Nucleic acid molecules associated with oil in plants

Information

  • Patent Application
  • 20070039069
  • Publication Number
    20070039069
  • Date Filed
    March 29, 2004
    20 years ago
  • Date Published
    February 15, 2007
    17 years ago
Abstract
Polynucleotides that encode proteins associated with oil content in plants are useful in constructs to make transgenic plants, e.g., maize or soybean, with desirable oil content phenotype and progeny of any generation derived from the fertile transgenic plants. Markers associated with oil content QTL are useful in breeding for plants with desired oil content.
Description
INCORPORATION OF SEQUENCE LISTING

Two copies of the sequence listing (Seq. Listing Copy 1 and Seq. Listing Copy 2) and a computer-readable form of the sequence listing, all on CD-ROMs, each containing the file named “pa00678.rpt”, which is 7,821 kilobytes (measured in MS-Windows) and was created on Mar. 18, 2004, are herein incorporated by reference.


INCORPORATION OF TABLES

Two copies of Tables 1-5 (Tables 1-5, Copy 1 and Tables 1-5, Copy 2) all on CD-ROMs, each containing the file named “pa00678.txt”, which is 192 kilobytes (measured in MS-Windows) and was created on Mar. 29, 2004, are herein incorporated by reference.

TABLES FILED ON CDThe patent application contains tables filed on compact disc. These tables have been included at the end of the specification


FIELD OF THE INVENTION

Disclosed herein are inventions in the field of plant molecular biology, plant genetics and plant breeding. More specifically disclosed are nucleic acid and amino acid molecules associated with oil in plants, particularly oil in maize. Also disclosed are genetic markers for such nucleic acid molecules and genes and QTLs associated with oil in maize. Such markers are useful for discovery and isolation of genes useful in enhancing the level of oil in plants and for molecular breeding of maize with enhanced levels of oil. Also disclosed are transgenic plants with over expression of one or more genes associated with oil.


BACKGROUND OF THE INVENTION

Maize, Zea mays L., is one of the major crops grown worldwide as a primary source for animal feed, human food and industrial purposes. Maize plants with improved agronomic traits, such as yield or pest resistance, improved quality traits such as oil, protein or starch quality or quantity, or improved processing characteristics, such as extractability of desirable compounds, are desirable for both the farmer and consumer of maize and maize derived products. The ability to breed or develop transgenic plants with improved traits depends in part on identification of genes associated with a trait. The unique maize sequences disclosed herein may be useful as mapping tools to assist in plant breeding and in designing transgenic plants. Homologous sequences in plant species other than maize and in fungi, algae and bacteria may be useful to confer novel phenotypes in transgenic maize and other oil-producing plants.


Increases in the oil content of maize seeds can be achieved by altering the expression of one or more genes that encode a protein that functionally increases oil production or storage. Effective changes in expression may include constitutive increases, constitutive decreases or alterations in the tissue-specific pattern of expression. See, for instance, U.S. Pat. No. 6,268,550, which discloses that a higher oil content soybean is associated with a twofold increase in acetyl CoA carboxylase (ACCase) activity during early to mid stages of development when compared with a low oil content soybean. In view of a correlation of increased expression of the ACCase gene with an increase in the oil content of the seed, it is predicted that over expression of the ACCase enzyme is likely to lead to an increase in the oil content of the plants and seeds. Since metabolic pathways affecting oil production and storage are complex and controlled by a large number of enzymes and transcription factors, there is a need to discover and modulate the expression of other genes associated with oil.


Polymorphisms are useful as genetic markers for genotyping applications in the agriculture field, e.g., in plant genetic studies and commercial breeding. See for instance U.S. Pat. Nos. 5,385,835; 5,492,547 and 5,981,832, the disclosures of all of which are incorporated herein by reference. The highly conserved nature of DNA combined with the rare occurrences of stable polymorphisms provide genetic markers that are both predictable and discerning of different genotypes. Among the classes of existing genetic markers are a variety of polymorphisms indicating genetic variation including restriction-fragment-length polymorphisms (RFLPs), amplified fragment-length polymorphisms (AFLPs), simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), and insertion/deletion polymorphisms (Indels). Because the number of genetic markers for a plant species is limited, the discovery of additional genetic markers associated with a trait will facilitate genotyping applications including marker-trait association studies, gene mapping, gene discovery, marker-assisted selection, and marker-assisted breeding. Evolving technologies make certain genetic markers more amenable for rapid, large scale use. For instance, technologies for SNP detection indicate that SNPs may be preferred genetic markers.


