NUCLEAR MATERIAL AND METHODS

Information

  • Patent Application
  • 20250062044
  • Publication Number
    20250062044
  • Date Filed
    August 30, 2024
    5 months ago
  • Date Published
    February 20, 2025
    4 days ago
Abstract
Methods of providing load following capability to commercial nuclear reactors. Materials that thwart nuclear reactor hotspots and transients by absorbing excess neutrons such as hard or high energy neutrons. Nuclear fuel additives to stabilize nuclear reactor transients. Materials that interact more strongly with high energy neutrons than they do with now energy or thermal neutrons.
Description
BACKGROUND

When operating conventional nuclear reactors, sometimes random transients or hot spots occur throughout the reactor fuel. Left unchecked, the number of hot spots and transients can exponentially increase. This increase can lead to an exponential increase in reactor power, quickly exceeding the reactor's design basis in regions near the hotspot or transient. The most severe power increases can meltdown of the fuel, the fuel-rod cladding, and the containment. Even much milder events can permanently and significantly damage fuel pellets. The unusual, transient and hotspot power increase damages fuel pellets. Commercial reactors produce xenon gas. The fuel pellets withstand and accommodate the steady-state amounts of xenon. But transient and hotspot power increases produce an unusual amount of xenon, which can fracture the fuel pellet as xenon overwhelms the pellet's xenon capacity.


The power spike can also thermally stress the fuel pellet leading to it cracking and fissuring, which also mechanically shortens the fuel pellet's life.


Transient numbers increase when the reactor power level increases or decreases—when the power level is changed. But the ability to change power output more safely would allow utilities to implement some degree of load following in the reactor. “Load following” is the ability to have power output from a power plant follow the grid's instantaneous power demands to one extent or another. Alternatively, “load following” is the ability to have a plant's output better follow the grids instantaneous demands.


Load following is a tool that nuclear-power-plant operators very much want. But implementing it using current technology unacceptably risks generating uncontrollable transients or hot spots as the operator varies reactor output. Current technology can't provide this tool; it remains out of reach.


Current control of transient or hotspot activity includes constructing the pellet to have a strong negative temperature coefficient of reactivity. A negative temperature coefficient of thermal reactivity means that the material in the pellet becomes less reactive as the pellet's temperature rises. This negative reactivity helps decrease the fission rate, but it happens on a thermal time scale. What is needed is a technique to combat the reaction rate increase caused by transients and hot spots on a time scale aligned with the increasing reaction rate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows a schematic view of a nuclear fuel pellet.



FIG. 1B is a schematic view of another embodiment of a nuclear fuel pellet.



FIG. 1C is a schematic view of the nuclear fuel pellet of yet another embodiment.



FIG. 2 is a schematic view of the nuclear fuel rod.



FIG. 3 shows a schematic view of a pellet or plate of nuclear adjuvant material (210,100).





DETAILED DESCRIPTION

The problem is too many neutrons. But the reactor needs neutrons, specifically thermal neutrons, to operate. One neutron for each fission event is needed to sustain the reaction. If this neutron flux increases, the reactor power increases, which generates even more prompt neutrons that cause even more fuel to fission and on and on. For this discussion, “prompt neutrons” are neutrons recently generated from a fission event. Prompt neutrons have much higher energies than energies useful for safely operating the reactor. And since they are excess neutrons, the reactor doesn't need them to function. But neutrons at these energies are vital because they moderate into thermal neutrons.


At its most basic level, the new fuel is a nuclear adjuvant material added to conventional nuclear fuel.


“Improve the reactor” means any one or any combination of factors that extend fuel life, lower the mechanical failure rate of the pellet, decrease the number of transients, decrease the density of transients, decrease the average number of hot spots, decrease the density of hot spots, prevent the increase in the average temperature of hot spots, decrease the average lifespan of hot spots, decrease the average lifespan of transients, decrease the propagation rate of transients, or decrease the propagation rate of hot spots.


Faster and more precise control over transients and transient dampening would give operators better load-following capability.


“Fissile material” is any material capable of undergoing fission to produce useful heat energy. “Fissile material” is a material commonly used as a fuel component in commercial nuclear power plants and that undergoes a fission reaction to produce heat. some embodiments, “useful heat energy” is over 25 kW.


“Transuranic atoms” are atoms produced in commercial nuclear fuel by reactor operation. Most of these come from neutrons colliding with uranium 238, which frequently captures the neutron and yields an element with a higher atomic number or atomic mass. In some embodiments, the term “transuranics” represents neptunium, plutonium, americium, curium, berkelium, and californium. In some embodiments, the term “transuranics” represents Np237, 238, and 239; Py238, 239,240,241,242, and 243; Am241,242,243, and 242.


“Nuclear adjuvant material” is any material that undergoes a nuclear reaction with a high-energy neutron or other radiation generated in nuclear reactor transients and yields products, none of which are neutrons. A nuclear adjuvant absorbs hardened neutrons during transient events in a commercial nuclear power plant or absorbs other types of radiation that result in dampening the transient.


In some versions, “nuclear adjuvant material” is any material that exhibits a nuclear adjuvant effect which means the material undergoes a nuclear reaction with a high-energy neutron or other radiation generated in nuclear reactor transients and yields products in which less than 50%, 40%, 30%, 20%, 10%, 5%, 1%, 2×10−2%, 4×10−3%, 8×10−4%, 1.6×10−4%, 3.2×10−5%, 6.4×10−6%, 1.28×10−6%, 2.56×10−7%, 5.12×10−8%, 1.02×10−8%, 2.05×10−9%, or 4.1×10−10% are neutrons. A nuclear adjuvant absorbs hardened neutrons during transient events in a commercial nuclear power plant or absorbs other types of radiation that result in dampening the transient.


Another characteristic of the nuclear adjuvant is that it undergoes a nuclear reaction with the incoming neutron and converts it into some other atomic particle. For instance, the nuclear reaction could yield a proton, Alpha particle, or gamma-ray. This absorption thwarts transient event propagation by removing high-energy, transient neutrons from the system, which normalizes the number of new fission events. So, enough high-energy neutrons must be absorbed to dampen the transient. Conversely, the material shouldn't absorb too many neutrons, or the steady-state operation of the reactor would be heavily affected.


The material comprises atoms or compounds containing atoms that exhibit the desired nuclear properties. In some embodiments, these atoms are chosen to provide neutron-energy-versus-neutron-absorption curves with as little a cross-section as possible in the low energy range. The cross-section's high-energy behavior yields a change in the cross-section that trims off enough high-energy neutrons to dampen the transient while maintaining the reactor's steady-state operation.


In some embodiments, the nuclear adjuvant material trims between 0.00001-110% or 0.00001-0.0001 of the excess high-energy neutrons. The material in various embodiments comprises atoms with 1-10, 1-5, 2-5, or 3-5 different atomic numbers or different atomic masses.


In nuclear and particle physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. In conjunction with the neutron flux, it enables the calculation of the reaction rate. The standard unit for measuring the cross section is the barn, which is equal to 10-28 m2 or 10-24 cm2. The larger the neutron cross section, the more likely a neutron will react with the nucleus.


In some embodiments, suitable components include all isotopes or elements. More practical examples include mixtures selected from elements and isotopes that are substantially chemically and thermally stable inside the reactor. In some embodiments, the mixture's components are selected from materials easily handled in the fuel rod or fuel-production process. For this disclosure, easily handleable means that the cost involved and safely manipulating the materials does not exceed the economic benefit associated with using the material as a component of nuclear fuel rods. Other suitable but not mandatory characteristics include materials with low or very low neutron cross-sections in low energy ranges. Endothermic nuclear reactions are also a practical target because if the neutron energy is lower than the energy absorbed by the endothermic nuclear reaction, the relevant cross-section is theoretically zero. Having materials with low or zero neutron absorption in lower neutron energy ranges minimizes the adjuvant material's interaction with the thermal neutrons present in the reactor and necessary for the fission reaction to continue as normal.


In other embodiments, high-energy neutron absorption divided by low-energy neutron absorption is high. Low energy-range neutrons are neutrons with energies between 0-1 MeV, 0-500 KeV, or 0-300 KeV. High-energy neutrons are neutrons in energy ranges greater than 800 KeV, greater than 900 KeV, greater than 1 MeV, or greater than 1.2 MeV. In some embodiments, high-energy neutrons are neutrons with energies of 3 MeV up to 20 MeV.


Useful components of a nuclear adjuvant material include compounds or mixtures comprising two or more (alternatively, three, four, five, or six, or more) of Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr. Useful components of a nuclear adjuvant material include compounds or mixtures comprising two or more (alternatively, three, four, five, or six, or more) of As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr. The compounds and mixtures can be created by combining the listed elements or combining other elements with the listed elements.


Useful adjuvant material includes mixtures or compounds comprising any one or any combination of F, K, Ti; of Ba, As, Br; of Ca, Cl, Co; of F, Ga, Ge; of K, La, Mo; of Nd, Os, Pr; of S, Sr, Tl; of Tl, V, Zr; of Ba, Br, Cl; of As, Ce, Cl; of Br, Cl, F; of Ce, Co, Ga; of Cl, F, Ge; of Co, Ga, K; of F, Ge, K; of Ga, K, Mo; of Ge La, Nd; of K, Mo, Os; of La, Nd, Pr; of Mo, Os, Pr; of Nd, Pr, St; of Os, S, Ti; of Tl, Zr, Ba; of F, Tl, V; of K, Ba, Br; and of Zr, Sr, Os—elements or compounds.


Useful components of a nuclear adjuvant material include compounds or mixtures consisting essentially of two or more (alternatively, three, four, five, or six, or more) of Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr. Useful components of a nuclear adjuvant material include compounds or mixtures consisting essentially of two or more (alternatively, three, four, five, or six, or more) of As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr. The compounds and mixtures can combine the listed elements or combine other elements with the listed elements.


Useful adjuvant material includes mixtures or compounds consisting essentially of F, K, Ti; of Ba, As, Br; of Ca, Cl, Co; of F, Ga, Ge; of K, La, Mo; of Nd, Os, Pr; of S, Sr, Ti; of Tl, V, Zr; of Ba, Br, Cl; of As, Ce, Cl; of Br, Cl, F; of Ce, Co, Ga; of Cl, F, Ge; of Co, Ga, K; of F, Ge, K; of Ga, K, Mo; of Ge La, Nd; of K, Mo, Os; of La, Nd, Pr; of Mo, Os, Pr; of Nd, Pr, St; of Os, S, Ti; of Tl, Zr, Ba; of F, Tl, V; of K, Ba, Br; and of Zr, Sr, Os—elements or compounds.


In some versions, the nuclear adjuvant material has a coefficient of thermal expansion greater than or equal to that of commercial nuclear fuel. In some versions the nuclear adjuvant material has a coefficient of thermal expansion that is 10-200% or 50-150% of that of commercial nuclear fuel.


Group I isotopes useful as components in adjuvant material.




















Ag107
Ag109
Ag111
Ag113
Ag114



Ag115
Ag116
Ag117
Am241
Am242



Am243
Am244
As75
As79
Au199



B11
Ba130
Ba131
Ba132
Ba133



Ba134
Ba135
Ba136
Ba137
Ba138



Ba139
Ba140
Be7
Be9
Bi203



Bi205
Bi206
Bi207

Br76



Br79
Br80
Br81
C14
Ca41



Cd107
Cd108
Cd110
Cd111
Cd112



Cd113
Cd114
Cd115
Cd116
Ce136



Ce138
Ce139
Ce140
Ce141
Ce142



Ce143
Ce144







Cl35
Cl36
Cl37
Cm245



Co55
Co58
Co59
Cr48
Cr50



Cs133
Cs134
Cs135
Cs136
Cs137



Cu64
Dy156
Dy158
Dy160
Dy161



Dy162
Dy163
Dy164
Dy166
Er162



Er164
Er166
Er167
Er168
Er169



Er170
Eu151
Eu152
Eu153
Eu155



Eu156
Eu157
F19
Fe52
Fe53



Fe54
Fe58
Ga69
Ga70
Ga71



Gd152
Gd153
Gd154
Gd155
Gd156



Gd157
Gd158
Gd159
Gd160
Ge68



Ge69
Ge70
Ge71
Ge72
Ge73



Ge74
Ge75
Ge76
Ge77
Ge78



Hf174
Hf176
Hf177
Hf178
Hf179



Hf180
Hg197
Ho165
I124
I125



I127
I128
I129
I130
I131



I132
I133
I134
I135
In113



In114
In115
Ir191
Ir193
K41



K43

La138
Li6
Lu175



Lu176
Mg24
Mg25
Mg26
Mg28



Mn55
Mo100
Mo92
Mo94
Mo95



Mo96
Mo97
Mo98
Mo99
N14



N15
Na22
Na23
Na24
Nb90



Nb94
Nb95
Nb96
Nd142
Nd143



Nd144
Nd145
Nd146
Nd147
Nd148



Nd149
Nd150
Ni58
Ni59
Ni60



Ni61
Ni62
Ni63
Ni64







O17
O18



Os185
Os186
Os188
Os189
Os190



Os192
Os194
Pa231
Pa233
Pb209



Pb210
Pd100
Pd101
Pd102
Pd103



Pd104
Pd105
Pd106
Pd107
Pd108



Pd109
Pd110
Pd112
Pm147
Pm148



Pm149
Pm150
Pm151
Pr141
Pr142



Pr143
Pu236
Pu237
Pu238
Pu240



Pu242
Pu243
Pu245
Rb83
Rb84



Rb85
Rb86
Rb87
Re182
Re183



Re184
Re185
Re187
Rh103
Rh104



Rh105
Ru100
Ru101
Ru102
Ru103



Ru104
Ru105
Ru106
Ru96
Ru98



Ru99
S32
S34
S35
S36



Sb121
Sb122
Sb123
Sb124
Sb125



Sb126
Sc45
Se72
Se73
Se74



Se76
Se77
Se78
Se79
Se80



Se81
Se82
Si28
Si31
Si32



Sm144
Sm146
Sm147
Sm148
Sm149



Sm150
Sm151
Sm152
Sm153
Sm154



Sm156
Sn112
Sn113
Sn114
Sn115



Sn116
Sn117
Sn118
Sn119
Sn120



Sn122
Sn123
Sn125
Sn126
Sr82



Sr84
Sr85
Sr86
Sr87
Sr88



Sr89
Sr90
Sr91
Ta182
Tb159



Tc99
Te118
Te119
Te120
Te122



Te123
Te124
Te125
Te126
Te127



Te128
Te131
Te132
Th231
Th232



Ti45
Ti46
Ti47
Ti48
Ti49



Ti50
Ti51
Tm168
Tm169
Tm172



U234
U235
U236
U237
U239



V49
V51
W178
W180
W181



W184
W186
W187
Y86
Y89



Y90
Y91
Yb168
Yb170
Yb171



Yb172
Yb173
Yb174
Yb175
Zn62



Zn65
Zn70
Zn72
Zr90
Zr91



Zr92
Zr93
Zr94
Zr95
Zr96









Group II isotopes useful as components in adjuvant material.




















