embodiments, the invention is a system for storing high level waste comprising: an inner shell forming a cavity for receiving high level waste, the cavity having a top and a bottom; an outer shell surrounding the inner shell so as to form a space between the inner shell and the outer shell; a floor plate, the inner and outer shells positioned atop and connected to the floor plate; and at least one opening in the inner shell at or near the bottom of the cavity, the at least one opening forming a passageway from the space into the cavity.


In yet another embodiment, the invention can be a system for storing high level radioactive waste comprising: an outer shell having an open top end and a hermetically closed bottom end; an inner shell forming a cavity, the inner shell positioned inside the outer shell so as to form a space between the inner shell and the outer shell; at least one passageway connecting the space and a bottom portion of the cavity; at least one passageway connecting an ambient atmosphere and a top portion of the space; a lid positioned atop the inner shell, the lid having at least one passageway connecting the cavity and the ambient atmosphere; and a seal between the lid and the inner shell so at form a hermetic lid-to-inner shell interface.


In still another embodiment, the invention can be a system for storing high level radioactive comprising: a metal plate; a first metal tubular shell having a top end and a bottom end, the metal plate connected to the bottom end of the first metal tubular shell so as to hermetically close the bottom end of the first metal tubular shell; a second metal tubular shell forming a cavity, the second metal tubular shell positioned within the first metal tubular shell so as to form a space between the first metal tubular shell and the second metal tubular shell; at least one opening in the second tubular shell that forms a passageway connecting the space and a bottom portion of the cavity, a lid comprising a plug portion and a flange portion surrounding the plug portion, the plug portion extending into the cavity and the flange portion resting atop the inner shell and the outer shell; at least one passageway connecting the cavity and the ambient atmosphere; and at least one passageway connecting the space and the ambient atmosphere.


In a further embodiment, the invention can also be a system for storing high level radioactive comprising: a metal plate; a first metal tubular shell having a top end and a bottom end, the metal plate seal welded to the bottom end of the first metal tubular shell so as to hermetically close the bottom end of the first metal tubular shell; a second metal tubular shell forming a cavity and having a top end and a bottom end having at least one cutout; and the second metal tubular shell located within the first metal tubular shell so as to form an annular space between the first metal tubular shell and the second metal tubular shell, the at least one cutout forming a passageway connecting the space and a bottom portion of the cavity.


In a still further embodiment, the invention can be a method of storing high level radioactive waste comprising: (a) providing a container comprising an outer shell having an open top end and a hermetically closed bottom end, an inner shell forming a cavity, the inner shell positioned within the outer shell so as to form a space between the inner shell and the outer shell, and at least one opening in the inner shell that connects the space and a bottom portion of the cavity; (b) lowering a hermetically sealed canister holding high level radioactive waste into the cavity via the open top end; (c) providing a lid having at least one inlet vent and at least one outlet vent; (d) positioning a lid atop the inner and outer shells so that the at least one inlet vent forms a passageway from an ambient atmosphere to the space and the at least one outlet vent forms a passageway from the cavity to the ambient atmosphere, the lid substantially enclosing the open top end; and (e) cool air entering the cavity via the at least outlet vent and the space, the cool air being warmed by the canister of high level waste, and exiting the cavity via the at least one outlet vent in the lid.


In a yet further aspect, the invention can be a method of storing high level radioactive waste comprising: (a) providing a body portion comprising a floor, an open top end, an inner shell extending upward from the floor and forming a cavity, an outer shell extending upward from the floor and surrounding the inner shell so as to form a space therebetween, and at least one opening in the inner shell that forms a passageway from a bottom of the space into a bottom of the cavity; (b) placing a canister containing high level radioactive waste into the cavity; and (c) positioning a lid having at least one outlet vent atop the inner and outer shells so as to enclose the open top end of the body portion and the at least one outlet vent forms a passageway from a top of the cavity to the ambient atmosphere; and wherein at least one inlet vent forms a passageway from an ambient atmosphere to a top of the space to facilitate natural convective cooling of the canister containing high level radioactive waste.


In another aspect, the invention can be a spent nuclear fuel storage facility comprising: an array of storage containers, each of the storage containers comprising: a body portion having a storage cavity configured to hold a canister containing spent nuclear fuel; and a lid that rests atop and is detachably coupled to the body portion, the lid comprising an inlet vent and an outlet vent; and wherein each of the storage containers is configured to draw air through the inlet vent and into the storage cavity and pass the air through the outlet vent as heated air.


In still another aspect, the invention can be a spent nuclear fuel storage facility comprising: an array of storage containers, each of the storage containers comprising: a first portion positioned below grade, the first portion having a cavity configured to hold a canister containing spent nuclear fuel; and a second portion positioned above grade, the second portion comprising an inlet vent for drawing ambient air into cavity of the first portion and an outlet vent for passing heated air out of the cavity.


In yet another aspect, the invention may be a spent nuclear fuel storage facility comprising: a plurality of storage containers arranged in rows in a closely spaced apart manner to form an array, each of the storage containers comprising: a body portion having a storage cavity extending along a longitudinal axis and having an open top end, the storage cavity configured to hold a canister containing spent nuclear fuel; and a lid detachably coupled to the body portion and enclosing the open top end, the lid comprising a sidewall, a bottom surface, and a top surface, an inlet vent comprising a plurality of inlet openings formed into the sidewall of the lid and an outlet vent comprising a plurality of first openings in the bottom surface of the lid, a common second opening in the top surface of the lid, and a plurality of passageways extending from the plurality of first openings and converging at the common second opening; wherein each of the storage containers is configured to draw air through the inlet vent and into the storage cavity and pass the air from the storage cavity through the outlet vent via thermosiphon flow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of a prior art VVO.



FIG. 2 a top perspective view of a HLW storage container according to an embodiment of the present invention.



FIG. 3 is a sectional view of the HLW storage container of FIG. 2.



FIG. 4 is a sectional view of a lid according to an embodiment of the present invention removed from the HLW storage container of FIG. 2.



FIG. 5 is a bottom perspective view of the lid of FIG. 4 according to an embodiment of the present invention.



FIG. 6 is a sectional view of the HLW storage container of FIG. 2 positioned for the below grade storage of HLW.



FIG. 7 is a top view of the HLW storage container of FIG. 6.



FIG. 8 is a sectional view of the HLW storage container of FIG. 6 having a canister of HLW positioned therein for storage.