SUMMARY OF THE INVENTION

This invention provides genes that have been identified as being associated with high oil in maize. An aspect of this invention provides homologs of such genes from a variety of other plant species and other organisms, e.g. fungi, algae and bacteria. Nucleic acid molecules derived from such genes and homologous genes which encode proteins that are effective in the production and/or storage of oil in plant seeds are useful in other aspects of this invention, e.g. DNA constructs for producing transgenic plants and seed with higher or lower oil. Thus, a particular aspect of this invention is transgenic plant seed having in its genome a recombinant DNA construct comprising at least one oil-associated gene of this invention operably linked to a promoter which is functional in the plant to transcribe the oil-associated gene. In one preferred aspects of this invention such transgenic plant seeds can grow into plants having enhanced seed oil as compared to wild type. Conversely, an alternative aspect of this invention employs gene suppression technology, e.g. RNAi gene suppression, to provide transgenic plant seeds having a recombinant DNA construct which includes DNA effective for suppression of an oil-associated gene. Such seed can be grown into plants having reduced seed oil as compared to wild type. Alternatively, the suppression of the oil-associated gene could lead to plants with increased seed oil compared to wild type, depending on the action of the gene.


Another aspect of this invention provides hybrid maize seed that is produced by crossing two parental maize lines where at least one of the parental maize lines is a transgenic maize line which has in its genome a recombinant DNA construct for producing transgenic maize with enhanced seed oil as compared to its parents, e.g. its non-transgenic ancestors. Such hybrid maize seed will have a recombinant DNA construct comprising at least one oil-associated gene of this invention operably linked to a promoter which is functional in maize to transcribe the oil-associated gene. Still another aspect of this invention provides hybrid maize seed that can produce maize plants characterized by agronomic traits of seed oil level, yield and standability. Preferably, seed oil level is greater than seed oil level in said closest non-transgenic parental lines and, even more preferably, there is essentially no reduction in yield and standability traits in said maize plants as compared to yield and standability traits for said closest non-transgenic parental lines.


Still another aspect of this invention provides methods of producing hybrid maize plants having enhanced levels of seed oil production and/or seed oil storage as compared to the closest non-transgenic ancestor maize lines. Such methods comprise producing a transgenic maize plant having in its genome a recombinant DNA construct comprising at least one oil-associated gene of this invention operably linked to a promoter which is functional in maize to transcribe the oil-associated gene. Such methods further comprise crossing transgenic progeny of transgenic maize plants with at least one other maize plant to produce hybrid maize plants having enhanced levels of seed oil production.


Yet another aspect of this invention relates to a method for producing vegetable oil by growing and harvesting oil from plants of this invention.


This invention also provides maize oil markers that have been identified as statistically significant in associating with high oil in maize. Such markers are especially useful in methods of this invention relating to breeding maize for high oil. More particularly, this invention provides a method of breeding maize comprising selecting from a breeding population of maize plants a selected maize plant with higher oil than other maize plants in the breeding population based on allelic polymorphisms associated by linkage disequilibrium to a higher seed oil-related trait, where the selected maize plant has 1 or more higher oil alleles linked to a maize oil marker of this invention. The maize oil markers are also useful in a method of breeding maize comprising selecting a maize line having a haplotype characterized by the maize oil markers. The maize oil markers are also useful in methods of this invention for identifying other polymorphic maize DNA loci, which are useful for genotyping between at least two varieties of maize. More particularly such a method comprises identifying a locus comprising at least 20 consecutive nucleotides which are linked to a maize oil marker locus of this invention. Thus, a further aspect of this invention provides methods of breeding maize comprising selecting a maize line having a polymorphism associated by linkage disequilibrium to a seed oil-related trait locus where such polymorphism is linked to a maize oil marker of this invention.