Ag107
Ag109
Ag111
Ag113
Ag114



Ag115
Ag116
Ag117
As75
As79



Au199
B11
Ba130
Ba131
Ba132



Ba133
Ba134
Ba135
Ba136
Ba137



Ba138
Ba139
Ba140
Be7
Be9



Bi203
Bi205
Bi206
Bi207
Br76



Br79
Br80
Br81
C14
Ca41



Cd107
Cd108
Cd110
Cd111
Cd112



Cd113
Cd114
Cd115
Cd116
Ce136



Ce138
Ce139
Ce140
Ce141
Ce142



Ce143
Ce144
Cl35
Cl36
Cl37



Cm245
Co55
Co58
Co59
Cr48



Cr50
Cs133
Cs134
Cs135
Cs136



Cs137
Cu64
Dy156
Dy158
Dy160



Dy161
Dy162
Dy163
Dy164
Dy166



Er162
Er164
Er166
Er167
Er168



Er169
Er170
Eu151
Eu152
Eu153



Eu155
Eu156
Eu157
F19
Fe52



Fe53
Fe54
Fe58
Ga69
Ga70



Ga71
Gd152
Gd153
Gd154
Gd155



Gd156
Gd157
Gd158
Gd159
Gd160



Ge68
Ge69
Ge70
Ge71
Ge72



Ge73
Ge74
Ge75
Ge76
Ge77



Ge78
Hf174
Hf176
Hf177
Hf178



Hf179
Hf180
Hg197
Ho165
I124



I125
I127
I128
I129
I130



I131
I132
I133
I134
I135



In113
In114
In115
Ir191
Ir193



K41
K43
La138
Li6
Lu175



Lu176
Mg24
Mg25
Mg26
Mg28



Mn55
Mo100
Mo92
Mo94
Mo95



Mo96
Mo97
Mo98
Mo99
N14



N15
Na22
Na23
Na24
Nb90



Nb94
Nb95
Nb96
Nd142
Nd143



Nd144
Nd145
Nd146
Nd147
Nd148



Nd149
Nd150
Ni58
Ni59
Ni60



Ni61
Ni62
Ni63
Ni64







O17
O18



Os185
Os186
Os188
Os189
Os190



Os192
Os194
Pa231
Pa233
Pb209



Pb210
Pd100
Pd101
Pd102
Pd103



Pd104
Pd105
Pd106
Pd107
Pd108



Pd109
Pd110
Pd112
Pm147
Pm148



Pm149
Pm150
Pm151
Pr141
Pr142



Pr143
Rb83
Rb84
Rb85
Rb86



Rb87
Re182
Re183
Re184
Re185



Re187
Rh103
Rh104
Rh105
Ru100



Ru101
Ru102
Ru103
Ru104
Ru105



Ru106
Ru96
Ru98
Ru99
S32



S34
S35
S36
Sb121
Sb122



Sb123
Sb124
Sb125
Sb126
Sc45



Se72
Se73
Se74
Se76
Se77



Se78
Se79
Se80
Se81
Se82



Si28
Si31
Si32
Sm144
Sm146



Sm147
Sm148
Sm149
Sm150
Sm151



Sm152
Sm153
Sm154
Sm156
Sn112



Sn113
Sn114
Sn115
Sn116
Sn117



Sn118
Sn119
Sn120
Sn122
Sn123



Sn125
Sn126
Sr82
Sr84
Sr85



Sr86
Sr87
Sr88
Sr89
Sr90



Sr91
Ta182
Tb159
Tc99
Te118



Te119
Te120
Te122
Te123
Te124



Te125
Te126
Te127
Te128
Te131



Te132
Ti45
Ti46
Ti47
Ti48



Ti49
Ti50
Ti51
Tm168
Tm169



Tm172
U234
U235
U236
U237



U239
V49
V51
W178
W180



W181
W184
W186
W187
Y86



Y89
Y90
Y91
Yb168
Yb170



Yb171
Yb172
Yb173
Yb174
Yb175



Zn62
Zn65
Zn70
Zn72
Zr90



Zr91
Zr92
Zr93
Zr94
Zr95



Zr96









The following is a list of isotopes that absorb a neutron in a nuclear reaction and emit a nuclear particle that is not a neutron. Compositions comprising the isotopes are useful components in a nuclear adjuvant material.
















Max_sig
At_energy




((barns))
(MeV)
Reaction



















0.105
2.8
BE-9(N,A′)HE-6



0.105
2.8
BE-9(N,A)HE-6



0.036
4.15
LI-6(N,P)HE-6



0.210
5.7
F-19(N,A)



0.229
6
MG-25(N,A)NE-22



0.054
6
RU-96(N,A)MO-93



0.312
7
AR-36(N,A)S-33



0.299
8
SE-74(N,P)AS-74



0.092
8
AR-38(N,A)S-35



0.003
8
CA-41(N,A′)AR-38



0.096
8.2
S-34(N,A)SI-31



0.088
8.6741
SE-74(N,A)GE-71



0.370
9.5
S-32(N,P)P-32



0.056
9.96696
BR-79(N,P)SE-79



0.238
10
CO-58(N,P′)



0.150
10
CL-35(N,P′)S-35



0.113
10.1
NA-23(N,P)NE-23



0.098
10.6
NI-58(N,A′)



0.614
11
AR-36(N,P)CL-36



0.271
11
V-49(N,P′)TI-49



0.267
11
MG-24(N,A)NE-21



0.147
11
CL-36(N,P′)S-36



0.097
11
AR-38(N,P)CL-38



0.081
11
CU-64(N,P′)NI-64



0.049
11
GA-69(N,P)ZN-69



0.047
11
GE-70(N,A′)ZN-67



0.020
11
SE-76(N,A)GE-73



0.003
11
MG-28(N,A)NE-25



0.344
12
PD-102(N,P)RH-102



0.344
12
PD-102(N,P′)RH-102



0.290
12
TI-46(N,P′)SC-46



0.160
12
AR-39(N,A′)S-36



0.157
12
MO-92(N,P)NB-92



0.099
12
GE-70(N,P)GA-70



0.099
12
GE-70(N,P′)GA-70



0.017
12
AR-40(N,A)S-37



0.164
12.1
NA-23(N,A)



0.048
12.424
TE-118(N,P)SB-118



0.639
12.5
FE-52(N,2P)



0.301
12.5
FE-53(N,2P)



0.228
12.5
MO-92(N,P′)NB-92



0.135
12.5
CL-35(N,A′)P-32



0.056
12.5
CO-59(N,P)



0.024
12.5
CL-37(N,P′)S-37



0.024
12.5
CL-37(N,P)S-37



0.141
12.6049
NI-60(N,P′)CO-60



0.017
12.792
I-124(N,P)TE-124



0.051
12.837
TE-119(N,P)SB-119



0.063
12.865
XE-122(N,P)I-122



0.436
12.883
CR-48(N,2P)TI-47



0.333
13
ZN-62(N,2P)NI-61



0.305
13
TI-46(N,P)SC-46



0.245
13
NA-22(N,2A)N-15



0.184
13
KR-79(N,P′)BR-79



0.180
13
CL-36(N,A′)P-33



0.163
13
RU-96(N,P)TC-96



0.151
13
TI-47(N,P)SC-47



0.145
13
TI-47(N,P′)SC-47



0.104
13
SR-84(N,P)RB-84



0.104
13
SR-84(N,P′)RB-84



0.100
13
GE-71(N,P′)GA-71



0.092
13
MG-26(N,A)NE-23



0.078
13
RU-98(N,P)TC-98



0.074
13
SE-76(N,P)AS-76



0.063
13
KR-80(N,P)BR-80



0.049
13
S-35(N,A′)SI-32



0.046
13
GA-70(N,P′)ZN-70



0.046
13
MN-55(N,P′)CR-55



0.040
13
CL-37(N,A′)P-34



0.039
13
MN-55(N,P)CR-55



0.038
13
SN-112(N,P)IN-112



0.033
13
B-11(N,A)LI-8



0.021
13
RU-98(N,A)MO-95



0.010
13
GE-72(N,A)ZN-69



0.001
13
SI-31(N,A′)MG-28



0.024
13.249
GE-69(N,2P)ZN-68



0.120
13.323
KR-76(N,2P)SE-75



0.218
13.4
MG-24(N,P)NA-24



0.040
13.5
NI-59(N,2P)



0.020
13.5
N-15(N,P)C-15



0.004
13.563
PD-101(N,2P)RU-100



0.063
13.699
MG-24(N,A′)NE-21



0.096
13.736
SE-73(N,2P)GE-72



0.046
13.739
NA-24(N,P)NE-24



0.010
13.8
B-11(N,A′)LI-8



0.169
13.876
MG-24(N,P′)NA-24



0.130
14
CD-107(N,P′)AG-107



0.081
14
PD-103(N,P′)RH-103



0.077
14
NI-61(N,P′)CO-61



0.070
14
SR-85(N,P′)RB-85



0.055
14
CU-64(N,A′)CO-61



0.049
14
MG-25(N,P)NA-25



0.044
14
SC-45(N,A)K-42



0.034
14
GE-72(N,P)GA-72



0.034
14
GE-72(N,P′)GA-72



0.031
14
V-51(N,P)TI-51



0.028
14
IN-114(N,P′)CD-114



0.018
14
MO-94(N,A)ZR-91



0.062
14.1
NI-60(N,A′)



0.075
14.2
MG-26(N,A′)NE-23



0.027
14.243
XE-125(N,P)I-125



0.058
14.307
MG-25(N,P′)NA-25



0.010
14.491
KR-79(N,2P)SE-78



0.058
14.5
TI-48(N,P′)SC-48



0.021
14.5
FE-58(N,A)



0.019
14.5
KR-80(N,A)SE-77



0.009
14.5
AS-79(N,P)GE-79



0.080
15
SN-113(N,P)IN-113



0.080
15
SN-113(N,P′)IN-113



0.075
15
N-15(N,A)B-12



0.062
15
TI-48(N,P)SC-48



0.057
15
AR-39(N,P′)CL-39



0.056
15
MO-94(N,P′)NB-94



0.052
15
TI-49(N,P)SC-49



0.044
15
SR-86(N,P)RB-86



0.042
15
NI-61(N,A′)



0.036
15
ZR-90(N,P′)Y-90



0.032
15
ZR-91(N,P′)Y-91



0.029
15
MN-55(N,A)V-52



0.019
15
MO-95(N,A′)ZR-92



0.014
15
SN-112(N,A)CD-109



0.013
15
BR-79(N,A)AS-76



0.012
15
TI-45(N,2A)AR-38



0.010
15
ZR-92(N,A)SR-89



0.009
15
RU-100(N,A)MO-97



0.006
15
B-11(N,P)BE-11



0.005
15.25
RU-103(N,A)MO-100



0.019
15.281
NA-24(N,A)



0.014
15.38
K-43(N,P)AR-43



0.013
15.382
I-125(N,P)TE-125



0.036
15.4
N-15(N,A′)B-12



0.012
15.5
AS-75(N,A)GA-72



0.012
15.5
AS-75(N,A′)GA-72



0.007
15.5
GE-75(N,A)ZN-72



0.045
15.6397
RB-85(N,P′)KR-85



0.010
15.6503
MO-96(N,A)ZR-93



0.020
15.75
NI-62(N,A′)



0.002
15.8
B-11(N,P′)BE-11



0.013
15.8327
TE-120(N,A)SN-117



0.022
15.9528
SR-87(N,P)RB-87



0.128
16
V-49(N,A′)SC-46



0.057
16
MO-94(N,P)NB-94



0.051
16
NI-63(N,P′)CO-63



0.041
16
NI-63(N,A′)