FIG. 9 is a perspective view of an ISFSI utilizing an array of HLW storage containers according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 2 illustrates a high level waste (“HLW”) storage container 100 designed according to an embodiment of the present invention. While the HLW storage container 100 will be described in terms of being used to store a canister of spent nuclear fuel, it will be appreciated by those skilled in the art that the systems and methods described herein can be used to store any and all kinds of HLW.


The HLW storage container 100 is designed to be a vertical, ventilated dry system for storing HLW such as spent fuel. The HLW storage container 100 is fully compatible with 100 ton and 125 ton transfer casks for HLW transfer procedures, such as spent fuel canister transfer operations. All spent fuel canister types engineered for storage in free-standing, below grade, and/or anchored overpack models can be stored in the HLW storage container 100.


As used herein the term “canister” broadly includes any spent fuel containment apparatus, including, without limitation, multi-purpose canisters and thermally conductive casks. For example, in some areas of the world, spent fuel is transferred and stored in metal casks having a honeycomb grid-work/basket built directly into the metal cask. Such casks and similar containment apparatus qualify as canisters, as that term is used herein, and can be used in conjunction with the HLW storage container 100 can as discussed below.


The HLW storage container 100 can be modified/designed to be compatible with any size or style of transfer cask. The HLW storage container 100 can also be designed to accept spent fuel canisters for storage at an Independent Spent Fuel Storage Installations (“ISFSI”). ISFSIs employing the HLW storage container 100 can be designed to accommodate any number of the HLW storage container 100 and can be expanded to add additional HLW storage containers 100 as the need arises. In ISFSIs utilizing a plurality of the HLW storage container 100, each HLW storage container 100 functions completely independent from any other HLW storage container 100 at the ISFSI.


The HLW storage container 100 comprises a body portion 20 and a lid 30. The body portion 20 comprises a floor plate 50. The floor plate 50 has a plurality of anchors 51 mounted thereto for securing the HLW storage container 100 to a base, floor, or other stabilization structure. The lid 30 rests atop and is removable/detachable from the body portion 20. As will be discussed in greater detail below, the HLW storage container 100 can be adapted for use as an above or below grade storage system.


Referring now to FIG. 3, the body portion 20 comprises an outer shell 21 and an inner shell 22. The outer shell 21 surrounds the inner shell 22, forming a space 23 therebetween. The outer shell 21 and the inner shell 22 are generally cylindrical in shape and concentric with one another. As a result, the space 23 is an annular space. While the shape of the inner and outer shells 22, 21 is cylindrical in the illustrated embodiment, the shells can take on any shape, including without limitation rectangular, conical, hexagonal, or irregularly shaped. In some embodiments, the inner and outer shells 22, 22 will not be concentrically oriented.


As will be discussed in greater detail below, the space 23 formed between the inner shell 22 and the outer shell 21 acts as a passageway for cool air. The exact width of the space 23 for any HLW storage container 100 is determined on a cases-by-case design basis, considering such factors as the heat load of the HLW to be stored, the temperature of the cool ambient air, and the desired fluid flow dynamics. In some embodiments, the width of the space 23 will be in the range of 1 to 6 inches. While the width of space 23 can vary circumferentially, it may be desirable to design the HLW storage container 100 so that the width of the space 23 is generally constant in order to effectuate symmetric cooling of the HLW container and even fluid flow of the incoming air.


The inner shell 22 and the outer shell 21 are secured atop floor plate 50. The floor plate 50 is square in shape but can take on any desired shape. A plurality of spacers 27 are secured atop the floor plate 50 within the space 23. The spacers 27 act as guides during placement of the inner and outer shells 22, 21 atop the floor plate 50 and ensure that the integrity of the space 23 is maintained throughout the life of the HLW storage container 100. The spacers 27 can be constructed of low carbon steel or another material and welded to the floor plate 50.


Preferably, the outer shell 21 is seal joined to the floor plate 50 at all points of contact, thereby hermetically sealing the HLW storage container 100 to the ingress of fluids through these junctures. In the case of weldable metals, this seal joining may comprise welding or the use of gaskets. Most preferably, the outer shell 21 is integrally welded to the floor plate 50.


A ring flange 77 is provided around the top of the outer shell 21 to stiffen the outer shell 21 so that it does not buckle or substantially deform under loading conditions. The ring flange 77 can be integrally welded to the top of the outer shell 21.


The inner shell 22 is laterally and rotationally restrained in the horizontal plane at its bottom by the spacers 27 and support blocks 52. The inner shell 22 is preferably not welded or otherwise permanently secured to the bottom plate 50 or outer shell 21 so as to permit convenient removal for decommissioning, and if required, for maintenance. The bottom edge of the inner shell 22 is equipped with a tubular guide (not illustrated) that also provides flexibility to permit the inner shell 22 to expand from its contact with the air heated by the canister in the cavity 24 without inducing excessive upward force on the lid 30.


The inner shell 22, the outer shell 21, the floor plate 50, and the ring flange 77 are preferably constructed of a metal, such as a thick low carbon steel, but can be made of other materials, such as stainless steel, aluminum, aluminum-alloys, plastics, and the like. Suitable low carbon steels include, without limitation, ASTM A516, Gr. 70, A515 Gr. 70 or equal. The desired thickness of the inner and outer shells 22, 21 is matter of design and will be determined on a case by case basis. However, in some embodiments, the inner and outer shells 22, 22 will have a thickness between ½ to 3 inches.


The inner shell 22 forms a cavity 24. The size and shape of the cavity 24 is not limiting of the present invention. However, it is preferred that the inner shell 22 be selected so that the cavity 24 is sized and shaped so that it can accommodate a canister of spent nuclear fuel or other HLW. While not necessary to practice the invention, it is preferred that the horizontal cross-sectional size and shape of the cavity 24 be designed to generally correspond to the horizontal cross-sectional size and shape of the canister-type that is to be used in conjunction with that particular HLW storage container 100. More specifically, it is desirable that the size and shape of the cavity 24 be designed so that when a canister containing HLW is positioned in cavity 24 for storage (as illustrated in FIG. 8), a small clearance exists between the outer side walls of the canister and the side walls of the cavity 24.