Aspects of this invention related to maize oil markers are isolated nucleic acid molecules that are useful for detecting a polymorphism associated with oil in maize, e.g. molecules that are known in the art as PCR primers and hybridization probes for using the markers in genotyping.







DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the sequence listing:


SEQ ID NOs 1-73 are DNA sequences of amplicons for oil-assoicated markers,


SEQ ID NOs 74-146 are DNA sequences for oil-associated genes,


SEQ ID NOs 147-219 are amino acid sequences for proteins encoded by oil-associated genes, and


SEQ ID NOs 220-2337 are amino acid sequences for proteins encoded by homologs of oil-associated genes.


In Tables 1-5:


Table 5 identifies polymorphic markers, i.e. SNPs and Indels, in each of the 73 oil-assoicated marker amplicons sequences, i.e. SEQ ID NO:1-73,


Table 2 identifies each of the 73 DNA sequences for oil-associated genes by arbitrary name of the gene and the encoded protein, i.e. SEQ ID NO:74-146,


Table 3 identifies each of the 73 amino acid sequences for proteins encoded by an oil-associated gene by annotated function, i.e. SEQ ID NO:147-219,


Table 4 identifies homologs of oil-associated genes by reference to a name assigned to a sequence in a protein database for SEQ ID NO:147-219, and


Table 5 identifies each of the amino acid sequences of proteins encoded by homologs of oil-associated genes, i.e SEQ ID NO:220-2337, by reference to the name assigned in Table 4 and indication of source organism.


As used herein certain terms are defined as follows.


An “oil-associated gene” means a nucleic acid molecule comprising at least a functional part of the open reading frame of a gene (or a homolog thereof) that either overlaps with, or is associated by linkage disequilibrium with, any one or more of the 73 genomic amplicons of SEQ ID NO:1 through SEQ ID NO:73, which contain markers having a statistically significant association with an oil trait. More particularly, oil-associated genes are found in the group consisting of:

  • (a) on maize chromosome 1 the genes characterized by nucleic acid sequences of SEQ ID NO: 140, 128, 108, 111, 123, 105, 131, 100, 78, 101, and 146; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 213, 201, 181, 184, 196, 178, 204, 173, 151, 174, and 219; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (b) on maize chromosome 2 the genes characterized by nucleic acid sequences of SEQ ID NO: 95, 126, 82, 74, 89, 113, and 116; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 168, 199, 155, 147, 162, 186, and 189; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (c) on maize chromosome 3 the genes characterized by nucleic acid sequences of SEQ ID NO: 80, 98, 94, 87, 99, 79, and 135; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 153, 171, 167, 160, 172, 152, and 208; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (d) on maize chromosome 4 the genes characterized by nucleic acid sequences of SEQ ID NO: 134, 130, 110, 91, 77, 86, 97, 85, and 102; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 207, 203, 183, 164, 150, 159, 170, 158, and 175; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (e) on maize chromosome 5 the genes characterized by nucleic acid sequences of SEQ ID NO: 133, 118, 117, 144, 141, 93, 139, 129, 103, and 119; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 206, 191, 190, 217, 214, 166, 212, 202, 176, and 192; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (f) on maize chromosome 6 the genes characterized by nucleic acid sequences of SEQ ID NO: 75, 122, 121, 145, 84, 96, and 107; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 148, 195, 194, 218, 157, 169, and 180; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (g) on maize chromosome 7 the genes characterized by nucleic acid sequences of SEQ ID NO: 114, 115, 104, 109, 143, 83, and 106; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 187, 188, 177, 182, 216, 156, and 179; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (h) on maize chromosome 8 the genes characterized by nucleic acid sequences of SEQ ID NO: 112, 132, 142, 90, 124, 127, and 81; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 185, 205, 215, 163, 197, 200, and 154; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (i) on maize chromosome 9 the genes characterized by nucleic acid sequences of SEQ ID NO: 120, 137, 76, 125, and 136; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 193, 210, 149, 198, and 209; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (j) on maize chromosome 10 the genes characterized by nucleic acid sequences of SEQ ID NO: 138, 88, and 92; genes encoding proteins having an amino acid sequence selected from the group consisting of SEQ ID NO: 211, 161, and 165; and homologs thereof selected from plants, fungi, algae and bacteria;
  • (k) nucleic acid molecules comprising oligonucleotides of at least 40 consecutive nucleic acid residues of a gene in sections (a) through (j) and having at least 60%, more preferably at least 70%, even more preferably at least 80%, and most preferably at least 90% identity with a same length fragment of said gene; and
  • (l) nucleic acid molecules encoding proteins having amino acid sequence which has at least 80% identity, preferably at least 90% identity, to an amino acid sequence of a protein in sections (a) through (j) over a window of alignment.