0.039
16
S-35(N,P′)P-35



0.033
16
BR-80(N,A′)AS-77



0.031
16
ZR-91(N,P)Y-91



0.027
16
TE-120(N,P)SB-120



0.024
16
KR-82(N,P)BR-82



0.022
16
O-18(N,A)C-15



0.017
16
NB-95(N,P)ZR-95



0.015
16
ZR-93(N,P′)Y-93



0.013
16
RH-103(N,A)TC-100



0.012
16
KR-84(N,P)BR-84



0.011
16
BA-130(N,A)XE-127



0.010
16
MO-97(N,A′)ZR-94



0.010
16
ZR-91(N,A)SR-88



0.008
16
XE-130(N,P)I-130



0.007
16
ZN-70(N,A)NI-67



0.007
16
TC-99(N,A)NB-96



0.007
16
TC-99(N,A′)NB-96



0.007
16
NB-94(N,A)Y-91



0.006
16
SE-78(N,A)GE-75



0.005
16
NB-95(N,A)Y-92



0.004
16
N-14(N,P′)C-14



0.002
16
PR-143(N,A)LA-140



0.002
16
CD-115(N,P)AG-115



0.013
16.116
K-43(N,A)CL-40



0.021
16.152
RB-83(N,A)BR-80



0.023
16.2438
NB-94(N,P)ZR-94



0.030
16.25
NI-62(N,P′)CO-62



0.009
16.331
I-124(N,A)SB-121



0.004
16.5
AS-79(N,A)GA-76



0.011
16.52
NB-96(N,P)ZR-96



0.032
16.65
MO-92(N,A′)ZR-89



0.019
16.7146
RB-85(N,P)KR-85



0.005
16.75
RU-105(N,A)MO-102



0.013
16.9202
RU-99(N,A)MO-96



0.043
17
MO-95(N,P)NB-95



0.043
17
MO-95(N,P′)NB-95



0.040
17
MG-26(N,P)NA-26



0.030
17
MO-92(N,A)ZR-89



0.024
17
GE-73(N,P)GA-73



0.024
17
GE-73(N,P′)GA-73



0.024
17
ZR-92(N,P′)Y-92



0.024
17
BR-81(N,P)SE-81



0.018
17
SR-86(N,A)KR-83



0.017
17
TI-50(N,P)SC-50



0.012
17
SE-77(N,A)GE-74



0.012
17
SI-31(N,P′)AL-31



0.010
17
KR-82(N,A)SE-79



0.009
17
MO-97(N,A)ZR-94



0.008
17
RU-102(N,A)MO-99



0.007
17
MO-98(N,A)ZR-95



0.005
17
AG-107(N,A)RH-104



0.005
17
ZR-93(N,A)SR-90



0.004
17
Y-91(N,A)RB-88



0.003
17
PM-147(N,A)PR-144



0.003
17
MO-99(N,A)ZR-96



0.003
17
PM-148(N,A)PR-145



0.073
17.29
O-17(N,P)N-17



0.002
17.37
Y-86(N,2P)RB-85



0.004
17.4
N-15(N,P′)C-15



0.021
17.5
V-51(N,A)SC-48



0.004
17.5
RU-104(N,A)MO-101



0.005
17.642
NB-96(N,A)Y-93



0.008
17.65
MO-98(N,A′)ZR-95



0.011
17.719
RB-84(N,A)BR-81



0.008
17.842
I-125(N,A)SB-122



0.050
18
CD-108(N,P)AG-108



0.043
18
SE-77(N,P)AS-77



0.034
18
Y-90(N,A′)RB-87



0.029
18
BA-133(N,P′)CS-133



0.029
18
BA-133(N,P)CS-133



0.028
18
ZR-92(N,P)Y-92



0.026
18
RB-86(N,A)BR-83



0.026
18
RB-86(N,A′)BR-83



0.019
18
AG-109(N,P)PD-109



0.019
18
AG-109(N,P′)PD-109



0.017
18
SE-79(N,A)GE-76



0.016
18
AG-107(N,P)PD-107



0.015
18
TC-99(N,P)MO-99



0.015
18
TC-99(N,P′)MO-99



0.015
18
GA-71(N,P)ZN-71



0.015
18
TE-122(N,P)SB-122



0.012
18
TI-50(N,P′)SC-50



0.012
18
RB-85(N,A)BR-82



0.011
18
ZR-95(N,P′)Y-95



0.010
18
RB-85(N,A′)BR-82



0.010
18
SE-81(N,A′)GE-78



0.009
18
TE-122(N,A)SN-119



0.008
18
AG-109(N,A)RH-106



0.007
18
EU-153(N,P)SM-153



0.007
18
EU-153(N,P′)SM-153



0.007
18
TE-124(N,A)SN-121



0.007
18
ZR-94(N,A)SR-91



0.006
18
TM-169(N,A′)HO-166



0.006
18
ND-144(N,A)CE-141



0.006
18
ND-144(N,A′)CE-141



0.006
18
GE-74(N,A)ZN-71



0.005
18
YB-171(N,A)ER-168



0.005
18
CS-134(N,P)XE-134



0.004
18
PR-141(N,A′)LA-138



0.003
18
EU-152(N,A)PM-149



0.002
18
PM-149(N,A)PR-146



0.001
18.052
W-187(N,A)



0.026
18.1565
SE-78(N,P)AS-78



0.008
18.2094
KR-84(N,A)SE-81



0.009
18.2833
BR-81(N,A)AS-78



0.029
18.5
MO-97(N,P′)NB-97



0.009
18.5
SR-89(N,A)KR-86



0.005
18.5
BA-138(N,A)XE-135



0.002
18.682
BI-203(N,A)TL-200



0.017
18.8049
RB-87(N,P)KR-87



0.021
18.9864
NI-64(N,A′)



0.049
19
XE-128(N,P)I-128



0.045
19
SN-114(N,P)IN-114



0.033
19
BA-131(N,P′)CS-131



0.030
19
MO-96(N,P)NB-96



0.029
19
TI-49(N,P′)SC-49



0.028
19
XE-126(N,P)I-126



0.028
19
SR-88(N,P)RB-88



0.028
19
AS-75(N,P)GE-75



0.028
19
AS-75(N,P′)GE-75



0.026
19
MO-97(N,P)NB-97



0.025
19
BA-130(N,P)CS-130



0.024
19
RH-103(N,P)RU-103



0.024
19
RH-103(N,P′)RU-103



0.022
19
AG-111(N,P′)PD-111



0.022
19
AG-111(N,P)PD-111



0.021
19
ZR-93(N,P)Y-93



0.018
19
TE-124(N,P)SB-124



0.017
19
TE-123(N,P)SB-123



0.017
19
SE-79(N,P)AS-79



0.016
19
SR-84(N,A)KR-81



0.015
19
PR-141(N,P′)CE-141



0.015
19
PR-141(N,P)CE-141



0.015
19
RB-87(N,A)BR-84



0.014
19
GE-74(N,P′)GA-74



0.014
19
GE-74(N,P)GA-74



0.014
19
SR-87(N,A)KR-84



0.014
19
XE-129(N,P)I-129



0.013
19
XE-126(N,A)TE-123



0.013
19
XE-131(N,P′)I-131



0.013
19
XE-131(N,P)I-131



0.012
19
CE-138(N,A)BA-135



0.012
19
I-135(N,A)SB-132



0.011
19
TE-125(N,P)SB-125



0.009
19
XE-128(N,A)TE-125



0.009
19
SN-115(N,A)CD-112



0.008
19
CD-111(N,A)PD-108



0.008
19
AG-111(N,A)RH-108



0.007
19
ZR-96(N,A)SR-93



0.007
19
GD-158(N,A)SM-155



0.007
19
ND-146(N,A′)CE-143



0.007
19
XE-129(N,A)TE-126



0.007
19
BA-132(N,A)XE-129



0.007
19
PD-107(N,A)RU-104



0.006
19
I-129(N,P)TE-129



0.006
19
TB-159(N,A)EU-156



0.006
19
YB-168(N,A)ER-165



0.006
19
TE-126(N,A)SN-123



0.006
19
CD-113(N,A)PD-110



0.005
19
TE-125(N,A)SN-122



0.004
19
CS-135(N,P)XE-135



0.004
19
YB-170(N,A)ER-167



0.004
19
1-131(N,P)TE-131



0.004
19
ER-162(N,A)DY-159



0.004
19
LA-138(N,A)CS-135



0.003
19
CS-136(N,P)XE-136



0.003
19
SR-90(N,A)KR-87



0.003
19
CS-133(N,A)I-130



0.003
19
CS-133(N,A′)I-130



0.003
19
ZR-95(N,A)SR-92



0.003
19
ER-167(N,A)DY-164



0.002
19
I-127(N,A)SB-124



0.002
19
I-127(N,A′)SB-124



0.002
19
CE-144(N,A)BA-141



0.001
19
GE-78(N,A)ZN-75



0.043
19.033
SE-80(N,A)GE-77



0.002
19.139
MG-26(N,P′)NA-26



0.018
19.25
KR-83(N,P)BR-83



0.007
19.299
AR-42(N,A)S-39



0.024
19.5
AR-40(N,P)CL-40



0.018
19.5
Y-89(N,A)RB-86



0.018
19.5
Y-89(N,A′)RB-86



0.016
19.5
RU-103(N,P)TC-103



0.010
19.5
GD-156(N,P′)EU-156



0.010
19.5
GD-156(N,P)EU-156



0.005
19.52
SB-121(N,A)IN-118



0.004
19.838
RE-182(N,A)TA-179



0.003
19.877
RE-184(N,A)TA-181



0.220
20
IR-193(N,A′)RE-190



0.220
20
IR-193(N,A)RE-190



0.147
20
S-34(N,P)P-34



0.108
20
SE-72(N,2P)GE-71



0.106
20
CO-55(N,P + A)CR-51



0.088
20
CD-111(N,P)AG-111



0.080
20
EU-155(N,P)SM-155



0.079
20
K-41(N,P)AR-41



0.062
20
RU-99(N,P)TC-99



0.054
20
AR-36(N,2A)SI-29



0.052
20
CD-112(N,P)AG-112



0.051
20
PD-105(N,P)RH-105



0.050
20
FE-52(N,P + A)



0.048
20
AM-244(N,P)PU-244



0.047
20
RB-86(N,P)KR-86



0.047
20
RB-86(N,P′)KR-86



0.047
20
AR-42(N,P)CL-42



0.046
20
SN-115(N,P)IN-115



0.045
20
PD-106(N,P)RH-106



0.044
20
PD-104(N,P)RH-104



0.043
20
CD-110(N,P)AG-110



0.042
20
GE-68(N,2P)ZN-67



0.041
20
SE-80(N,P)AS-80



0.040
20
HF-174(N,P)



0.040
20
RU-101(N,P)TC-101



0.040
20
RU-101(N,P′)TC-101



0.040
20
NP-238(N,P)U-238



0.040
20
KR-86(N,P)BR-86



0.040
20
SN-116(N,P)IN-116



0.040
20
PU-237(N,P)NP-237



0.039
20
ZR-90(N,A′)SR-87



0.038
20
I-129(N,P′)TE-129



0.038
20
NP-236(N,P)U-236



0.038
20
DY-158(N,P)TB-158



0.038
20
I-130(N,P′)TE-130



0.038
20
I-130(N,P)TE-130



0.037
20
DY-156(N,P′)TB-156



0.037
20
DY-156(N,P)TB-156



0.036
20
CR-50(N,2P)TI-49



0.036
20
NP-237(N,P)U-237



0.036
20
EU-151(N,P)SM-151



0.036
20
PD-108(N,P)RH-108



0.036
20
SM-153(N,P)PM-153



0.034
20
SM-150(N,P′)PM-150



0.034
20
SM-150(N,P)PM-150



0.034
20
HF-177(N,P)



0.034
20
PB-210(N,P)TL-210



0.034
20
YB-168(N,P)TM-168



0.034
20
CE-136(N,P′)LA-136



0.034
20
CE-136(N,P)LA-136



0.033
20
SM-144(N,P′)PM-144



0.033
20
SM-144(N,P)PM-144



0.033
20
IN-113(N,P)CD-113



0.032
20
HF-176(N,P)



0.032
20
K-41(N,A)CL-38



0.031
20
PD-107(N,P)RH-107



0.031
20
AM-242(N,P)PU-242



0.031
20
CE-138(N,P)LA-138



0.031
20
SR-91(N,P)RB-91



0.030
20
PR-142(N,P′)CE-142



0.030
20
PR-142(N,P)CE-142



0.030
20
NP-239(N,P)U-239



0.030
20
ND-144(N,P′)PR-144



0.030
20
ND-144(N,P)PR-144



0.030
20
SN-117(N,P)IN-117



0.029
20
PU-243(N,P)NP-243



0.028
20
HF-179(N,P)



0.027
20
SB-126(N,P′)SN-126



0.027
20
SB-126(N,P)SN-126



0.027
20
SB-123(N,P)SN-123



0.027
20
ND-142(N,P′)PR-142



0.027
20
ND-142(N,P)PR-142



0.027
20
DY-160(N,P)TB-160



0.027
20
YB-170(N,P)TM-170



0.027
20
TI-45(N,P + A)K-41



0.027
20
FE-54(N,2P)



0.026
20
KR-85(N,A)SE-82



0.026
20
KR-85(N,A′)SE-82



0.026
20
SB-121(N,P)SN-121



0.025
20
HF-178(N,P)



0.025
20
I-127(N,P)TE-127



0.025
20
YB-171(N,P)TM-171



0.025
20
AM-243(N,P)PU-243



0.025
20
RU-96(N,2P)MO-95



0.025
20
SN-120(N,P)IN-120



0.025
20
OS-189(N,P)RE-189



0.025
20
RB-87(N,P′)KR-87



0.024
20
PD-110(N,P)RH-110



0.024
20
KR-76(N,P + A)AS-72



0.024
20
SM-144(N,A′)ND-141



0.024
20
SM-144(N,A)ND-141



0.024
20
ND-146(N,P′)PR-146



0.024
20
ND-146(N,P)PR-146



0.024
20
SN-118(N,P)IN-118



0.024
20
W-180(N,P′)TA-180



0.024
20
OS-194(N,P)RE-194



0.023
20
I-127(N,P′)TE-127



0.023
20
SM-147(N,P′)PM-147



0.023
20
SM-147(N,P)PM-147



0.023
20
PU-242(N,P)NP-242



0.023
20
CF-250(N,P)



0.023
20
SE-72(N,P + A)GA-68



0.023
20
DY-161(N,P)TB-161



0.022
20
CD-113(N,P)AG-113



0.022
20
ER-162(N,P)HO-162



0.022
20
CE-139(N,P)LA-139



0.022
20
OS-186(N,P)RE-186



0.022
20
ZR-94(N,P)Y-94



0.022
20
PU-236(N,P)NP-236



0.022
20
SM-151(N,P)PM-151



0.021
20
YB-172(N,P)TM-172



0.021
20
ZR-90(N,A)SR-87



0.021
20
MO-98(N,P′)NB-98



0.021
20
ND-145(N,P′)PR-145



0.021
20
ND-145(N,P)PR-145



0.021
20
SM-152(N,P)PM-152



0.021
20
RH-105(N,P)RU-105



0.021
20
BA-132(N,P)CS-132



0.021
20
CF-248(N,P)