Designing the cavity 24 so that a small clearance is formed between the side walls of the stored canister and the side walls of the cavity 24 limits the degree the canister can move within the cavity during a catastrophic event, thereby minimizing damage to the canister and the cavity walls and prohibiting the canister from tipping over within the cavity. This small clearance also facilitates flow of the heated air during HLW cooling. The exact size of the clearance can be controlled/designed to achieve the desired fluid flow dynamics and heat transfer capabilities for any given situation. In some embodiments, for example, the clearance may be 1 to 3 inches. A small clearance also reduces radiation streaming.


The inner shell 22 is also equipped with equispaced longitudinal ribs (not illustrated) at an elevation that is aligned with the top lid of a canister of HLW stored in the cavity 24. These ribs provide a means to guide a canister of HLW down into the cavity 24 so that the canister properly rests atop the support blocks 52. The ribs also serve to limit the canister's lateral movement during an earthquake or other catastrophic event to a fraction of an inch.


A plurality of openings 25 are provided in the inner shell 22 at or near its bottom. The openings 25 provide a passageway between the annular space 23 and the bottom of the cavity 24. The openings 25 provide passageways by which fluids, such as air, can pass from the annular space 23 into the cavity 24. The opening 25 are used to facilitate the inlet of cool ambient air into the cavity 24 for cooling stored HLW having a heat load. In the illustrated embodiment, six opening 25 are provided. However, any number of openings 25 can be provided. The exact number will be determined on a case-by-case basis and will be dictated by such consideration as the heat load of the HLW, desired fluid flow dynamics, etc. Moreover, while the openings 25 are illustrated as being located in the side wall of the inner shell 22, the openings 25 can be provided in the floor plate 50 in certain modified embodiments of the HLW storage container 100.


In some embodiments, the openings 25 may be symmetrically located around the bottom of the inner shell 22 in a circumferential orientation to enable the incoming cool air streaming down the annular space 23 to enter the cavity 24 in a symmetric manner.


The opening 25 in the inner shell 22 are sufficiently tall to ensure that if the cavity 24 were to become filled with water, the bottom region of a canister resting on the support blocks 52 would be submerged for several inches before the water level reaches the top edge of the openings 25. This design feature ensures thermal performance of the system under any conceivable accidental flooding of the cavity 24 by any means whatsoever.


A layer of insulation 26 is provided around the outside surface of the inner shell 22 within the annular space 23. The insulation 26 is provided to minimize the heat-up of the incoming cooling air in the space 23 before it enters the cavity 24. The insulation 26 helps ensure that the heated air rising around a canister situated in the cavity 24 causes minimal pre-heating of the downdraft cool air in the annular space 23. The insulation 26 is preferably chosen so that it is water and radiation resistant and undegradable by accidental wetting. Suitable forms of insulation include, without limitation, blankets of alumina-silica fire clay (Kaowool Blanket), oxides of alumina and silica (Kaowool S Blanket), alumina-silica-zirconia fiber (Cerablanket), and alumina-silica-chromia (Cerachrome Blanket). The desired thickness of the layer of insulation 26 is matter of design and will be dictated by such considerations such as the heat load of the HLW, the thickness of the shells, and the type of insulation used. In some embodiments, the insulation will have a thickness in the range ½ to 6 inches.


A plurality of support blocks 52 are provided on the floor (formed by floor plate 50) of the cavity 24. The support blocks 52 are provided on the floor of cavity 24 so that a canister holding HLW, such as spent nuclear fuel, can be placed thereon. The support blocks 52 are circumferentially spaced from one another and positioned between each of the openings 25 near the six sectors of the inner shell 22 that contact the bottom plate 50. When a canister holding HLW is loaded into the cavity 24 for storage, the bottom surface of the canister rests atop the support blocks 52, forming an inlet air plenum between the bottom surface of the HLW canister and the floor of cavity 24. This inlet air plenum contributes to the fluid flow and proper cooling of the canister.


The support blocks 52 can be made of low carbon steel and are preferably welded to the floor of the cavity 24. In some embodiments, the top surfaces of the support blocks 52 will be equipped with a stainless steel liner so that the canister of HLW does not rest on a carbon steel surface. Other suitable materials of construction for the support blocks 52 include, without limitation, reinforced-concrete, stainless steel, plastics, and other metal alloys. The support blocks 52 also serve an energy/impact absorbing function. In some embodiments, the support blocks 52 are preferably of a honeycomb grid style, such as those manufactured by Hexcel Corp., out of California, U.S.


The lid 30 rests atop and is supported by the tops edges of the inner and outer shells 22, 21. The lid 30 encloses the top of the cavity 24 and provides the necessary radiation shielding so that radiation can not escape from the top of the cavity 24 when a canister loaded with HLW is stored therein. The lid 30 is specially designed to facilitate in both the introduction of cool air to the space 23 (for subsequent introduction to the cavity 24) and the release of warmed air from the cavity 24. In some embodiments, the invention is the lid itself, independent of all other aspects of the HLW storage container 100.



FIGS. 4 and 5 illustrate the lid 30 in detail according to an embodiment of the present invention. In some embodiments, the lid 30 will be a steel structure filled with shielding concrete. The design of the lid 30 is preferably designed to fulfill a number of performance objectives.


Referring first to FIG. 4, a top perspective view of the lid 30 removed from the body portion 20 of the HLW storage container 100 is illustrated. In order to provide the requisite radiation shielding, the lid 30 is constructed of a combination of low carbon steel and concrete. More specifically, in constructing one embodiment of the lid 30, a steel lining is provided and filled with concrete (or another radiation absorbing material). In other embodiments, the lid 30 can be constructed of a wide variety of materials, including without limitation metals, stainless steel, aluminum, aluminum-alloys, plastics, and the like. In some embodiments, the lid may be constructed of a single piece of material, such as concrete or steel for example.


The lid 30 comprises a flange portion 31 and a plug portion 32. The plug portion 32 extends downward from the flange portion 31. The flange portion 31 surrounds the plug portion 32, extending therefrom in a radial direction. A plurality of inlet vents 33 are provided in the lid 30. The inlet vents 33 are circumferentially located around the lid 30. Each inlet vent 33 provides a passageway from an opening 34 in the side wall 35 to an opening 36 in the bottom surface 37 of the flange portion 31.