An “allele” means an alternative sequence at a particular locus; the length of an allele can be as small as 1 nucleotide base but is typically larger. Allelic sequence can be amino acid sequence or nucleic acid sequence.


A “locus” is a short sequence that is usually unique and usually found at one particular location by a point of reference, e.g., a short DNA sequence that is a gene, or part of a gene or intergenic region. A locus of this invention can be a unique PCR product. The loci of this invention are polymorphic between certain individuals.


“Genotype” means the specification of an allelic composition at one or more loci within an individual organism. In the case of diploid organisms, there are two alleles at each locus; a diploid genotype is said to be homozygous when the alleles are the same, and heterozygous when the alleles are different.


“Consensus sequence” means

    • (a) a constructed DNA sequence that identifies SNP and Indel polymorphisms in alleles at a locus. Consensus sequence of a polymorphic locus can be based on either strand of DNA at the locus and states the nucleotide base of either one of each SNP in the locus and the nucleotide bases of all Indels in the locus. Thus, although a consensus sequence of a polymorphic locus may not be a copy of an actual DNA sequence, a consensus sequence is useful for precisely designing primers and probes for actual polymorphisms in the locus.
    • (b) a conserved amino acid sequence of part or all of the proteins encoded by homologous genes.


“Homolog” of an oil-associated gene as used herein means a gene from a the same or a different organism that performs the same biological function as the oil-associated gene. An orthologous relation between two organisms is not necessarily manifest as a one-to-one correspondence between two genes, because a gene can be duplicated or deleted after organism phylogenetic separation, such as speciation. So for a given gene, there may be no ortholog or more than one ortholog or the function may be performed by an alternatively spliced gene. Other complicating factors include limited gene identification, redundant copies of the same gene with different sequence lengths or corrected sequence. A local sequence alignment program, e.g. BLAST, can be used to search a database of sequences to find similar sequences, and the summary Expectation value (E-value) can be used to measure the sequence base similarity. Because query results with the best E-value for a particular organism may not necessarily be an ortholog or the only ortholog, it is necessary to use a reciprocal BLAST search to filter the hit sequences with significant E-values before calling them orthologs. The reciprocal BLAST entails search of the significant hits against a database of genes from the base organism that are similar to the query gene. A hit is a likely ortholog when the reciprocal BLAST's best hit is the query gene itself or is one of the duplicated genes of the query gene after speciation. Some skilled in the art may argue that what is called a homolog is in fact an ortholog or a paralog. Regardless, the term homolog is used herein to describe genes which are assumed to have functional similarity by inference from sequence base similarity.


“Phenotype” means the detectable characteristics of a cell or organism that are a manifestation of gene expression.


“Marker” means a polymorphic sequence. A “polymorphism” is a variation among individuals in sequence, particularly in DNA sequence. Useful polymorphisms include a single nucleotide polymorphisms (SNPs) and insertions or deletions in DNA sequence (Indels).


“Maize oil marker” means a marker in any one of the genomic amplicons of SEQ ID NO:1 through SEQ ID NO:73 and markers in linkage disequilibrium with a marker in said amplicons.