0.020
20
ER-164(N,P)HO-164



0.020
20
RH-104(N,P′)RU-104



0.020
20
RU-105(N,P)TC-105



0.020
20
ZR-96(N,P)Y-96



0.020
20
HF-180(N,P)



0.020
20
SB-122(N,P′)SN-122



0.020
20
CE-141(N,P)LA-141



0.020
20
S-36(N,A)SI-33



0.020
20
I-128(N,P′)TE-128



0.020
20
YB-173(N,P)TM-173



0.019
20
CE-140(N,P)LA-140



0.019
20
SE-81(N,P′)AS-81



0.019
20
SM-148(N,P′)PM-148



0.019
20
SM-148(N,P)PM-148



0.019
20
SM-149(N,P′)PM-149



0.019
20
SM-149(N,P)PM-149



0.019
20
XE-123(N,2P)TE-122



0.019
20
CE-142(N,P)LA-142



0.019
20
SR-89(N,P)RB-89



0.019
20
OS-188(N,P)RE-188



0.019
20
RU-106(N,P)TC-106



0.019
20
XE-134(N,P)I-134



0.019
20
SR-90(N,P)RB-90



0.019
20
TE-132(N,P)SB-132



0.019
20
ND-143(N,P′)PR-143



0.019
20
ND-143(N,P)PR-143



0.018
20
RU-100(N,P)TC-100



0.018
20
ND-147(N,P′)PR-147



0.018
20
ND-147(N,P)PR-147



0.018
20
RE-185(N,P)W-185



0.018
20
ER-167(N,P)HO-167



0.018
20
MO-99(N,P)NB-99



0.018
20
XE-132(N,P)I-132



0.017
20
CD-114(N,P)AG-114



0.017
20
OS-185(N,P′)RE-185



0.017
20
RU-104(N,P)TC-104



0.017
20
KR-85(N,P)BR-85



0.017
20
KR-85(N,P′)BR-85



0.017
20
ER-166(N,P)HO-166



0.017
20
PD-109(N,P)RH-109



0.017
20
PA-231(N,P′)TH-231



0.017
20
U-234(N,P)PA-234



0.017
20
SM-154(N,P)PM-154



0.016
20
SM-146(N,P′)PM-146



0.016
20
ND-148(N,P′)PR-148



0.016
20
ND-148(N,P)PR-148



0.016
20
ER-168(N,P)HO-168



0.016
20
CS-133(N,P′)XE-133



0.016
20
CS-133(N,P)XE-133



0.016
20
PD-112(N,P)RH-112



0.016
20
YB-174(N,P)TM-174



0.016
20
ZR-95(N,P)Y-95



0.016
20
SR-82(N,2P)KR-81



0.016
20
CL-35(N,P + A)SI-31



0.016
20
ZR-94(N,P′)Y-94



0.016
20
SN-119(N,P)IN-119



0.015
20
IR-191(N,P′)OS-191



0.015
20
IR-191(N,P)OS-191



0.015
20
HG-197(N,P′)AU-197



0.015
20
W-181(N,P′)TA-181



0.015
20
GD-152(N,P′)EU-152



0.015
20
GD-152(N,P)EU-152



0.015
20
BA-134(N,P)CS-134



0.015
20
RE-187(N,P)W-187



0.015
20
BR-76(N,2P)AS-75



0.014
20
BE-7(N,2P)HE-6



0.014
20
RU-102(N,P)TC-102



0.014
20
ND-150(N,P′)PR-150



0.014
20
ND-150(N,P)PR-150



0.014
20
OS-190(N,P)RE-190



0.014
20
GD-155(N,P′)EU-155



0.014
20
GD-155(N,P)EU-155



0.014
20
CE-143(N,P)LA-143



0.014
20
PA-233(N,P′)TH-233



0.014
20
PB-209(N,P)TL-209



0.014
20
SN-123(N,P)IN-123



0.014
20
GD-154(N,P′)EU-154



0.014
20
GD-154(N,P)EU-154



0.013
20
C-14(N,A)BE-11



0.013
20
CD-116(N,P)AG-116



0.013
20
TE-126(N,P)SB-126



0.013
20
DY-162(N,P)TB-162



0.013
20
I-132(N,P′)TE-132



0.013
20
PU-237(N,A)U-234



0.013
20
IN-115(N,P)CD-115



0.013
20
EU-157(N,P′)SM-157



0.013
20
EU-157(N,P)SM-157



0.013
20
NI-64(N,P′)CO-64



0.013
20
HO-165(N,P)DY-165



0.013
20
CE-144(N,P)LA-144



0.013
20
GD-157(N,P′)EU-157



0.013
20
GD-157(N,P)EU-157



0.013
20
TI-51(N,P)SC-51



0.012
20
GD-153(N,P′)EU-153



0.012
20
GD-153(N,P)EU-153



0.012
20
ER-170(N,P)HO-170



0.012
20
SE-82(N,P)AS-82



0.012
20
W-178(N,P)TA-178



0.012
20
TM-168(N,P′)ER-168



0.012
20
PM-151(N,P′)ND-151



0.012
20
PM-151(N,P)ND-151



0.012
20
CF-251(N,P)



0.012
20
AG-114(N,P′)PD-114



0.011
20
MO-98(N,P)NB-98



0.011
20
RB-87(N,A′)BR-84



0.011
20
I-130(N,A′)SB-127



0.011
20
U-235(N,P′)PA-235



0.011
20
TE-132(N,P′)SB-132



0.011
20
SN-114(N,A)CD-111



0.011
20
PM-150(N,P′)ND-150



0.011
20
PD-100(N,2P)RU-99



0.011
20
SM-156(N,P)PM-156



0.011
20
CM-245(N,P)AM-245



0.011
20
PU-245(N,A)U-242



0.011
20
KR-86(N,A)SE-83



0.011
20
IR-193(N,P′)OS-193



0.011
20
IR-193(N,P)OS-193



0.011
20
PM-147(N,P)ND-147



0.011
20
N-14(N,T + 2A)HE-4



0.011
20
MG-24(N,2A)O-17



0.011
20
TH-232(N,P)AC-232



0.011
20
AM-241(N,P)PU-241



0.010
20
TE-131(N,P′)SB-131



0.010
20
SR-88(N,A)KR-85



0.010
20
BA-140(N,P)CS-140



0.010
20
SN-116(N,A)CD-113



0.010
20
OS-192(N,P)RE-192



0.010
20
EU-152(N,P)SM-152



0.010
20
TM-169(N,P′)ER-169



0.010
20
PD-102(N,2P)RU-101



0.010
20
GD-156(N,A′)SM-153



0.010
20
GD-156(N,A)SM-153



0.010
20
SN-125(N,P′)IN-125



0.010
20
SN-125(N,P)IN-125



0.010
20
BA-135(N,P)CS-135



0.010
20
PU-243(N,A)U-240



0.010
20
LU-175(N,A)TM-172



0.010
20
LU-176(N,A)TM-173



0.010
20
IN-113(N,A)AG-110



0.010
20
GE-75(N,P)GA-75



0.010
20
SB-125(N,A)IN-122



0.010
20
GD-159(N,P′)EU-159



0.010
20
M0-100(N,P′)NB-100



0.009
20
I-134(N,P′)TE-134



0.009
20
SN-122(N,P)IN-122



0.009
20
TH-231(N,P)AC-231



0.009
20
TH-232(N,P′)AC-232



0.009
20
TA-182(N,A)LU-179



0.009
20
PU-238(N,P)NP-238



0.009
20
GD-160(N,A)SM-157



0.009
20
DY-166(N,P)TB-166



0.009
20
NP-237(N,A)PA-234



0.009
20
ER-169(N,P′)HO-169



0.009
20
I-133(N,P′)TE-133



0.009
20
GE-76(N,P)GA-76



0.009
20
I-129(N,A′)SB-126



0.009
20
DY-160(N,A)GD-157



0.009
20
ZR-96(N,P′)Y-96



0.009
20
RE-185(N,A)TA-182



0.009
20
AG-116(N,P′)PD-116



0.009
20
TM-172(N,P)ER-172



0.009
20
BA-138(N,P)CS-138



0.009
20
NP-238(N,A)PA-235



0.009
20
AG-113(N,P′)PD-113



0.009
20
PM-148(N,P)ND-148



0.009
20
PU-242(N,A)U-239



0.008
20
U-235(N,P)PA-235



0.008
20
SE-73(N,P + A)GA-69



0.008
20
PU-240(N,P)NP-240



0.008
20
AM-242(N,A)NP-239



0.008
20
DY-163(N,P)TB-163



0.008
20
S-36(N,P)P-36



0.008
20
YB-175(N,P′)TM-175



0.008
20
XE-134(N,A)TE-131



0.008
20
TE-128(N,P)SB-128



0.008
20
PM-149(N,P)ND-149



0.008
20
NP-239(N,A)PA-236



0.008
20
ND-149(N,P′)PR-149



0.008
20
BI-207(N,A)TL-204



0.008
20
PR-143(N,P)CE-143



0.007
20
ND-149(N,P)PR-149



0.007
20
SN-117(N,A)CD-114



0.007
20
GD-152(N,A′)SM-149



0.007
20
SI-32(N,P′)AL-32



0.007
20
NA-22(N,T + A)O-16



0.007
20
XE-132(N,A)TE-129



0.007
20
SB-124(N,A)IN-121



0.007
20
SM-152(N,A′)ND-149



0.007
20
SM-152(N,A)ND-149



0.007
20
BA-134(N,A)XE-131



0.007
20
XE-135(N,A)TE-132



0.007
20
BA-137(N,P)CS-137



0.007
20
M0-100(N,P)NB-100



0.007
20
RE-183(N,A)TA-180



0.007
20
I-135(N,P)TE-135



0.007
20
AM-243(N,A)NP-240



0.007
20
GD-159(N,P)EU-159



0.007
20
F-19(N,D + A)



0.007
20
BA-139(N,P′)CS-139



0.006
20
RU-106(N,A)MO-103



0.006
20
CF-249(N,P)



0.006
20
EU-156(N,P)SM-156



0.006
20
GD-154(N,A′)SM-151



0.006
20
GD-154(N,A)SM-151



0.006
20
SB-126(N,A)IN-123



0.006
20
SB-126(N,A′)IN-123



0.006
20
GE-78(N,P)GA-78



0.006
20
PU-236(N,A)U-233



0.006
20
RH-105(N,A)TC-102



0.006
20
TE-127(N,P)SB-127



0.006
20
DY-162(N,A)GD-159



0.006
20
W-178(N,A)



0.006
20
FE-52(N,P + D)



0.006
20
AG-115(N,P′)PD-115



0.006
20
O-18(N,P)N-18



0.006
20
SN-120(N,A)CD-117



0.006
20
SN-119(N,A)CD-116



0.006
20
GE-77(N,P)GA-77



0.006
20
XE-133(N,P)I-133



0.006
20
RE-187(N,A)TA-184



0.006
20
U-234(N,A)TH-231



0.005
20
BA-136(N,A)XE-133



0.005
20
AU-199(N,P)PT-199



0.005
20
BA-135(N,A)XE-132



0.005
20
SN-118(N,A)CD-115



0.005
20
YB-173(N,A)ER-170



0.005
20
SB-124(N,P)SN-124



0.005
20
ND-148(N,A′)CE-145



0.005
20
ND-148(N,A)CE-145



0.005
20
NP-236(N,A)PA-233



0.005
20
LU-175(N,P)YB-175



0.005
20
LU-176(N,P)YB-176



0.005
20
IN-115(N,A)AG-112



0.005
20
SB-123(N,A)IN-120



0.005
20
EU-157(N,A′)PM-154



0.005
20
EU-157(N,A)PM-154



0.005
20
DY-164(N,A)GD-161



0.005
20
I-129(N,A)SB-126



0.005
20
SM-154(N,A)ND-151



0.005
20
SB-125(N,P)SN-125



0.005
20
CR-48(N,P + D)TI-46



0.004
20
CS-137(N,P)XE-137



0.004
20
TE-132(N,A′)SN-129



0.004
20
CE-142(N,A)BA-139



0.004
20
XE-135(N,P)I-135



0.004
20
BK-249(N,P)CM-249



0.004
20
NB-90(N,P + A)SR-86



0.004
20
N-14(N,T + A)BE-8



0.004
20
BA-137(N,A)XE-134



0.004
20
XE-133(N,A)TE-130



0.004
20
AG-117(N,P′)PD-117



0.004
20
TE-128(N,A)SN-125



0.004
20
ND-150(N,A)CE-147



0.004
20
PM-151(N,A′)PR-148



0.004
20
PM-151(N,A)PR-148



0.004
20
CS-134(N,A)I-131



0.004
20
MG-28(N,P)NA-28



0.003
20
CS-135(N,A)I-132



0.003
20
CO-58(N,P + A)CR-54



0.003
20
TH-232(N,A′)RA-229



0.003
20
I-131(N,A)SB-128



0.003
20
SN-126(N,P)IN-126



0.003
20
EU-156(N,A)PM-153



0.003
20
GE-76(N,A)ZN-73



0.003
20
PU-238(N,A)U-235



0.003
20
CF-249(N,A)



0.003
20
PD-105(N,2P)RU-104



0.003
20
U-235(N,A)TH-232



0.003
20
CS-137(N,A)I-134



0.003
20
ER-164(N,A)DY-161



0.003
20
CS-136(N,A)I-133



0.003
20
YB-172(N,A)ER-169



0.003
20
GE-77(N,A)ZN-74



0.002
20
ZN-72(N,A)NI-69



0.002
20
BK-249(N,A)AM-246



0.002
20
SN-125(N,A)CD-122



0.002
20
SN-125(N,A′)CD-122



0.002
20
SI-28(N,2P)MG-27



0.002
20
BI-205(N,A)TL-202



0.002
20
W-184(N,A′)



0.002
20
BI-206(N,A)TL-203



0.002
20
CL-37(N,2P)P-36



0.002
20
SE-82(N,A)GE-79



0.002
20
GD-152(N,2P)SM-151



0.002
20
MO-92(N,2P)ZR-91



0.002
20
SN-122(N,A)CD-119



0.002
20
KR-76(N,P + D)SE-74



0.002
20
W-186(N,A′)



0.002
20
PD-104(N,2P)RU-103



0.002
20
NB-94(N,2P)Y-93



0.002
20
ER-166(N,A)DY-163



0.002
20
CL-35(N,2P)P-34



0.002
20
N-14(N,P + A)BE-10



0.002
20
IR-191(N,A′)RE-188



0.002
20
IR-191(N,A)RE-188



0.002
20
SN-123(N,A)CD-120



0.002
20
YB-174(N,A)ER-171



0.002
20
U-236(N,A)TH-233



0.002
20
SE-72(N,P + D)GE-70



0.002
20
TH-232(N,A)RA-229



0.002
20
SM-144(N,2P)ND-143



0.002
20
BE-9(N,P′)LI-9



0.002
20
BE-9(N,P)LI-9



0.001
20
SR-82(N,P + A)BR-78



0.001
20
U-239(N,A)TH-236



0.001
20
MO-92(N,P + A)Y-88



0.001
20
ZN-65(N,2P)NI-64



0.001
20
TE-132(N,A)SN-129



0.001
20
GE-68(N,P + D)ZN-66



0.001
20
NI-58(N,P + D)



0.001
20
PD-107(N,2P)RU-106



0.001
20
ER-168(N,A)DY-165



0.001
20
KR-80(N,2P)SE-79



0.007
20.026
U-236(N,P)PA-236



0.007
20.079
U-237(N,P)PA-237









These lists are by no means exhaustive.