A plurality of outlet vents 38 are provided in the lid 30. Each outlet vent 38 forms a passageway from an opening 39 in the bottom surface 40 of the plug portion 32 to an opening 41 in the top surface 42 of the lid 30. A cap 43 is provided over opening 41 to prevent rain water or other debris from entering and/or blocking the outlet vents 38. The cap 43 is secured to the lid 30 via bolts 70 or through any other suitable connection, including without limitation welding, clamping, a tight fit, screwing, etc.


The cap 43 is designed to prohibit rain water and other debris from entering into the opening 41 while affording heated air that enters the opening 41 to escape therefrom. In one embodiment, this can be achieved by providing a plurality of small holes (not illustrated) in the wall 44 of the cap 43 just below the overhang of the roof 45 of the cap. In other embodiments, this can be achieved by non-hermetically connecting the roof 45 of the cap 43 to the wall 44 and/or constructing the cap 43 (or portions thereof) out of material that is permeable only to gases. The opening 41 is located in the center of the lid 30.


By locating both the inlet vents 33 and outlet vents 38 in the lid 30, there is no lateral radiation leakage path during the lowering or raising of a canister of HLW in the cavity 24 during loading and unloading operations. Thus, the need for shield blocking, which is necessary in some prior art VVOs is eliminated. Both the inlet vents 30 and the outlet vents 38 are preferably radially symmetric so that the air cooling action in the system is not affected by the change in the horizontal direction of the wind. Moreover, by locating the opening 34 of the inlet vent 30 at the periphery of the lid 30 and the opening 41 for the outlet vents 38 at the top central axis of the lid, mixing of the entering cool air stream and the exiting warm air stream is essentially eliminated.


In order to further protect against rain water or other debris entering opening 41, the top surface 42 of the lid 30 is curved and sloped away from the opening 41 (i.e., downward and outward). Positioning the opening 41 away from the openings 34 helps prevent the heated air that exits via the outlet vents 38 from being drawn back into the inlet vents 35. The top surface 42 of the lid 30 (which acts as a roof) overhangs beyond the side wall 35 of the flange portion 31, thereby helping to prohibit rain water and other debris from entering the inlet vents 33. The overhang also helps prohibit mixing of the cool and heated air streams. The curved shape of the increases the load bearing capacity of the lid 30 much in the manner that a curved beam exhibits considerably greater lateral load bearing capacity than its straight counterpart.


The outlet vents 38 are specifically curved so that a line of sight does not exist therethrough. This prohibits a line of sight from existing from the ambient air to an HLW canister that is loaded in the HLW storage container 100, thereby eliminating radiation shine into the environment. In other embodiments, the outlet vents may be angled or sufficiently tilted so that such a line of sight does not exist. The inlet vents 33 are in a substantially horizontal orientation. However, the shape and orientation of the inlet and outlet vents 33, 38 can be varied.


The inlet and outlet vents 30, 38 are made of “formed and Hued” heads (i.e., surfaces of revolution) that serve three major design objectives. First, the curved shape of the inlet and outlet vents 30, 38 eliminate any direct line of sight from the cavity 24 and serve as an effective means to scatter the photons streaming from the HLW. Second, the curved steel plates 78 that form outlet vent passageway 38 significantly increase the load bearing capacity of the lid 30 much in the manner that a curved beam exhibits considerably greater lateral load bearing capacity in comparison to its straight counterpart. This design feature is a valuable attribute if a beyond-the-design basis impact scenario involving a large and energetic missile needs to be evaluated for a particular ISFSI site. Third, the curved nature of the inlet vents 30 provide for minimum loss of pressure in the coolant air stream, resulting in a more vigorous ventilation action.


In some embodiments it may be preferable to provide screens covering all of the openings into the inlet and outlet vents 30, 38 to prevent debris, insects, and small animals from entering the cavity 24 or the vents 30, 38.


Referring now to FIG. 5, the lid 30 further comprises a first gasket seal 46 and a second gasket seal 47 on the bottom surface 37 of the flange portion 31. The gaskets 46, 47 are preferably constructed of a radiation resistant material. When the lid 30 is positioned atop the body portion 20 of the HLW storage container 100 (as shown in FIG. 3), the first gasket seal 46 is compressed between the bottom surface 37 of the flange portion 31 of the lid 30 and the top edge of the inner shell 22, thereby forming a seal. Similarly, when the lid 30 is positioned atop the body portion 20 of the HLW storage container 100, the second gasket seal 47 is compressed between the bottom surface 37 of the flange portion 31 of the lid 30 and the top edge of the outer shell 21, thereby forming a second seal.


A container ring 48 is provided on the bottom surface 35 of the flange portion 31. The container ring 48 is designed to extend downward from the bottom surface 35 and peripherally surround the outside surface of the top of the outer shell 22 when the lid 30 is positioned atop the body portion 20 of the HLW storage container 100, as shown in FIG. 3.


Referring again to FIG. 3, the cooperational relationship of the elements of the lid 30 and the elements of the body portion 20 will now be described. When the lid 30 is properly positioned atop the body portion 20 of the HLW storage container 100 (e.g., during the storage of a canister loaded with HLW), the plug portion 32 of the lid 30 is lowered into the cavity 24 until the flange portion 31 of the lid 30 contacts and rests atop the inner shell 22 and the flange ring 77. The flange portion 31 eliminates the danger of the lid 30 falling into the cavity 24.


When the lid 30 is positioned atop the body portion 20, the first and second gasket seals 46, 47 are respectively compressed between the flange portion 31 of the lid 30 and the top edges of the inner and outer shells 22, 21, thereby forming hermetically sealed interfaces. The first gasket 46 provides a positive seal at the lid/inner shell interface, prohibiting mixing of the cool air inflow stream through the annular space 23 and the warm air outflow stream at the top of the cavity 24. The second gasket 47 provides a seal at the lid/outer shell interface, providing protection against floodwater that may rise above the flange ring 77 itself.


The container ring 48 surrounds and peripherally engages the flange ring 77. The flange ring 77 restrains the lid 30 against horizontal movement, even during design basis earthquake events. When so engaged, the lid 30 retains the top of the inner shell 22 against lateral, axial movement. The lid 30 also provides stability, shape, and proper alignment/orientation of the inner and outer shells 22, 21.


The extension of plug portion 32 of the lid 30 into the cavity 24 helps reduce the overall height of the HLW storage container 100. Because the plug portion 32 is made of steel filled with shielding concrete, the plug portion 32 blocks the skyward radiation emanating from a canister of HLW from escaping into the environment. The height of the plug portion 32 is designed so that if the lid 30 were accidentally dropped during its handling, it would not contact the top of a canister of HLW positioned in the cavity 24.


