Nucleic Acid-Based Anti-CRISPR Inhibitors of Cas9

Information

  • Research Project
  • 10079496
  • ApplicationId
    10079496
  • Core Project Number
    R01GM135646
  • Full Project Number
    5R01GM135646-02
  • Serial Number
    135646
  • FOA Number
    PAR-17-045
  • Sub Project Id
  • Project Start Date
    1/3/2020 - 4 years ago
  • Project End Date
    12/31/2023 - 9 months ago
  • Program Officer Name
    FABIAN, MILES
  • Budget Start Date
    1/1/2021 - 3 years ago
  • Budget End Date
    12/31/2021 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
  • Award Notice Date
    12/28/2020 - 3 years ago

Nucleic Acid-Based Anti-CRISPR Inhibitors of Cas9

PROJECT SUMMARY Sophisticated, facile, and potent inhibitors of Cas enzymes that are simple to use are still a major missing tool for CRISPR-based biomedical and therapeutic research. The rationale for CRISPR-Cas inhibitors includes a need for more efficient generation of model cells and organisms, the threat of dangerous off-target editing in CRISPR-based therapeutics, and the desire for more precise control over Cas enzyme activity in synthetic biology and diagnostics applications. Methods and modified Cas enzymes have been developed to help address these issues and other shortcomings of CRISPR-Cas systems, particularly Cas9 from Streptococcus pyogenes (SpCas9). These include Cas9 mutants with lower off-target activity and Cas9 mutants and protein fusions that allow small molecule or light-based activation of Cas9. However, these modifications typically have a concomitant decrease in on-target activity and do not address the need for rapid and specific shut-down of Cas9. Despite improvements to Cas enzymes, the need for specific, broadly applicable, and easy-to-use inhibitors will remain a necessary tool that is not available. Small molecules that can inhibit Cas9 may take significant effort to develop and potentially come with downsides, including their own off-target effects and inadvertent impacts on the organism?s microbiota, possibly similar to antibiotic side-effects. Natural anti-CRISPR proteins have recently been discovered that bind Cas9 and other Cas proteins with high affinity. While promising as inhibitors, they are too large to possess drug-like properties and their minimization or optimization is not an obvious exercise. They must be genetically encoded for use in cells or organisms. However, they provide inspiration for the design of a new class of CRISPR-Cas inhibitors. Here we propose to develop a new technology, nucleic acid-based (NAB) inhibitors of Cas9 enzymes. These molecules are smaller than natural anti-CRISPR proteins but can bind with similar affinity, be chemically synthesized, and be readily introduced into cells with common methods. In this project, we will develop NAB inhibitor technology by optimizing their size, chemistry, binding affinity, inhibitory activity, and cellular stability. We will further develop methods and molecules that facilitate direct, carrier-free delivery and timed-release of NAB inhibitors. The resulting NAB inhibitors are expected to be broadly applicable and straightforward to use for diverse biomedical research. We expect NAB inhibitors to become valuable fail-safe inhibitors to overcome the critical safety hurdles in CRISPR-based therapeutics.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    184608
  • Indirect Cost Amount
    58140
  • Total Cost
    242748
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIGMS:242748\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    SBCA
  • Study Section Name
    Synthetic and Biological Chemistry A Study Section
  • Organization Name
    SOUTHERN ILLINOIS UNIVERSITY CARBONDALE
  • Organization Department
    BIOCHEMISTRY
  • Organization DUNS
    939007555
  • Organization City
    CARBONDALE
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    629014709
  • Organization District
    UNITED STATES