Geometry

In some embodiments, the placement of the nuclear adjuvant regarding nuclear fuel placement is important. The nuclear adjuvant can be mixed with the material of the fuel pellet in various particle sizes. In some embodiments, the adjuvant particle size can be on the same scale as the fuel particle size. In other embodiments, the adjuvant particle size is greater or much greater than the fuel particle size. In even other embodiments, the D adjuvant particle size is much smaller or much smaller than the fuel particle size.


In some embodiments, the adjuvant material is segregated from the fuel. For instance, in some fuel-rod embodiments, the fuel rod comprises standard nuclear fuel pellets separated by plates or pellets of the adjuvant material. Another way of segregating the adjuvant material from the nuclear fuel is by lining the fuel-rod cladding with a hollow structure of adjuvant material, such as a hollow cylinder. In some embodiments, the adjuvant material is a monolithic structure inside of the fuel rod.


Adding the adjuvant material as part of a primary-loop additive is another example of segregating the adjuvant material from nuclear fuel. Fuel pellets can also be prepared by sputter coating the fuel with the nuclear adjuvant material, ion implanting the fuel with the nuclear adjuvant material or any other way of making materials known to those of ordinary skill in the art.


The behavior of the nuclear adjuvant material combined with the fuel pellet is dependent or strongly dependent on the geometrical relationship between the pellet and the adjuvant material.


In FIGS. 1A, 1B, and 1C, pellet 10 shows nuclear adjuvant 100 with nuclear fuel 20. FIG. 1A shows a schematic view of a nuclear fuel pellet 10 with a nuclear adjuvant material 100 having a particle size commensurate with nuclear fuel 20. FIG. 1B is a schematic view of a nuclear fuel pellet 10 with adjuvant material 100 particle sizes much larger than the particle size of nuclear fuel 20. FIG. 1C depicts a nuclear fuel pellet 10 with adjuvant material particles 100 much smaller than nuclear fuel particles 20. These figures illustrate that nuclear adjuvant material particles can be much larger, larger, about the same size, smaller, or much smaller than nuclear fuel particles in some embodiments. Smaller means an order of magnitude smaller; much smaller means three orders of magnitude smaller. Larger means an order of magnitude larger; much larger means three orders of magnitude smaller



FIG. 2 is a schematic view of a nuclear fuel rod 40 with cladding 45. In this embodiment, pellet 10 is depicted inside fuel rod 40 along with a sizeable, monolithic, adjuvant pellet 101 or a small monolithic pellet 102. When the pellet is monolithic, it can have substantially any shape necessary to meet the fuel rod's geometry requirements and for the reactor. Fuel rod 40 is manufactured in any usual way known to those of ordinary skill in the art. The steps of adding nuclear adjuvant monolithic pieces into the fuel rod are shown. In invention embodiments in which the nuclear adjuvant is mixed with nuclear fuel, the mixture is prepared using any known way for preparing powder mixtures with care taken to substantially evenly distribute the adjuvant material particles or atoms throughout the fuel pellet. Those of ordinary skill in the art know myriad ways to prepare powder mixtures, including wet and dry processes. In some embodiments, the pellet is prepared such that the nuclear adjuvant material particles are atoms are distributed nonuniformly through the pellet.


The combination of pellets 10 and nuclear adjuvant material need not be uniform. Some sections of fuel rod 40 may contain only nuclear fuel pellets 10; some may contain fuel pellets 10 interleaved with monolithic pieces of nuclear adjuvant material 101, 102; some may contain fuel pellets 10 in which some of the fuel pellets are interleaved with monolithic pieces of nuclear adjuvant material 101,102; and some may contain sections of fuel rod 40 only containing monolithic nuclear adjuvant material 101, 102.


Any of a variety of well-known processes yield monolithic adjuvant materials. For instance, subjecting the constituent powders to powder manipulating or pressing techniques produces the material with or without applying heat. Other ways of manufacturing monolithic ceramic materials can produce the monolithic adjuvant material. The monolithic materials can be sintered.



FIG. 3 shows a perspective view and a cross-section view of regions of the fuel rod 40 that are wholly or partially lined with a monolithic tube of nuclear adjuvant material.



FIG. 4 shows a schematic, highly magnified view of a pellet with implanted adjuvant material. The concentration of nuclear adjuvant material is highest at the pellet's outer surface and decreases at regions further from the surface. The figure depicts nuclear fuel as regularly distributed, but nuclear fuel is distributed irregularly in some embodiments.


Another method of alleviating reactor transients uses the adjuvant material to soak up enough surplus high-energy neutrons or other radiation produced in reactor transient events to slow the transient growth rate. Slowing the growth rate allows enough time for the fuel's negative coefficient of thermal reactivity to act.