When the lid 30 is positioned atop the body portion 20, the inlet vents 33 are in spatial cooperation with the space 23 formed between the inner and outer shells 22, 21. The outlet vents 38 are in spatial cooperation with the cavity 24. As a result, cool ambient air can enter the HLW storage container 100 through the inlet vents 33, flow into the space 23, and into the bottom of the cavity 24 via the openings 25. When a canister containing HLW having a heat load is supported within the cavity 24, this cool air is warmed by the HLW canister, rises within the cavity 24, and exits the cavity 24 via the outlet ducts 38.


Because the openings 34 (best visible in FIG. 4) of the inlet vents 30 extend around the circumference of the lid 30, the hydraulic resistance to the incoming air flow, a common limitation in ventilated modules, is minimized. Circumferentially circumscribing the openings 34 of the inlet vents 30 also results in the inlet vents 30 being less apt to becoming completely blocked under even the most extreme environmental phenomena involving substantial quantities of debris. Similar air flow resistance minimization is built into the design of the inlet vents 38 for the exiting air.


As mentioned above, the HLW storage container 100 can be adapted for either above or below grade storage of HLW. When adapted for above grade storage of HLW, the HLW storage container 100 will further comprises a radiation absorbing structure/body surrounding the body portion 20. The radiation absorbing structure will be of a material, and of sufficient thickness so that radiation emanating from the HLW canister is sufficiently absorbed/contained. In some embodiments, the radiation absorbing structure can be a concrete monolith. Moreover, in some embodiment, the outer shell may be formed by an inner wall of the radiation absorbing structure itself.


Referring now to FIGS. 6 and 7, the adaptation and use of the HLW storage container 100 for the below grade storage of HLW at an ISFSI, or other location will be described, according to one embodiment of the present invention.


Referring to FIG. 6, a hole is first dug into the ground at a desired position within the ISFSI and at a desired depth. Once the hole is dug, and its bottom properly leveled, a base 61 is placed at the bottom of hole. The base 61 is a reinforced concrete slab designed to satisfy the load combinations of recognized industry standards, such as ACI-349. However, in some embodiments, depending on the load to be supported and/or the ground characteristics, the use of a base may be unnecessary. The base 61 designed to meet certain structural criteria and to prevent long-term settlement and physical degradation from aggressive attack of the materials in the surrounding sub-grade.


Once the base 61 is properly positioned in the hole, the HLW storage container 100 is lowered into the hole in a vertical orientation until it rests atop the base 61. The floor plate 50 contacts and rests atop the top surface of base 61. The floor plate 50 is then secured to the base 61 via anchors 51 to prohibit future movement of the HLW storage container 100 with respect to the base 61.


The hole is preferably dug so that when the HLW storage container 100 is positioned therein, at least a majority of the inner and outer shells 22, 21 are below ground level 62. Most preferably, the hole is dug so that only 1 to 4 feet of the inner and outer shells 22, 21 are above ground level 61 when the HLW storage container 100 is resting atop base 61 in the vertical orientation. In some embodiments, the hole may be dug sufficiently deep that the top edges of the inner and outer shells 22, 21 are flush with the ground level 62. In the illustrated embodiment, about 32 inches of the inner and outer shells 22, 21 protrude above the ground level 62.


An appropriate preservative, such as a coal tar epoxy or the like, can be applied to the exposed surfaces of outer shell 21 and the floor plate 50 in order to ensure sealing, to decrease decay of the materials, and to protect against fire and the ingress of below grade fluids. A suitable coal tar epoxy is produced by Carboline Company out of St. Louis, Mo. under the tradename Bitumastic 300M. In some embodiments, it may be preferable to also coat all surfaces of both the inner shell 22 and the outer shell 21 with the preservative, even though these surfaces are not directly exposed to the elements.


Once the HLW storage container 100 is resting atop base 61 in the vertical orientation, soil 60 is delivered into the hole exterior of the HLW storage container 100, thereby filling the hole with soil 60 and burying a major portion of the HLW integral structure 100. While soil 60 is exemplified to fill the hole and surround the HLW storage container 100, any suitable engineered fill can be used that meets environmental and shielding requirements. Other suitable engineered fills include, without limitation, gravel, crushed rock, concrete, sand, and the like. Moreover, the desired engineered fill can be supplied to the hole by any means feasible, including manually, dumping, and the like.


The soil 60 is supplied to the hole until the soil 60 surrounds the HLW storage container 100 and fills the hole to a level where the soil 60 is approximately equal to the ground level 62. The soil 60 is in direct contact with the exterior surfaces of the HLW storage container 100 that are below grade.


A radiation absorbing structure, such as a concrete pad 63, is provided around the portion of the outer shell 21 that protrudes above the ground level 62. The ring flange 77 of the outer shell 21 rests atop the top surface of the concrete pad 63. The concrete pad 63 is designed so as to be capable of providing the necessary radiation shielding for the portion of the HLW storage container 100 that protrudes from the ground. The top surface of the pad 63 also provides a riding surface for a cask crawler (or other device for transporting a transfer cask) during HLW transfer operations. The soil 60 provides the radiation shielding for the portion of the HLW storage container 100 that is below the ground level 62. The pad 63 also acts as a barrier membrane against gravity induced seepage of rain or flood water around the below grade portion of the HLW storage container 100.


A top view of the concrete pad 63 is shown in FIG. 7. While the pad 63 is preferably made of a reinforced concrete, the pad 63 can be made out of any material capable of suitably absorbing/containing the radiation being emitted by the HLW being stored in the cavity 24.


Referring again to FIG. 6, when the HLW storage apparatus 100 is adapted for the below grade storage of HLW and the lid 30 removed, the HLW storage apparatus 100 is a closed bottom, open top, thick walled cylindrical vessel that has no below grade penetrations or openings. Thus, ground water has no path for intrusion into the cavity 24. Likewise, any water that may be introduced into the cavity 24 through the inlet and outlet vents 33, 38 in the lid 30 will not drain out on its own.


Once the concrete pad 63 is in place, the lid 30 is placed atop the inner and outer shells 22, 21 as described above. Because the lid 30, which includes the openings of the inlet and outlet vents 33, 38 to the ambient, is located above grade, a hot canister of HLW can be stored in the cavity 24 below grade while still affording adequate ventilation of the canister for heat removal.