“Marker assay” means a method for detecting a polymorphism at a particular locus using a particular method, e.g., phenotype (such as seed color, flower color, or other visually detectable trait), restriction fragment length polymorphism (RFLP), single base extension, electrophoresis, sequence alignment, allelic specific oligonucleotide hybridization (ASO), RAPID, etc. Preferred marker assays include single base extension as disclosed in U.S. Pat. No. 6,013,431 and allelic discrimination where endonuclease activity releases a reporter dye from a hybridization probe as disclosed in U.S. Pat. No. 5,538,848, the disclosures of both of which are incorporated herein by reference.


“Linkage” refers to relative frequency at which types of gametes are produced in a cross. For example, if locus A has alleles “A” or “a” and locus B has alleles “B” or “b,” a cross between parent 1 with AABB genotype and parent II with aabb genotype will produce four possible gametes where the haploid genotypes are segregated into AB, Ab, aB and ab. The null expectation is that there will be independent and equal segregation into each of the four possible genotypes, i.e., with no linkage, ¼ of the gametes will be of each genotype. Segregation of gametes into a genotypes differing from ¼ are attributed to linkage. Two loci are said to be “genetically linked” when they show this deviation from the expected equal frequency of ¼.


“Linkage disequilibrium” is defined in the context of the relative frequency of gamete types in a population of many individuals in a single generation. If the frequency of allele A is p, a is p′, B is q and b is q′, then the expected frequency (with no linkage disequilibrium) of genotype AB is pq, Ab is pq′, aB is p′q and ab is p′q′. Any deviation from the expected frequency is called linkage disequilibrium.


“Quantitative Trait Locus (QTL)” means a locus that controls to some degree numerically representable traits that are usually continuously distributed.


“Haplotype” means the genotype for multiple loci or genetic markers in a haploid gamete. Generally, these loci or markers reside within a relatively small and defined region of a chromosome. A preferred haplotype comprises the 10 cM region or the 5 cM region or the 2 cM region surrounding an informative marker having a significant association with oil.


“Hybridizing” means the capacity of two nucleic acid molecules or fragments thereof to form anti-parallel, double-stranded nucleotide structure. The nucleic acid molecules of this invention are capable of hybridizing to other nucleic acid molecules under certain circumstances. A nucleic acid molecule is said to be the “complement” of another nucleic acid molecule if the molecules exhibit “complete complementarity,” i.e., each nucleotide in one sequence is complementary to its base pairing partner nucleotide in another sequence. Two molecules are said to be “minimally complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional “low-stringency” conditions. Similarly, the molecules are said to be “complementary” if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional “high-stringency” conditions. Nucleic acid molecules that hybridize to other nucleic acid molecules, e.g., at least under low stringency conditions are said to be “hybridizable cognates” of the other nucleic acid molecules. Conventional stringency conditions are described by Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989) and by Haymes et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985), each of which is incorporated herein by reference. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. Thus, in order for a nucleic acid molecule to serve as a primer or probe, it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed. Appropriate stringency conditions that promote DNA hybridization, for example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 50° C., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6, incorporated herein by reference. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0×SSC at 50° C. to a high stringency of about 0.2×SSC at 50° C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.


“Sequence identity” refers to the extent to which two optimally aligned DNA or amino acid sequences are invariant throughout a window of alignment of components, e.g., nucleotides or amino acids. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components that are shared by the two aligned sequences divided by the total number of components in reference sequence segment, i.e., the entire reference sequence or a smaller defined part of the reference sequence. “Percent identity” is the identity fraction times 100. Optimal alignment of sequences for aligning a comparison window are well known to those skilled in the art and may be conducted by tools such as the local homology algorithm of Smith and Waterman, the homology alignment algorithm of Needleman and Wunsch, the search for similarity method of Pearson and Lipman, and preferably by computerized implementations of these algorithms such as GAP, BESTFIT, FASTA, and TFASTA available as part of the GCG® Wisconsin Package® (Accelrys Inc. Burlington, Mass.). Polynucleotides of the present invention that are variants of the polynucleotides provided herein will generally demonstrate significant identity with the polynucleotides provided herein. Of particular interest are DNA homologs having at least about 70% sequence identity, at least about 80% sequence identity, at least about 90% sequence identity, and more preferably even greater, such as 98% or 99% sequence identity with DNA sequences of an oil-associated gene described herein. Homologous DNA can be characterized by the cognate encoded protein and will have at least 80%, preferably at least 90% identity with amino acid sequence of a protein encoded by an oil-associated gene.