    • Exemplar A1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar A2. The composition, pellet, or rod of exemplar A1, wherein the composition reacts with a neutron endothermically.
    • Exemplar A3. The composition, pellet, or rod of exemplar A2, wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies.
    • Exemplar A4. The composition, pellet, or rod of exemplar A3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar A5. The composition, pellet, or rod of exemplar A4, wherein the atoms with different atomic masses comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A6. The composition, pellet, or rod of exemplar A5, wherein the atoms with different atomic masses comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A7. The composition, pellet, or rod of exemplar A4, wherein the assembly comprises atoms with at least three different atomic masses.
    • Exemplar A8. The composition, pellet, or rod of exemplar A5, wherein the atoms with different atomic masses comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A9. The composition, pellet, or rod of exemplar A6, wherein the atoms with different atomic masses comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A10. The composition, pellet, or rod of exemplar A4, wherein the assembly comprises a compound comprising atoms with two different atomic masses.
    • Exemplar A11. The composition, pellet, or rod of exemplar A10, wherein the atoms with different atomic masses comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A12. The composition, pellet, or rod of exemplar A11, wherein the atoms with different atomic masses comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A13. The composition, pellet, or rod of exemplar A4, wherein the atoms with different atomic masses comprise atoms with three different atomic masses.
    • Exemplar A14. The composition, pellet, or rod of exemplar A13, wherein the atoms with different atomic masses comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A15. The composition, pellet, or rod of exemplar A14, wherein the atoms with different atomic masses comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A16. The composition, pellet, or rod of exemplar A15, wherein the assembly reacts with a neutron endothermically.
    • Exemplar A17. The composition, pellet, or rod of exemplar A16, further comprising fissile material.
    • Exemplar A18. The composition, pellet, or rod of exemplar A17, further comprising a consumable absorber.
    • Exemplar A19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers the assembly exhibits a nuclear adjuvant effect.
    • Exemplar A20. The composition, pellet, or rod of exemplar A19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar A21. The composition, pellet, or rod of exemplar A20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar A22. The composition, pellet, or rod of exemplar A21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies and.
    • Exemplar A23. The composition, pellet, or rod of exemplar A22, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A24. The composition, pellet, or rod of exemplar A23, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A25. The composition, pellet, or rod of exemplar A24, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar A26. The composition, pellet, or rod of exemplar A25, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A27. The composition, pellet, or rod of exemplar A26, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A28. The composition, pellet, or rod of exemplar A21, wherein the assembly comprises a compound comprising atoms with two different atomic numbers.
    • Exemplar A29. The composition, pellet, or rod of exemplar A28, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A30. The composition, pellet, or rod of exemplar A29, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A31. The composition, pellet, or rod of exemplar A21, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar A32. The composition, pellet, or rod of exemplar A31, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A33. The composition, pellet, or rod of exemplar A32, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A34. The composition, pellet, or rod of exemplar A33, wherein the assembly reacts with a neutron endothermically.
    • Exemplar A35. The composition, pellet, or rod of exemplar A34, further comprising fissile material.
    • Exemplar A36. The composition, pellet, or rod of exemplar A35, further comprising a consumable absorber.
    • Exemplar A37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein the assembly exhibits a low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar A38. The composition, pellet, or rod of exemplar A37, wherein the assembly comprises atoms with different atomic numbers.
    • Exemplar A39. The composition, pellet, or rod of exemplar A38, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A40. The composition, pellet, or rod of exemplar A39, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A41. The composition, pellet, or rod of exemplar A37, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar A42. The composition, pellet, or rod of exemplar A41, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A43. The composition, pellet, or rod of exemplar A42, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A44. The composition, pellet, or rod of exemplar A37, wherein the assembly comprises a compound comprising atoms with two different atomic numbers.
    • Exemplar A45. The composition, pellet, or rod of exemplar A38, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A46. The composition, pellet, or rod of exemplar A45, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A47. The composition, pellet, or rod of exemplar A37, wherein the assembly comprises a compound comprising atoms with three different atomic numbers.
    • Exemplar A48. The composition, pellet, or rod of exemplar A47, wherein the atoms with different atomic numbers comprise atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar A49. The composition, pellet, or rod of exemplar A48, wherein the atoms with different atomic numbers comprise atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar A50. The composition, pellet, or rod of exemplar A49, wherein the assembly reacts with a neutron endothermically.
    • Exemplar A51. The composition, pellet, or rod of exemplar A50, further comprising fissile material.
    • Exemplar A52. The composition, pellet, or rod of exemplar A51, further comprising a consumable absorber.
    • Exemplar A53. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with the same atomic number, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar A54. The composition, pellet, or rod of exemplar A4, wherein the assembly comprises atoms with at least four, five, or six different atomic masses.
    • Exemplar A55. The composition, pellet, or rod of exemplar A24, wherein the atoms with different atomic numbers comprise four, five, or six atoms with different atomic numbers.
    • Exemplar A56. The composition, pellet, or rod of exemplar A37, wherein the atoms with different atomic numbers comprise four, five, or six atoms with different atomic numbers.
    • Exemplar B1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar B2. The composition, pellet, or rod of exemplar B1, wherein the composition reacts with a neutron endothermically.
    • Exemplar B3. The composition, pellet, or rod of exemplar B2, wherein the assembly exhibits a low neutron reaction coefficient at low neutron energy and a high neutron reaction coefficient at high neutron energy.
    • Exemplar B4. The composition, pellet, or rod of exemplar B3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar B5. The composition, pellet, or rod of exemplar B4, wherein the atoms with different atomic masses consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B6. The composition, pellet, or rod of exemplar B5, wherein the atoms with different atomic masses consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B7. The composition, pellet, or rod of exemplar B4, wherein the assembly consist essentially of atoms with at least three different atomic masses.
    • Exemplar B8. The composition, pellet, or rod of exemplar B5, wherein the atoms with different atomic masses consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B9. The composition, pellet, or rod of exemplar B6, wherein the atoms with different atomic masses consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B10. The composition, pellet, or rod of exemplar B4, wherein the assembly consist essentially of a compound comprising atoms with two different atomic masses.
    • Exemplar B11. The composition, pellet, or rod of exemplar B10, wherein the atoms with different atomic masses consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B12. The composition, pellet, or rod of exemplar B11, wherein the atoms with different atomic masses consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B13. The composition, pellet, or rod of exemplar B4, wherein the atoms with different atomic masses consist essentially of atoms with three different atomic masses.
    • Exemplar B14. The composition, pellet, or rod of exemplar B13, wherein the atoms with different atomic masses consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B15. The composition, pellet, or rod of exemplar B14, wherein the atoms with different atomic masses consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B16. The composition, pellet, or rod of exemplar B15, wherein the assembly reacts with a neutron endothermically.
    • Exemplar B17. The composition, pellet, or rod of exemplar B16, further comprising fissile material.
    • Exemplar B18. The composition, pellet, or rod of exemplar B17, further comprising a consumable absorber.
    • Exemplar B19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers the assembly exhibits a nuclear adjuvant effect.
    • Exemplar B20. The composition, pellet, or rod of exemplar B19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar B21. The composition, pellet, or rod of exemplar B20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar B22. The composition, pellet, or rod of exemplar B21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies
    • Exemplar B23. The composition, pellet, or rod of exemplar B22, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B24. The composition, pellet, or rod of exemplar B23, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B25. The composition, pellet, or rod of exemplar B24, wherein the atoms with different atomic numbers consist essentially of three atoms with different atomic numbers.
    • Exemplar B26. The composition, pellet, or rod of exemplar B25, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B27. The composition, pellet, or rod of exemplar B26, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B28. The composition, pellet, or rod of exemplar B21, wherein the assembly consist essentially of a compound comprising atoms with two different atomic numbers.
    • Exemplar B29. The composition, pellet, or rod of exemplar B28, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B30. The composition, pellet, or rod of exemplar B29, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B31. The composition, pellet, or rod of exemplar B21, wherein the atoms with different atomic numbers consist essentially of three atoms with different atomic numbers.
    • Exemplar B32. The composition, pellet, or rod of exemplar B31, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B33. The composition, pellet, or rod of exemplar B32, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B34. The composition, pellet, or rod of exemplar B33, wherein the assembly reacts with a neutron endothermically.
    • Exemplar B35. The composition, pellet, or rod of exemplar B34, further comprising fissile material.
    • Exemplar B36. The composition, pellet, or rod of exemplar B35, further comprising a consumable absorber.
    • Exemplar B37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein the assembly exhibits a low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar B38. The composition, pellet, or rod of exemplar B37, wherein the assembly consist essentially of atoms with different atomic numbers.
    • Exemplar B39. The composition, pellet, or rod of exemplar B38, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B40. The composition, pellet, or rod of exemplar B39, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B41. The composition, pellet, or rod of exemplar B37, wherein the atoms with different atomic numbers consist essentially of three atoms with different atomic numbers.
    • Exemplar B42. The composition, pellet, or rod of exemplar B41, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B43. The composition, pellet, or rod of exemplar B42, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B44. The composition, pellet, or rod of exemplar B37, wherein the assembly consist essentially of a compound comprising atoms with two different atomic numbers.
    • Exemplar B45. The composition, pellet, or rod of exemplar B38, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B46. The composition, pellet, or rod of exemplar B45, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B47. The composition, pellet, or rod of exemplar B37, wherein the assembly consist essentially of a compound comprising atoms with three different atomic numbers.
    • Exemplar B48. The composition, pellet, or rod of exemplar B47, wherein the atoms with different atomic numbers consist essentially of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar B49. The composition, pellet, or rod of exemplar B48, wherein the atoms with different atomic numbers consist essentially of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar B50. The composition, pellet, or rod of exemplar B49, wherein the assembly reacts with a neutron endothermically.
    • Exemplar B51. The composition, pellet, or rod of exemplar B50, further comprising fissile material.
    • Exemplar B52. The composition, pellet, or rod of exemplar B51, further comprising a consumable absorber.
    • Exemplar B53. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with the same atomic number, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar B54. The composition, pellet, or rod of exemplar B4, wherein the assembly consist essentially of atoms with at least four, five, or six different atomic masses.
    • Exemplar B55. The composition, pellet, or rod of exemplar B24, wherein the atoms with different atomic numbers consist essentially of four, five, or six atoms with different atomic numbers.
    • Exemplar B56. The composition, pellet, or rod of exemplar B37, wherein the atoms with different atomic numbers consist essentially of four, five, or six atoms with different atomic numbers.
    • Exemplar C1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar C2. The composition, pellet, or rod of exemplar C1, wherein the composition reacts with a neutron endothermically.
    • Exemplar C3. The composition, pellet, or rod of exemplar C2, wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies.
    • Exemplar C4. The composition, pellet, or rod of exemplar C3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar C5. The composition, pellet, or rod of exemplar C4, wherein the atoms with different atomic masses consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C6. The composition, pellet, or rod of exemplar C5, wherein the atoms with different atomic masses consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C7. The composition, pellet, or rod of exemplar C4, wherein the assembly consist of atoms with at least three different atomic masses.
    • Exemplar C8. The composition, pellet, or rod of exemplar C5, wherein the atoms with different atomic masses consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C9. The composition, pellet, or rod of exemplar C6, wherein the atoms with different atomic masses consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C10. The composition, pellet, or rod of exemplar C4, wherein the assembly consist of a compound comprising atoms with two different atomic masses.
    • Exemplar C11. The composition, pellet, or rod of exemplar C10, wherein the atoms with different atomic masses consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C12. The composition, pellet, or rod of exemplar C11, wherein the atoms with different atomic masses consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C13. The composition, pellet, or rod of exemplar C4, wherein the atoms with different atomic masses consist of atoms with three different atomic masses.
    • Exemplar C14. The composition, pellet, or rod of exemplar C13, wherein the atoms with different atomic masses consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C15. The composition, pellet, or rod of exemplar C14, wherein the atoms with different atomic masses consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C16. The composition, pellet, or rod of exemplar C15, wherein the assembly reacts with a neutron endothermically.
    • Exemplar C17. The composition, pellet, or rod of exemplar C16, further comprising fissile material.
    • Exemplar C18. The composition, pellet, or rod of exemplar C17, further comprising a consumable absorber.
    • Exemplar C19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers the assembly exhibits a nuclear adjuvant effect.
    • Exemplar C20. The composition, pellet, or rod of exemplar C19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar C21. The composition, pellet, or rod of exemplar C20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar C22. The composition, pellet, or rod of exemplar C21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies
    • Exemplar C23. The composition, pellet, or rod of exemplar C22, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C24. The composition, pellet, or rod of exemplar C23, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C25. The composition, pellet, or rod of exemplar C24, wherein the atoms with different atomic numbers consist of three atoms with different atomic numbers.
    • Exemplar C26. The composition, pellet, or rod of exemplar C25, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C27. The composition, pellet, or rod of exemplar C26, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C28. The composition, pellet, or rod of exemplar C21, wherein the assembly consist of a compound comprising atoms with two different atomic numbers.
    • Exemplar C29. The composition, pellet, or rod of exemplar C28, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C30. The composition, pellet, or rod of exemplar C29, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C31. The composition, pellet, or rod of exemplar C21, wherein the atoms with different atomic numbers consist of three atoms with different atomic numbers.
    • Exemplar C32. The composition, pellet, or rod of exemplar C31, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C33. The composition, pellet, or rod of exemplar C32, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C34. The composition, pellet, or rod of exemplar C33, wherein the assembly reacts with a neutron endothermically.
    • Exemplar C35. The composition, pellet, or rod of exemplar C34, further comprising fissile material.
    • Exemplar C36. The composition, pellet, or rod of exemplar C35, further comprising a consumable absorber.
    • Exemplar C37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein the assembly exhibits a low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar C38. The composition, pellet, or rod of exemplar C37, wherein the assembly consist of atoms with different atomic numbers.
    • Exemplar C39. The composition, pellet, or rod of exemplar C38, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C40. The composition, pellet, or rod of exemplar C39, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C41. The composition, pellet, or rod of exemplar C37, wherein the atoms with different atomic numbers consist of three atoms with different atomic numbers.
    • Exemplar C42. The composition, pellet, or rod of exemplar C41, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C43. The composition, pellet, or rod of exemplar C42, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C44. The composition, pellet, or rod of exemplar C37, wherein the assembly consist of a compound comprising atoms with two different atomic numbers.
    • Exemplar C45. The composition, pellet, or rod of exemplar C38, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, CI, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C46. The composition, pellet, or rod of exemplar C45, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C47. The composition, pellet, or rod of exemplar C37, wherein the assembly consist of a compound comprising atoms with three different atomic numbers.
    • Exemplar C48. The composition, pellet, or rod of exemplar C47, wherein the atoms with different atomic numbers consist of atoms selected from Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, and Zr.
    • Exemplar C49. The composition, pellet, or rod of exemplar C48, wherein the atoms with different atomic numbers consist of atoms selected from As, Ce, Co, Ga, Ge, La, Mo, Nd, Os, Pr, Ti, V, and Zr.
    • Exemplar C50. The composition, pellet, or rod of exemplar C49, wherein the assembly reacts with a neutron endothermically.
    • Exemplar C51. The composition, pellet, or rod of exemplar C50, further comprising fissile material.
    • Exemplar C52. The composition, pellet, or rod of exemplar C51, further comprising a consumable absorber.
    • Exemplar C53. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with the same atomic number, wherein the assembly exhibits a nuclear adjuvant effect.
    • Exemplar C54. The composition, pellet, or rod of exemplar C4, wherein the assembly consist of atoms with at least four, five, or six different atomic masses.
    • Exemplar C55. The composition, pellet, or rod of exemplar C24, wherein the atoms with different atomic numbers consist of four, five, or six atoms with different atomic numbers.
    • Exemplar C56. The composition, pellet, or rod of exemplar C37, wherein the atoms with different atomic numbers consist of four, five, or six atoms with different atomic numbers.
    • Exemplar D1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein the assembly exhibits a nuclear adjuvant effect and wherein the assembly of atoms doesn't contain U, Pu, and Th.
    • Exemplar D2. The composition, pellet, or rod of exemplar D1, wherein the composition, pellet, or rod of exemplar reacts with a neutron endothermically.
    • Exemplar D3. The composition, pellet, or rod of exemplar D2, wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies.
    • Exemplar D4. The composition, pellet, or rod of exemplar D3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar D7. The composition, pellet, or rod of exemplar D4, wherein the assembly comprises atoms with at least three different atomic masses.
    • Exemplar D10. The composition, pellet, or rod of exemplar D4, wherein the assembly comprises a compound comprising atoms with two different atomic masses.
    • Exemplar D17. The composition, pellet, or rod of exemplar D2, further comprising fissile material.
    • Exemplar D18. The composition, pellet, or rod of exemplar D17, further comprising a consumable absorber.
    • Exemplar D19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers wherein the assembly exhibits a nuclear adjuvant effect and wherein the assembly of atoms doesn't contain U, Pu, and Th.
    • Exemplar D20. The composition, pellet, or rod of exemplar D19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar D21. The composition, pellet, or rod of exemplar D20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar D22. The composition, pellet, or rod of exemplar D21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar D25. The composition, pellet, or rod of exemplar D22, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar D34. The composition, pellet, or rod of exemplar D25, wherein the assembly reacts with a neutron endothermically.
    • Exemplar D35. The composition, pellet, or rod of exemplar D34, further comprising fissile material.
    • Exemplar D36. The composition, pellet, or rod of exemplar D35, further comprising a consumable absorber.
    • Exemplar D37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies and wherein the assembly of atoms doesn't contain U, Pu, and Th.
    • Exemplar D38. The composition, pellet, or rod of exemplar D37, wherein the assembly comprises atoms with different atomic numbers.
    • Exemplar D41. The composition, pellet, or rod of exemplar D37, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar D44. The composition, pellet, or rod of exemplar D37, wherein the assembly comprises a compound comprising atoms with two different atomic
    • Exemplar D50. The composition, pellet, or rod of exemplar D44, wherein the assembly reacts with a neutron endothermically.
    • Exemplar D51. The composition, pellet, or rod of exemplar D50, further comprising fissile material.
    • Exemplar D52. The composition, pellet, or rod of exemplar D51, further comprising a consumable absorber.
    • Exemplar D54. The composition, pellet, or rod of exemplar D4, wherein the assembly comprises atoms with at least four, five, or six different atomic numbers.
    • Exemplar D55. The composition, pellet, or rod of exemplar D22, wherein the atoms with different atomic numbers comprise four, five, or six atoms with different atomic numbers.
    • Exemplar E1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein the assembly exhibits a nuclear adjuvant effect and wherein at least one of the assembly of atoms has a higher high-energy-neutron absorption cross-section than U238 or U235.
    • Exemplar E2. The composition, pellet, or rod of exemplar E1, wherein the composition, pellet, or rod of exemplar reacts with a neutron endothermically.
    • Exemplar E3. The composition, pellet, or rod of exemplar E2, wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies.
    • Exemplar E4. The composition, pellet, or rod of exemplar E3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar E7. The composition, pellet, or rod of exemplar E4, wherein the assembly comprises atoms with at least three different atomic masses.
    • Exemplar E10. The composition, pellet, or rod of exemplar E4, wherein the assembly comprises a compound comprising atoms with two different atomic masses.
    • Exemplar E17. The composition, pellet, or rod of exemplar E2, further comprising fissile material.
    • Exemplar E18. The composition, pellet, or rod of exemplar E17, further comprising a consumable absorber.
    • Exemplar E19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers wherein the assembly exhibits a nuclear adjuvant effect and wherein at least one of the assembly of atoms has a higher high-energy-neutron absorption cross-section than U238 or U235.
    • Exemplar E20. The composition, pellet, or rod of exemplar E19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar E21. The composition, pellet, or rod of exemplar E20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar E22. The composition, pellet, or rod of exemplar E21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar E25. The composition, pellet, or rod of exemplar E22, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar E34. The composition, pellet, or rod of exemplar E25, wherein the assembly reacts with a neutron endothermically.
    • Exemplar E35. The composition, pellet, or rod of exemplar E34, further comprising fissile material.
    • Exemplar E36. The composition, pellet, or rod of exemplar E35, further comprising a consumable absorber.
    • Exemplar E37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein the assembly exhibits a low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy and wherein at least one of the assembly of atoms has a higher high-energy-neutron absorption cross-section than U238 or U235.
    • Exemplar E38. The composition, pellet, or rod of exemplar E37, wherein the assembly comprises atoms with different atomic numbers.
    • Exemplar E41. The composition, pellet, or rod of exemplar E37, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar E44. The composition, pellet, or rod of exemplar E37, wherein the assembly comprises a compound comprising atoms with two different atomic
    • Exemplar E50. The composition, pellet, or rod of exemplar E44, wherein the assembly reacts with a neutron endothermically.
    • Exemplar E51. The composition, pellet, or rod of exemplar E50, further comprising fissile material.
    • Exemplar E52. The composition, pellet, or rod of exemplar E51, further comprising a consumable absorber.
    • Exemplar E54. The composition, pellet, or rod of exemplar E4, wherein the assembly comprises atoms with at least four, five, or six different atomic numbers.
    • Exemplar E55. The composition, pellet, or rod of exemplar E22, wherein the atoms with different atomic numbers comprise four, five, or six atoms with different atomic numbers.
    • Exemplar F1. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic masses, wherein
    • the assembly exhibits a nuclear adjuvant effect,
    • the assembly has a volume weighted average of high energy neutron absorption cross-sections of the atoms,
    • and
    • the volume weighted average multiplied by the volume % of adjuvant material in the fuel is 50-150, 75-125, or 90-110% of the high energy neutron absorption cross-section of U235 or U238 multiplied by the volume percent of U235 or U238.
    • Exemplar F2. The composition, pellet, or rod of exemplar F1, wherein the composition, pellet, or rod of reacts with a neutron endothermically.
    • Exemplar F3. The composition, pellet, or rod of exemplar F2, wherein the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies.
    • Exemplar F4. The composition, pellet, or rod of exemplar F3, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar F7. The composition, pellet, or rod of exemplar F4, wherein the assembly comprises atoms with at least three different atomic masses.
    • Exemplar F10. The composition, pellet, or rod of exemplar F4, wherein the assembly comprises a compound comprising atoms with two different atomic masses.
    • Exemplar F17. The composition, pellet, or rod of exemplar F2, further comprising fissile material.
    • Exemplar F18. The composition, pellet, or rod of exemplar F17, further comprising a consumable absorber.
    • Exemplar F19. A composition of matter, fuel pellet, or fuel rod comprising an assembly of atoms with different atomic numbers wherein the assembly has a volume weighted average of high energy neutron absorption cross-sections of the atoms, the assembly exhibits a nuclear adjuvant effect, and the volume weighted average multiplied by the volume % of adjuvant material in the fuel is 50-150, 75-125, or 90-110% of the high energy neutron absorption cross-section of U235 or U238 multiplied by the volume percent of U235 or U238.
    • Exemplar F20. The composition, pellet, or rod of exemplar F19, wherein the assembly reacts with the neutron endothermically.
    • Exemplar F21. The composition, pellet, or rod of exemplar F20, wherein the assembly exhibits low neutron reaction coefficient at a low neutron energy and a high neutron reaction coefficient at a high neutron energy.
    • Exemplar F22. The composition, pellet, or rod of exemplar F21, wherein the assembly exhibits neutron reaction coefficients at high neutron energies that are higher than the assembly exhibits at low neutron energies.
    • Exemplar F25. The composition, pellet, or rod of exemplar F22, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar F34. The composition, pellet, or rod of exemplar F25, wherein the assembly reacts with a neutron endothermically.
    • Exemplar F35. The composition, pellet, or rod of exemplar F34, further comprising fissile material.
    • Exemplar F36. The composition, pellet, or rod of exemplar F35, further comprising a consumable absorber.
    • Exemplar F37. A composition of matter, fuel pellet, or fuel rod comprising an assembly of one or more isotopes wherein
    • the assembly has a volume weighted average of high energy neutron absorption cross-sections of the atoms
    • the assembly exhibits low neutron reaction coefficients at low neutron energies and high neutron reaction coefficients at high neutron energies
    • and
    • the volume weighted average multiplied by the volume % of adjuvant material in the fuel is 50-150, 75-125, or 90-110% of the high energy neutron absorption cross-section of U235 or U238 multiplied by the volume percent of U235 or U238.