Referring now to FIG. 8, the process of storing a canister 90 loaded with hot HLW in a below grade HLW storage container 100 will be discussed. Upon being removed from a spent fuel pool and treated for dry storage, a canister 90 is positioned in a transfer cask. The transfer cask is carried by a cask crawler to a desired HLW storage container 100 for storage. While a cask crawler is exemplified, any suitable means of transporting a transfer cask can be used. For example, any suitable type of load-handling device, such as without limitation, a gantry crane, overhead crane, or other crane device can be used.


In preparing the desired HLW storage container 100 to receive the canister 90, the lid 30 is removed so that cavity 24 is open. The cask crawler positions the transfer cask atop the underground HLW storage container 100. After the transfer cask is properly secured to the top of the underground HLW storage container 100, a bottom plate of the transfer cask is removed. If necessary, a suitable mating device can be used to secure the connection of the transfer cask to the HLW storage container 100 and to remove the bottom plate of the transfer cask to an unobtrusive position. Such mating devices are well known in the art and are often used in canister transfer procedures.


The canister 90 is then lowered by the cask crawler from the transfer cask into the cavity 24 until the bottom surface of canister 90 contacts and rests atop the support blocks 52, as described above. When resting on support blocks 52, at least a major portion of the canister is below grade. Most preferably, the entirety of the canister 90 is below grade when in its storage position. Thus, the HLW storage container 100 provides for complete subterranean storage of the canister 90 in a vertical configuration inside the cavity 24. In some embodiments, the top surface of the pad 63 itself can be considered the grade level, depending on its size, radiation shielding properties, and cooperational relationship with the other storage modules in the ISFSI.


Once the canister 90 is positioned and resting in cavity 24, the lid 30 is positioned atop the body portion 20 of HLW storage container 100 as described above with respect to FIG. 3, thereby substantially enclosing cavity 24. An inlet air plenum exists below the canister 90 while an outlet air plenum exists above the canister 90. The outlet air plenum acts to boost the “chimney” action of the heated air out of the HLW storage container 100.


The lid 30 is then secured in place with bolts that extend into the concrete pad 63. As a result of the heat emanating from canister 90, cool air from the ambient is siphoned into the inlet vents 33, drawn through the space 23, and into the bottom of cavity 24 via the openings 25. This cool air is then warmed by the heat from the canister 90, rises in cavity 24 via the clearance space between the canister 90 and the inner shell 22, and then exits cavity 24 as heated air via the outlet vents 38 in the lid 30.


It should be recognized that the depth of the cavity 24 determines the height of the hot air column in the annular space 23 during the HLW storage container's 100 operation. Therefore, deepening the cavity 24 has the beneficial effect of increasing the quantity of the ventilation air and, thus, enhancing the rate of heat rejection from the stored canister 90. Further lowering the canister 90 into the cavity 24 will increase the subterranean depth of the radiation source, making the site boundary dose even more miniscule. Of course, constructing a deeper cavity 24 will entail increased excavation and construction costs.


A multitude of HLW storage containers 100 can be used at the same ISFSI site and situated in arrays as shown in FIG. 9. Although the HLW storage containers 100 are closely spaced, the design permits a canister in each HLW storage container 100 to be independently accessed and retrieved easily.


While the invention has been described and illustrated in sufficient detail that those skilled in this art can readily make and use it, various alternatives, modifications, and improvements should become readily apparent without departing from the spirit and scope of the invention.