“Genetic transformation” means a process of introducing a DNA construct (e.g., a vector or expression cassette) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication.


“Exogenous gene” means a gene or partial gene that is not normally present in a given host genome in the exogenous gene's present form. In this respect, the gene itself may be native to the host genome; however, the exogenous gene will comprise the native gene altered by the addition or deletion of one or more different regulatory elements.


“Expression” means the combination of intracellular processes, including transcription and translation undergone by a coding DNA molecule such as a structural gene to produce a polypeptide.


“Progeny” means any subsequent generation, including the seeds and plants therefrom, that is derived from a particular parental plant or set of parental plants.


“Promoter” means a recognition site on a DNA sequence or group of DNA sequences that provides an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.


“R0 transgenic plant” means a plant that has been directly transformed with a selected DNA or has been regenerated from a cell or cell cluster that has been transformed with a selected DNA.


“Regeneration” means the process of growing a plant from a plant cell (e.g., plant protoplast, callus or explant).


“DNA construct” means a chimeric DNA molecule that is designed for introduction into a host genome by genetic transformation. Preferred DNA constructs will comprise all of the genetic elements necessary to direct the expression of one or more exogenous genes. In particular embodiments of the instant invention, it may be desirable to introduce a DNA construct into a host cell in the form of an expression cassette.


“Transformed cell” means a cell the DNA complement of which has been altered by the introduction of an exogenous DNA molecule into that cell.


“Transgene” means a segment of DNA that has been incorporated into a host genome or is capable of autonomous replication in a host cell and is capable of causing the expression of one or more cellular products. Exemplary transgenes will provide the host cell, or plants regenerated therefrom, with a novel phenotype relative to the corresponding non-transformed cell or plant. Transgenes may be directly introduced into a plant by genetic transformation or may be inherited from a plant of any previous generation that was transformed with the DNA segment.


“Transgenic plant” means a plant or progeny plant of any subsequent generation derived therefrom, wherein the DNA of the plant or progeny thereof contains an introduced exogenous DNA segment not originally present in a non-transgenic plant of the same strain. The transgenic plant may additionally contain sequences that are native to the plant being transformed, but wherein the “exogenous” gene has been altered in order to alter the level or pattern of expression of the gene.


“Transit peptide” means a polypeptide sequence that is capable of directing a polypeptide to a particular organelle or other location within a cell.


“Vector” means a DNA molecule capable of replication in a host cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment. A plasmid is an exemplary vector.


“Purified” refers to a nucleic acid molecule or polypeptide separated from substantially all other molecules normally associated with it in its native state. More preferably, a substantially purified molecule is the predominant species present in a preparation. A substantially purified molecule may be greater than 60% free or 75% free or 90% free or 95% free from the other molecules (exclusive of solvent) present in the natural mixture. The terms “isolated and purified” and “substantially purified” are not intended to encompass molecules present in their native state.


As used herein “yield” means the production of a crop, e.g. shelled corn kernels or soybean or cotton fiber, per unit of production area, e.g. in bushels per acre or metric tons per hectare, often reported on a moisture adjusted basis, e.g. corn is typically reported at 15.5% moisture. Moreover a bushel of corn is defined by law in the State of Iowa as 56 pounds by weight, a useful conversion factor for corn yield is: 100 bushels per acre is equivalent to 6.272 metric tons per hectare. Other measurements for yield are in common practice.