The above means the average of the assembly's high energy neutron absorption cross-sections adjusted for the relative volume composition of the overall material, including any uranium that is present.

    • Exemplar F38. The composition, pellet, or rod of exemplar F37, wherein the assembly comprises atoms with different atomic numbers.
    • Exemplar F41. The composition, pellet, or rod of exemplar F37, wherein the atoms with different atomic numbers comprise three atoms with different atomic numbers.
    • Exemplar F44. The composition, pellet, or rod of exemplar F37, wherein the assembly comprises a compound comprising atoms with two different atomic
    • Exemplar F50. The composition, pellet, or rod of exemplar F44, wherein the assembly reacts with a neutron endothermically.
    • Exemplar F51. The composition, pellet, or rod of exemplar F50, further comprising fissile material.
    • Exemplar F52. The composition, pellet, or rod of exemplar F51, further comprising a consumable absorber.
    • Exemplar F54. The composition, pellet, or rod of exemplar F4, wherein the assembly comprises atoms with at least four, five, or six different atomic numbers.
    • Exemplar F55. The composition, pellet, or rod of exemplar F22, wherein the atoms with different atomic numbers comprise four, five, or six atoms with different atomic numbers.
    • Exemplar G1. The composition, pellet, or rod of exemplars E1, D1, B1, C1, or F1 wherein the atoms are selected from Ag107, Ag109, Ag111 Ag113, Ag114, Ag115, Ag116, Ag117, Am241, Am242, Am243, Am244, Ar36, Ar38, Ar39, Ar40, Ar42, As75, As79, Au199, B11, Ba130, Ba131, Ba132, Ba133, Ba134, Ba135, Ba136, Ba137, Ba138, Ba139, Ba140, Be7, Be9, Bi203, Bi205, Bi206, Bi207, Bk249, Br76, Br79, Br80, Br81, C14, Ca41, Cd107, Cd108, Cd110, Cd111, Cd112, Cd113, Cd114, Cd115, Cd116, Ce136, Ce138, Ce139, Ce140, Ce141, Ce142, Ce143, Ce144, Cl35, C136, C137, Cm245, Co55, Co58, Co59, Cr48, Cr50, Cs133, Cs134, Cs135, Cs136, Cs137, Cu64, Dy156, Dy158, Dy160, Dy161, Dy162, Dy163, Dy164, Dy166, Er162, Er164, Er166, Er167, Er168, Er169, Er170, Eu151, Eu152, Eu153, Eu155, Eu156, Eu157, F19, Fe52, Fe53, Fe54, Fe58, Ga69, Ga70, Ga71, Gd152, Gd153, Gd154, Gd155, Gd156, Gd157, Gd158, Gd159, Gd160, Ge68, Ge69, Ge70, Ge71, Ge72, Ge73, Ge74, Ge75, Ge76, Ge77, Ge78, Hf174, Hf176, Hf177, Hf178, Hf179, Hf180, Hg197, Ho165, I124, I125, I127, I128, I129, I130, I131, I132, I133, I134, I135, In113, In114, In115, Ir191, Ir193, K41, K43, La138, Li6, Lu175, Lu176, Mg24, Mg25, Mg26, Mg28, Mn55, Mo100, Mo92, Mo94, Mo95, Mo96, Mo97, Mo98, Mo99, N14, N15, Na22, Na23, Na24, Nb90, Nb94, Nb95, Nb96, Nd142, Nd143, Nd144, Nd145, Nd146, Nd147, Nd148, Nd149, Nd150, Ni58, Ni59, Ni60, Ni61, Ni62, Ni63, Ni64, O17, O18, Os185, Os186, Os188, Os189, Os190, Os192, Os194, Pa231, Pa233, Pb209, Pb210, Pd100, Pd101, Pd102, Pd103, Pd104, Pd105, Pd106, Pd107, Pd108, Pd109, Pd110, Pd112, Pm147, Pm148, Pm149, Pm150, Pm151, Pr141, Pr142, Pr143, Pu236, Pu237, Pu238, Pu240, Pu242, Pu243, Pu245, Rb83, Rb84, Rb85, Rb86, Rb87, Re182, Re183, Re184, Re185, Re187, Rh103, Rh104, Rh105, Ru100, Ru101, Ru102, Ru103, Ru104, Ru105, Ru106, Ru96, Ru98, Ru99, S32, S34, S35, S36, Sb121, Sb122, Sb123, Sb124, Sb125, Sb126, Sc45, Se72, Se73, Se74, Se76, Se77, Se78, Se79, Se80, Se81, Se82, Si28, Si31, Si32, Sm144, Sm146, Sm147, Sm148, Sm149, Sm150, Sm151, Sm152, Sm153, Sm154, Sm156, Sn112, Sn113, Sn114, Sn115, Sn116, Sn117, Sn118, Sn119, Sn120, Sn122, Sn123, Sn125, Sn126, Sr82, Sr84, Sr85, Sr86, Sr87, Sr88, Sr89, Sr90, Sr91, Ta182, Tb159, Te118, Te119, Te120, Te122, Te123, Te124, Te125, Te126, Te127, Te128, Te131, Te132, Th231, Th232, Ti45, Ti46, Ti47, Ti48, Ti49, Ti50, Ti51, Tm168, Tm169, Tm172, U234, U235, U236, U237, U239, V49, V51, W178, W180, W181, W184, W186, W187, Y86, Y89, Y90, Y91, Yb168, Yb170, Yb171, Yb172, Yb173, Yb174, Yb175, Zn62, Zn65, Zn70, Zn72, Zr90, Zr91, Zr92, Zr93, Zr94, Zr95, and Zr96.
    • Exemplar G1. The composition, pellet, or rod of exemplars E1, D1, B1, C1, or F1 wherein the atoms are selected from Ag107, Ag109, Ag111, Ag113, Ag114, Ag115, Ag116, Ag117, B11, C14, Ca41, Cd107, Cd108, Cd110, Cd111, Cd112, Cd113, Cd114, Cd115, Cd116, Ce136, Ce138, Ce139, Ce140, Ce141, Ce142, Ce143, Ce144, Cl35, Cl36, Cl37, Cm245, Co55, Co58, Co59, Cr48, Cr50, Cs133, Cs134, Cs135, Cs136, Cs137, Cu64, Dy156, Dy158, Dy160, Dy161, Dy162, Dy163, Dy164, Dy166, Er162, Er164, Er166, Er167, Er168, Er169, Er170, Eu151, Eu152, Eu153, Eu155, Eu156, Eu157, F19, Fe52, Fe53, Fe54, Fe58, Ga69, Ga70, Ga71, Gd152, Gd153, Gd154, Gd155, Gd156, Gd157, Gd158, Gd159, Gd160, Ge68, Ge69, Ge70, Ge71, Ge72, Ge73, Ge74, Ge75, Ge76, Ge77, Ge78, Hf174, Hf176, Hf177, Hf178, Hf179, Hf180, Hg197, Ho165, In113, In114, In115, Ir191, Ir193, K41, K43, La138, Li6, Lu175, Lu176, Mg24, Mg25, Mg26, Mg28, Mn55, Mo100, Mo92, Mo94, Mo95, Mo96, Mo97, Mo98, Mo99, N14, N15, Na22, Na23, Na24, Nb90, Nb94, Nb95, Nb96, Nd142, Nd143, Nd144, Nd145, Nd146, Nd147, Nd148, Nd149, Nd150, Ni58, Ni59, Ni60, Ni61, Ni62, Ni63, Ni64, Np236, O17, O18, Os185, Os186, Os188, Os189, Os190, Os192, Os194, Pa231, Pa233, Pb209, Pb210, Pd100, Pd101, Pd102, Pd103, Pd104, Pd105, Pd106, Pd107, Pd108, Pd109, Pd110, Pd112, Pm147, Pm148, Pm149, Pm150, Pm151, Pr141, Pr142, Pr143, Pu236, Pu237, Pu238, Pu240, Pu242, Pu243, Pu245, Rb83, Rb84, Rb85, Rb86, Rb87, Re182, Re183, Re184, Re185, Re187, Rh103, Rh104, Rh105, Ru100, Ru101, Ru102, Ru103, Ru104, Ru105, Ru106, Ru96, Ru98, Ru99, S32, S34, S35, S36, Sb121, Sb122, Sb123, Sb124, Sb125, Sb126, Sc45, Se72, Se73, Se74, Se76, Se77, Se78, Se79, Se80, Se81, Se82, Si28, Si31, Si32, Sm144, Sm146, Sm147, Sm148, Sm149, Sm150, Sm151, Sm152, Sm153, Sm154, Sm156, Sn112, Sn113, Sn114, Sn115, Sn116, Sn117, Sn118, Sn119, Sn120, Sn122, Sn123, Sn125, Sn126, Sr82, Sr84, Sr85, Sr86, Sr87, Sr88, Sr89, Sr90, Sr91, Ta182, Tb159, Te118, Te119, Te120, Te122, Te123, Te124, Te125, Te126, Te127, Te128, Te131, Te132, Th231, Th232, Ti45, Ti46, Ti47, Ti48, Ti49, Ti50, Ti51, Tm168, Tm169, Tm172, U234, U235, U236, U237, U239, V49, V51, W178, W180, W181, W184, W186, W187, Y86, Y89, Y90, Y91, Yb168, Yb170, Yb171, Yb172, Yb173, Yb174, Yb175, Zn62, Zn65, Zn70, Zn72, Zr90, Zr91, Zr92, Zr93, Zr94, Zr95, and Zr96.
    • Exemplar G2. The composition, pellet, or rod of exemplars E1, D1, B1, C1, or F1 wherein at least 10% of the atoms are selected from transition metals;
    • and
    • at least 10% of the atoms are selected from B, Al, Ga, In, C, Si, Ge, Sn, O, S, Se, Te.
    • Exemplar G3. The composition, pellet, or rod of exemplars E1, D1, B1, C1, or F1 wherein at least 10% of the atoms are selected from transition metals; at least 10% of the atoms are selected from B, Al, Ga, In, C, Si, Ge, Sn, O, S, Se, Te; and the assembly is a ceramic.


In some exemplars, a “nuclear adjuvant material” replaces 50%, 40%, 30%, 20%, 10%, 5%, 1%, 2×10-2%, 4×10-3%, 8×10-4%, 1.6×10-4%, 3.2×10-5%, 6.4×10-6%, 1.28×10-6%, 2.56×10-7%, 5.12×10-8%, 1.02×10-8%, 2.05×10-9%, or 4.1×10-10% of the fissile material in a commercial fuel pellet.


The previous description of several embodiments describes non-limiting examples that further illustrate the invention. All titles of sections in this document, including those appearing above, are not to be construed as limitations on the invention, but instead, they are provided to structure the illustrative description of the invention provided by the specification.