Claims
  • 1. A low profile system for below grade storage of spent nuclear fuel comprising: an array of storage containers, each of the storage containers comprising: an elongated body portion embedded in an engineered fill below grade, the body portion including a floor plate at its bottom, an open top end, and a storage cavity extending between the floor plate and the open top end configured for holding a canister containing spent nuclear fuel;a lid positioned above grade, the lid removably coupled to and enclosing the open top end of the body portion;the lid comprising a plurality of air inlet vents and at least one air outlet vent, the inlet vents each forming a passageway from the cavity to an ambient atmosphere and the at least one air outlet venting forming a passageway from the cavity to the ambient atmosphere;the inlet vents comprise a plurality of discrete peripheral openings formed in a sidewall of the lid and located circumferentially around the lid, andwherein the at least one air outlet vent comprises a plurality of discrete air passageways each extending from a plurality of separate bottom openings in a bottom surface of the lid which converge at a common single central opening extending through a top surface of the lid which ejects air to the atmosphere;a top concrete pad disposed on top of the engineered fill, an upper part of the body portion of each storage container being embedded in the concrete pad such that the open top end of the body portion is positioned adjacent a top surface of the concrete pad.
  • 2. The system according to claim 1, further comprising an annular radially protruding flange ring integrally attached to the top end of the body portion of the storage container above the concrete pad, the flange ring being seated on the top surface of the concrete pad.
  • 3. The system according to claim 2, further comprising an annular container ring extending downwards from a bottom surface of the lid, the container ring laterally surrounding and peripherally engaging the flange ring of the body portion to restrain the lid from horizontal movement during a seismic event.
  • 4. The system according to claim 1, further comprising at least one annular gasket forming a seal between the lid and body portion of each storage container.
  • 5. The system according to claim 1, further comprising a concrete base embedded in the engineered fill, wherein the floor of the body portion of each storage container is supported on top of the concrete base.
  • 6. The system according to claim 5, wherein the floor is anchored to the concrete base by a plurality of anchors.
  • 7. The system according to claim 1, wherein the body portions and lids of the storage containers are each configured and arranged such that the body portion of each storage container is concealed when the lid is coupled to the body portion leaving only the lids visible at the top concrete pad.
  • 8. The system according to claim 1, wherein the lid of each of the storage containers comprises a diametrically enlarged upper flange portion sealably engaging and radially overhanging the open top end of the body portion in a cantilevered manner, and a central lower cylindrical plug portion extending downwards from the flange portion, the plug portion being insertably received through the open top end of the body portion into the storage cavity.
  • 9. The system according to claim 8, wherein each of the storage containers is configured to draw air through the inlet vents which extend through the flange portion of the lid and into the storage cavity, the air being heated by the canister when emplaced in the storage cavity, the heated air flowing through the plug and flange portions of the lid via the at least one outlet vent to the ambient atmosphere.
  • 10. The system according to claim 9, wherein the inlet vents comprise a plurality of discrete circumferentially spaced peripheral openings formed in a sidewall of the flange portion of the lid.
  • 11. The system according to claim 10, wherein the at least one outlet vent comprises a plurality of discrete air passageways each extending from a plurality of separate bottom openings in a bottom surface of the lid and converging at a common central opening extending through a top surface of the lid.
  • 12. The system according to claim 11, wherein the discrete air passageways each have an arcuately curved shape and fluidly communicate with the storage cavity via the plurality of bottom openings formed in a bottom surface of the lid.
  • 13. The system according to claim 11, wherein the bottom openings each have an arcuately curved shape.
  • 14. The system according to claim 11, wherein the discrete air passageways are formed by a curved steel plate embedded in concrete which fills the flange and plug portions of the lid to increase a load bearing capacity of the lid.
  • 15. The system according to claim 8, further comprising an annular gasket seal on a bottom surface of the flange portion of the lid, the annular gasket seal sealably engaging the top end of the body portion of the storage container.
  • 16. The system according to claim 8, wherein the flange and plug portions of the lid each comprise an outer steel structure filled with concrete for radiation shielding.
  • 17. The system according to claim 1, wherein the body portion includes an inner shell, and outer shell, and an annular space between the shells fluidly coupled to the inlet vents and the storage cavity, the annular space defining a flow passage in which air flows from the inlet vents through the flow passage and into a bottom portion of the storage cavity of the storage container through openings in the inner shell.
  • 18. The system according to claim 17, wherein the annular space is fluidly isolated from the at least one outlet vent in the lid.
  • 19. The system according to claim 1, wherein the inlet vents extend through a peripheral sidewall of a flange portion of the lid, the flange portion having a diameter greater than the body portion of the storage container, and the at least one outlet vent extends through a plug portion of the lid having a smaller diameter than the body portion of the storage container.
  • 20. A low profile system for below grade storage of spent nuclear fuel comprising: an array of storage containers, each of the storage containers comprising: an elongated body portion embedded in an engineered fill below grade, the body portion including a floor plate at bottom, an open top end, and a storage cavity extending between the floor plate and the open top end configured for holding a canister containing spent nuclear fuel;a lid positioned above grade, the lid removably coupled to and enclosing the open top end of the body portion;the lid comprising a plurality of air inlet vents and at least one air outlet vent, each of the vents forming a passageway from the cavity to ambient atmosphere;a top concrete pad disposed on top of the engineered fill, an upper part of the body portion of each storage container being embedded in the concrete pad such that the open top end of the body portion is positioned adjacent a top surface of the concrete pad;wherein the lid of each of the storage containers comprises a diametrically enlarged upper flange portion sealably engaging and radially overhanging the open top end of the body portion in a cantilevered manner, and a central lower cylindrical plug portion extending downwards from the flange portion, the plug portion being insertably received through the open top end of the body portion into the storage cavity;wherein each of the storage containers is configured to draw air through the inlet vents which extend through the flange portion of the lid and into the storage cavity, the air being heated by the canister when emplaced in the storage cavity, the heated air flowing through the plug and flange portions of the lid via the at least one outlet vent to the ambient atmosphere;wherein the inlet vents comprise a plurality of discrete circumferentially spaced peripheral openings formed in a sidewall of the flange portion of the lid; andwherein the at least one outlet vent comprises a plurality of discrete air passageways each extending from a plurality of separate bottom openings in a bottom surface of the lid and converging at a common central opening extending through a top surface of the lid.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/230,610 filed Aug. 8, 2016, which is a continuation of U.S. patent application Ser. No. 13/736,452, filed Jan. 8, 2013, which is a continuation of U.S. patent application Ser. No. 13/094,498, filed Apr. 26, 2011, now U.S. Pat. No. 8,351,562, which in turn is a continuation of U.S. patent application Ser. No. 11/953,207, filed Dec. 10, 2007, now U.S. Pat. No. 7,933,374, which in turn is a continuation-in-part of U.S. patent application Ser. No. 11/123,590, filed May 6, 2005, now U.S. Pat. No. 7,330,526, which in turn claims the benefit of U.S. Provisional Patent Application Ser. No. 60/665,108, filed Mar. 25, 2005 and U.S. Provisional Patent Application Ser. No. 60/671,552, filed Apr. 15, 2005. The entireties of the foregoing applications and patents are incorporated herein by reference.