Unless defined otherwise, all technical and scientific terms used in this document have the same meanings as commonly understood by one skilled in the art to which the disclosed invention pertains. Singular forms—a, an, and the—include plural referents unless the context indicates otherwise. Thus, for example, a reference to “fluid” refers to one or more fluids, such as two or more fluids, three or more fluids, etc. When an aspect is said to include a list of components, the list is representative. If the component choice is limited explicitly to the list, the disclosure will say so. Listing components acknowledges that embodiments exist for each component and any combination of the components—including combinations that specifically exclude any one or any combination of the listed components. For example, “component A is chosen from A, B, or C” discloses embodiments with A, B, C, AB, AC, BC, and ABC. It also discloses (AB but not C), (AC but not B), and (BC but not A) as embodiments, for example. Combinations that one of ordinary skill in the art knows to be incompatible with each other or with the components' function in the invention are excluded from the invention, in some embodiments.


The terminology used is to describe particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an”, and “the” may be intended to include the plural forms unless the context indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, or components but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or groups thereof. The method steps, processes, and operations described are not construed as requiring their performance in the particular order discussed or illustrated unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed,


When an element or layer is called being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. When an element is called being “directly on,” “directly engaged to”, “directly connected to”, or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). The term “or” includes any combinations of one or more of the associated listed items as used herein.


Although the terms first, second, third, etc. may be used to describe various moieties such as elements, components, regions, layers, or sections, these moieties should not be limited by these terms. These terms may only distinguish one element, component, region, layer, or section from another region, layer, or section. Terms such as “first,” “second,” and other numerical terms when used do not imply a sequence or order unless indicated by the context. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation besides the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used interpreted.


The preceding description of the embodiments has been provided for illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment rarely are limited to that embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not explicitly shown or described. The same may also be varied. Such variations are not regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.


The embodiments of the invention described are exemplary. Numerous modifications, variations, and rearrangements can be readily envisioned to achieve substantially equivalent results, which are intended to be embraced within the invention's spirit and scope.

Claims
  • 1-20. (canceled)
  • 21. A nuclear fuel pellet, comprising: first particles formed of a fissile material; andsecond particles formed of a nuclear adjuvant material.
  • 22. The nuclear fuel pellet of claim 21, wherein the nuclear adjuvant material comprises one or more atomic species able to absorb a portion of hardened neutrons generated within a nuclear reactor, wherein: the hardened neutrons have energies greater than 800 keV and less than 20 MeV, andthe portion comprises between 0.00001% and 0.0001% of the hardened neutrons generated within the nuclear reactor.
  • 23. The nuclear fuel pellet of claim 22, wherein the one or more atomic species undergo a nuclear reaction upon absorption of hardened neutrons, and a product of the nuclear reaction comprises less than 1% neutrons.
  • 24. The nuclear fuel pellet of claim 22, wherein the one or more atomic species are selected from: Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, Zr, and combinations thereof.
  • 25. The nuclear fuel pellet of claim 22, wherein the one or more atomic species comprise one or more isotopes selected from: Ag107, Ag109, Ag111, Ag113, Ag114, Ag115, Ag116, Ag117, B11, C14, Ca41, Cd107, Cd108, Cd110, Cd111, Cd112, Cd113, Cd114, Cd115, Cd116, Ce136, Ce138, Ce139, Ce140, Ce141, Ce142, Ce143, Ce144, C135, Cl36, C137, Cm245, Co55, Co58, Co59, Cr48, Cr50, Cs133, Cs134, Cs138, Cs136, Cs137, Cu64, Dy156, Dy158, Dy160, Dy161, Dy162, Dy163, Dy164, Dy166, Er162, Er164, Er166, Er167, Er168, Er169, Er170, Eu151, Eu152, Eu153, Eu155, Eu156, Eu157, F19, Fe52, Fe53, Fe54, Fe55, Ga69, Ga70, Ga71, Gd152, Gd153, Gd154, Gd155, Gd156, Gd157, Gd158, Gd159, Gd160, Ge68, Ge69, Ge70, Ge71, Ge72, Ge73, Ge74, Ge75, Ge76, Ge77, Ge78, Hf174, Hf176, Hf177, Hf178, Hf179, Hf180, Hg197, Ho165, In113, In114, In115, Ir191, Ir193, K41, K43, La138, Li6, Lu175, Lu176, Mg24, Mg25, Mg26, Mg28, Mn55, Mo92, Mo94, Mo95, Mo96, Mo97, Mo98, Mo99, Mo100, N14, N15, Na22, Na23, Na24, Nb90, Nb94, Nb95, Nb96, Nd142, Nd143, Nd144, Nd145, Nd146, Nd147, Nd148, Nd149, Nd150, Ni58, Ni59, Ni60, Ni61, Ni62, Ni63, Ni64, Np236, O17, O18, Os185, Os186, Os188, Os189, Os190, Os192, Os194, Pa231, Pa233, Pb209, Pb210, Pd100, Pd101, Pd102, Pd103, Pd104, Pd105, Pd106, Pd107, Pd108, Pd109, Pd110, Pd112, Pm147, Pm148, Pm149, Pm150, Pm151, Pr141, Pr142, Pr143, Pu236, Pu237, Pu238, Pu240, Pu242, Pu243, Pu245, Rb83, Rb84, Rb85, Rb86, Rb87, Re182, Re183, Re184, Re185, Re187, Rh103, Rh104, Rh105, Ru100, Ru101, Ru102, Ru103, Ru104, Ru105, Ru106, Ru96, Ru98, Ru99, S32, S34, S35, S36, Sb121, Sb122, Sb123, Sb124, Sb125, Sb126, Sc45, Se72, Se73, Se74, Se76, Se77, Se78, Se79, Se80, Se81, Se82, Si28, Si31, Si32, Sm144, Sm146, Sm147, Sm148, Sm149, Sm150, Sm151, Sm152, Sm153, Sm154, Sm156, Sn112, Sn113, Sn114, Sn115, Sn116, Sn117, Sn118, Sn119, Sn120, Sn122, Sn123, Sn125, Sn126, Sr82, Sr84, Sr85, Sr86, Sr87, Sr88, Sr89, Sr90, Sr91, Ta182, Tb159, Te118, Te119, Te120, Te122, Te123, Te124, Te125, Te126, Te127, Te128, Te131, Te132, Th231, Th232, Ti45, Ti46, Ti47, Ti48, Ti49, Ti50, Ti51, Tm168, Tm169, Tm172, U234, U235, U236, U237, U239, V49, V51, W178, W180, W181, W184, W186, W187, Y86, Y89, Y90, Y91, Yb168, Yb170, Yb171, Yb172, Yb173, Yb174, Yb175, Zn62, Zn65, Zn70, Zn72, Zr90, Zr91, Zr92, Zr93, Zr94, Zr95, Zr96, and combinations thereof.
  • 26. The nuclear fuel pellet of claim 21, wherein at least a portion of the second particles act to slow a growth rate of a hardened neutron population during a reaction transient event.
  • 27. The nuclear fuel pellet of claim 21, wherein the nuclear adjuvant material has a coefficient of thermal expansion that is 50% to 150% of a coefficient of thermal expansion of the fissile material.
  • 28. The nuclear fuel pellet of claim 21, further comprising a consumable absorber.
  • 29. The nuclear fuel pellet of claim 21, wherein the second particles are at least one order of magnitude smaller than the first particles.
  • 30. The nuclear fuel pellet of claim 29, wherein the second particles are at least three orders of magnitude smaller than the first particles.
  • 31. The nuclear fuel pellet of claim 21, wherein the second particles are at least one order of magnitude larger than the first particles.
  • 32. The nuclear fuel pellet of claim 21, wherein the second particles are at least three orders of magnitude larger than the first particles.
  • 33. A nuclear fuel rod, comprising: cladding; anda plurality of nuclear fuel pellets supported by the cladding, wherein a first nuclear fuel pellet of the plurality comprises: first particles formed of a fissile material; andsecond particles formed of a nuclear adjuvant material.
  • 34. The nuclear fuel rod of claim 33, wherein: the nuclear adjuvant material comprises one or more atomic species able to absorb a portion of hardened neutrons generated within a nuclear reactor,the hardened neutrons have energies greater than 800 keV and less than 20 MeV, andthe portion comprises between 0.00001% and 0.0001% of the hardened neutrons generated within the nuclear reactor.
  • 35. The nuclear fuel rod of claim 34, wherein the one or more atomic species undergo a nuclear reaction upon absorption of hardened neutrons, and a product of the nuclear reaction comprises less than 1% neutrons.
  • 36. The nuclear fuel rod of claim 34, wherein the one or more atomic species are selected from: Ba, As, Br, Ce, Cl, Co, F, Ga, Ge, K, La, Mo, Nd, Os, Pr, S, Sr, Ti, Tl, V, Zr, and combinations thereof.
  • 37. The nuclear fuel rod of claim 34, wherein the one or more atomic species comprise one or more isotopes selected from: Ag107, Ag109, Ag111, Ag113, Ag114, Ag115, Ag116, Ag117, B11, C14, Ca41, Cd107, Cd108, Cd110, Cd111, Cd112, Cd113, Cd114, Cd115, Cd116, Ce136, Ce138, Ce139, Ce140, Ce141, Ce142, Ce143, Ce144, Cl35, Cl36, Cl37, Cm245, Co55, Co58, Co59, Cr48, Cr50, Cs133, Cs134, Cs138, Cs136, Cs137, Cu64, Dy156, Dy158 Dy160, Dy161, Dy162, Dy163, Dy164, Dy166, Er162, Er164, Er166, Er167, Er168, Er169, Er170, Eu151, Eu152, Eu153, Eu155, Eu156, Eu157, F19, Fe52, Fe53, Fe54, Fe55, Ga69, Ga70, Ga71, Gd152, Gd153, Gd154, Gd155, Gd156, Gd157, Gd158, Gd159, Gd160, Ge68, Ge69, Ge70, Ge71, Ge72, Ge73, Ge74, Ge75, Ge76, Ge77, Ge78, Hf174, Hf176, Hf177, Hf178, Hf179, Hf180, Hg197, Ho165, In113, In114, In115, Ir191, Ir193, K41, K43, La138, Li6, Lu175, Lu176, Mg24, Mg25, Mg26, Mg28, Mn55, Mo92, Mo94, Mo95, Mo96, Mo97, Mo98, Mo99, Mo100, N14, N15, Na22, Na23, Na24, Nb90, Nb94, Nb95, Nb96, Nd142, Nd143, Nd144, Nd145, Nd146, Nd147, Nd148, Nd149, Nd150, Ni58, Ni59, Ni60, Ni61, Ni62, Ni63, Ni64, Np236, O17, O18, Os185, Os186, Os188, Os189, Os190, Os192, Os194, Pa231, Pa233, Pb209, Pb210, Pd100, Pd101, Pd102, Pd103, Pd104, Pd105, Pd106, Pd107, Pd108, Pd109, Pd110, Pd112, Pm147, Pm148, Pm149, Pm150, Pm151, Pr141, Pr142, Pr143, Pu236, Pu237, Pu238, Pu240, Pu242, Pu243, Pu245, Rb83, Rb84, Rb85, Rb86, Rb87, Re182, Re183, Re184, Re185, Re187, Rh103, Rh104, Rh105, Ru100, Ru101, Ru102, Ru103, Ru104, Ru105, Ru106, Ru96, Ru98, Ru99, S32, S34, S35, S36, Sb121, Sb122, Sb123, Sb124, Sb125, Sb126, Sc45, Se72, Se73, Se74, Se76, Se77, Se78, Se79, Se80, Se81, Se82, Si28, Si31, Si32, Sm144, Sm146, Sm147, Sm148, Sm149, Sm150, Sm151, Sm152, Sm153, Sm154, Sm156, Sn112, Sn113, Sn114, Sn115, Sn116, Sn117, Sn118, Sn119, Sn120, Sn122, Sn123, Sn125, Sn126, Sr82, Sr84, Sr85, Sr86, Sr87, Sr88, Sr89, Sr90, Sr91, Ta182, Tb159, Te118, Te119, Te120, Te122, Te123, Te124, Te125, Te126, Te127, Te128, Te131, Te132, Th231, Th232, Ti45, Ti46, Ti47, Ti48, Ti49, Ti50, Ti51, Tm168, Tm169, Tm172, U234, U235, U236, U237, U239, V49, V51, W178, W180, W181, W184, W186, W187, Y86, Y89, Y90, Y91, Yb168, Yb170, Yb171, Yb172, Yb173, Yb174, Yb175, Zn62, Zn65, Zn70, Zn72, Zr90, Zr91, Zr92, Zr93, Zr94, Zr95, Zr96, and combinations thereof.
  • 38. The nuclear fuel rod of claim 33, wherein the first nuclear fuel pellet further comprises a consumable absorber.
  • 39. The nuclear fuel rod of claim 33, wherein the second particles are at least one order of magnitude smaller than the first particles.
  • 40. The nuclear fuel rod of claim 39, wherein the second particles are at least three orders of magnitude smaller than the first particles.
  • 41. The nuclear fuel rod of claim 33, wherein the second particles are at least one order of magnitude larger than the first particles.
  • 42. The nuclear fuel rod of claim 33, wherein the second particles are at least three orders of magnitude larger than the first particles.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to and claims priority to U.S. Provisional Patent Application Nos., all of which are incorporated by reference. 62/935,98815-NOV-201962/936,23415-NOV-201962/936,31815-NOV-201962/937,00418-NOV-201962/936,70118-NOV-201962/936,88218-NOV-2019

Provisional Applications (6)
Number Date Country
62937004 Nov 2019 US
62936701 Nov 2019 US
62936882 Nov 2019 US
62936234 Nov 2019 US
62936318 Nov 2019 US
62935988 Nov 2019 US
Continuations (1)
Number Date Country
Parent 17099198 Nov 2020 US
Child 18821291 US