US Referenced Citations (98)
Number Name Date Kind
3111078 Breckenridge Nov 1963 A
3111586 Rogers Nov 1963 A
3629062 Muenchow Dec 1971 A
3739451 Jacobson Jun 1973 A
3745707 Herr Jul 1973 A
3755079 Weinstein et al. Aug 1973 A
3765549 Jones Oct 1973 A
3800973 Weaver Apr 1974 A
3836267 Schatz Sep 1974 A
3910006 James Oct 1975 A
3917953 Wodrich Nov 1975 A
3935062 Keller et al. Jan 1976 A
3945509 Weems Mar 1976 A
3962587 Dufrane et al. Jun 1976 A
3984942 Schroth Oct 1976 A
4055508 Yoli et al. Oct 1977 A
4078968 Golden et al. Mar 1978 A
4158599 Andrews et al. Jun 1979 A
4278892 Baatz et al. Jul 1981 A
4288698 Baatz et al. Sep 1981 A
4336460 Best et al. Jun 1982 A
4355000 Lumelleau Oct 1982 A
4356146 Knappe Oct 1982 A
4366095 Takats et al. Dec 1982 A
4394022 Gilmore Jul 1983 A
4450134 Soot et al. May 1984 A
4498011 Dyck et al. Feb 1985 A
4521372 Price Jun 1985 A
4525324 Spilker et al. Jun 1985 A
4526344 Oswald et al. Jul 1985 A
4527066 Dyck et al. Jul 1985 A
4532104 Wearden et al. Jul 1985 A
4532428 Dyck et al. Jul 1985 A
4585611 Perl Apr 1986 A
4634875 Kugeler Jan 1987 A
4635477 Simon Jan 1987 A
4636475 Price Jan 1987 A
4649018 Waltersdorf Mar 1987 A
4663533 Kok et al. May 1987 A
4666659 Lusk May 1987 A
4671326 Wilhelm Jun 1987 A
4683533 Shiozaki et al. Jul 1987 A
4690795 Hardin et al. Sep 1987 A
4702391 Koester Oct 1987 A
4764333 Minsall et al. Aug 1988 A
4780269 Fischer et al. Oct 1988 A
4800062 Craig et al. Jan 1989 A
4834916 Chaudon et al. May 1989 A
4847009 Madle et al. Jul 1989 A
4851183 Hampel Jul 1989 A
4894550 Baatz Jan 1990 A
4971752 Parker Nov 1990 A
5102615 Grande et al. Apr 1992 A
5182076 de Seroux et al. Jan 1993 A
5205966 Elmaleh Apr 1993 A
5267280 Duquesne Nov 1993 A
5297917 Freneix Mar 1994 A
5307388 Inkester et al. Apr 1994 A
5319686 Pizzano et al. Jun 1994 A
5387741 Shuttle et al. Feb 1995 A
5469936 Lauga et al. Nov 1995 A
5513231 Jones et al. Apr 1996 A
5513232 Jones et al. Apr 1996 A
5546436 Jones et al. Aug 1996 A
5564498 Bochard Oct 1996 A
5633904 Gilligan et al. May 1997 A
5646971 Howe Jul 1997 A
5661768 Gilligan et al. Aug 1997 A
5753925 Yamanaka May 1998 A
5771265 Montazer Jun 1998 A
5852643 Copson Dec 1998 A
5862195 Peterson Jan 1999 A
5898747 Singh Apr 1999 A
5926602 Okura Jul 1999 A
6064710 Singh May 2000 A
6064711 Copson May 2000 A
6074771 Cubukcu et al. Jun 2000 A
6252923 Iacovino et al. Jun 2001 B1
6452994 Pennington Sep 2002 B2
6489623 Peters et al. Dec 2002 B1
6518585 Gluschke Feb 2003 B1
6519307 Singh Feb 2003 B1
6519308 Boardman Feb 2003 B1
6718000 Singh Apr 2004 B2
6793450 Singh Sep 2004 B2
6802671 Badie Oct 2004 B1
6853697 Singh et al. Feb 2005 B2
6898258 Ohsono May 2005 B2
6990166 Matsunaga Jan 2006 B2
7068748 Singh Jun 2006 B2
7139358 Singh Nov 2006 B2
7294375 Taniuchi Nov 2007 B2
7330526 Singh Feb 2008 B2
7590213 Singh Sep 2009 B1
8351562 Singh Jan 2013 B2
20030010938 Michels Jan 2003 A1
20030147486 Singh et al. Aug 2003 A1
20040109523 Singh Jun 2004 A1
Foreign Referenced Citations (32)
Number Date Country
1345452 Apr 2002 CN
2821780 Nov 1979 DE
3107158 Jan 1983 DE
3144113 May 1983 DE
3151475 May 1983 DE
3404666 Aug 1985 DE
3515871 Nov 1986 DE
195 29 357 Aug 1995 DE
19952130 May 2001 DE
10003908 Aug 2001 DE
0264521 Apr 1988 EP
0253730 Jan 1998 EP
1 061 011 Jun 2000 EP
1312874 May 2003 EP
2434463 Aug 1979 FR
2295484 May 1996 GB
2327722 Jan 1999 GB
2337722 Jan 1999 GB
59193000 Nov 1984 JP
62-165199 Aug 1987 JP
10297678 Nov 1998 JP
2001056392 Feb 2001 JP
2001141891 May 2001 JP
2001264483 Sep 2001 JP
2002022881 Jan 2002 JP
2003207597 Jul 2003 JP
2003240894 Aug 2003 JP
2004233055 Aug 2004 JP
2015184196 Oct 2015 JP
100562480 Mar 2006 KR
2168022 Jun 2000 RU
WO-9963544 Dec 1999 WO
Non-Patent Literature Citations (10)
Entry
International Atomic Energy Agency, “Multi-purpose container technologies for spent fuel management,” Dec. 2000 (IAEA-TECDOC-1192) pp. 1-49.
U.S. Department of Energy, “Conceptual Design for a Waste-Management System that Uses Multipurpose Canisters,” Jan. 1994 pp. 1-14.
Federal Register Environmental Documents, “Implementation Plan for the Environmental Impact Statement for a Multi-Purpose Canister System for Management of Civilian and Naval Spent Nuclear Fuel,” Aug. 30, 1995 (vol. 66, No. 168) pp. 1-7.
National Conference of State Legislatures, “Developing a Multipurpose Canister System for Spent Nuclear Fuel,” State Legislative Report, col. 19, No. 4 by Sia Davis et al., Mar. 1, 1994, pp. 1-4.
Energy Storm Article, “Multi-purpose canister system evaluation: A systems engineering approach,” Author unavailable, Sep. 1, 1994 pp. 1-2.
Science, Society, and America's Nuclear Waste—Teacher Guide, “The Role of the Multi-Purpose Canister in the Waste Management System,” Author—unknown, Date—unknown, 5 pgs.
USEC Inc. Article, “NAC International: A Leader in Used Fuel Storage Technologies,” copyright 2008, 2 pages.
Federal Register Notice, Dept. of Energy, “Record of Decision for a Multi-Purpose Canister or Comparable System,” vol. 64, No. 85, May 4, 1999.
Zorpetta, Glenn: “Cannet Heat”, Nuclear Power, Special Report, in IEEE Spectrum, Nov. 2001, pp. 44-47.
ML050690324 [1 OOU excerpts]. Proprietary Information Markings in Submittal of License Amendment Request #3 to HI-STORM 100 CoC. Date made available: Mar. 24, 2005 09:00 AM EST. Excerpt consists of PDF pp. 8-12 and 2114-2234. available online: <https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML050690324>.
Related Publications (1)
Number Date Country
20200027608 A1 Jan 2020 US
Provisional Applications (2)
Number Date Country
60671552 Apr 2005 US
60665108 Mar 2005 US
Continuations (4)
Number Date Country
Parent 15230610 Aug 2016 US
Child 16449003 US
Parent 13736452 Jan 2013 US
Child 15230610 US
Parent 13094498 Apr 2011 US
Child 13736452 US
Parent 11123590 May 2005 US
Child 11953207 US
Continuation in Parts (1)
Number Date Country
Parent 11953207 Dec 2007 US
Child 13094498 US