The molecules and organisms of the invention may also be “recombinant,” which describes (a) nucleic acid molecules that are constructed or modified outside of cells and that can replicate or function in a living cell, (b) molecules that result from the transcription, replication or translation of recombinant nucleic acid molecules, or (c) organisms that contain recombinant nucleic acid molecules or are modified using recombinant nucleic acid molecules.


As used herein a “transgenic” organism, e.g. plant or seed, is one whose genome has been altered by the incorporation of exogenous genetic material or additional copies of native genetic material, e.g. by transformation or recombination of the organism or an ancestor organism. Transgenic plants include progeny plants of an original plant derived from a transformation process including progeny of breeding transgenic plants with wild type plants or other transgenic plants. Crop plants of interest in the present invention include, but are not limited to maize, soybean, cotton, canola (rape), sunflower, safflower and flax.


“Enhanced oil” in a transgenic cell or organism having recombinant DNA comprising an oil-associated gene is determined by reference to cell or organism without that recombinant DNA, e.g. a wild-type plant, a non-recombinant ancestor plant line or a negative segregant progeny from a hemizygous transgenic plant. Enhanced oil can be determined by direct or indirect measurement. Enhanced oil activity can be achieved by linking a constitutive promoter to an oil-associated gene. Reduced oil can also be achieved through genetic engineering of oil-associated genes, e.g. by a variety of mechanisms including anti-sense, co-suppression, double stranded RNA (dsRNA), mutation or knockout.


As used herein “gene suppression” means any of the well-known methods for suppressing expression of protein. Posttranscriptional gene suppression is mediated by transcription of integrated recombinant DNA to form double-stranded RNA (dsRNA) having homology to a gene targeted for suppression. This formation of dsRNA most commonly results from transcription of an integrated inverted repeat of the target gene, and is a common feature of gene suppression methods known as anti-sense suppression, co-suppression and RNA interference (RNAi). See Redenbaugh et al. in “Safety Assessment of Genetically Engineered Flavr Savr™ Tomato, CRC Press, Inc. (1992); Jorgensen et al., Mol. Gen. Genet., 207:471-477 (1987); and Stam et al., The Plant Journal, 12(1), 63-82 (1997). Methods for such gene suppression are disclosed in U.S. Pat. No. 5,107,065 (Shewmaker et al.); U.S. Pat. No. 5,283,184 (Jorgensen et al.); U.S. Pat. No. 6,326,193 U.S. Pat. No. 6,506,559 (Fire et al.); U.S. 2002/0048814 A1 (Oeller); U.S. 2003/0018993 A1 (Gutterson et al.); U.S. 2003/0175965 A1 (Lowe et al.); U.S. 2003/0036197 A1 (Glassman et al.); U.S. patent application Ser. No. 10/465,800 (Fillatti), and U.S. application Ser. No. 10/393,347 (Shewmaker et al.), incorporated herein by reference. Transcriptional suppression can be mediated by a transcribed dsRNA having homology to a promoter DNA sequence to effect what is called promoter trans suppression. Constructs useful for such gene suppression mediated by promoter trans suppression are disclosed by Mette et al., The EMBO Journal, Vol. 18, No. 1, pp. 241-148, 1999 and by Mette et al., The EMBO Journal, Vol. 19, No. 19, pp. 5194-5201-148, 2000. Suppression of an oil-associated gene by RNAi can be achieved using a recombinant DNA construct having a promoter operably linked to a DNA element comprising a sense and anti-sense element of a segment of genomic DNA of the oil-associated gene, e.g. a segment of at least about 23 nucleotides, more preferably about 50 to 200 nucleotides where the sense and anti-sense DNA components can be directly linked or joined by an intron or artificial DNA segment that can form a loop when the transcribed RNA hybridizes to form a hairpin structure. For example, genomic DNA from a polymorphic locus of SEQ ID NO:1 through SEQ ID NO:73 can be used in a recombinant construct for suppression of a cognate oil-associated gene by RNAi suppression.


Characteristics of Oil-Associated Genes


This invention provides nucleic acid molecules comprising DNA sequence representing oil-associated genes having a nucleic acid sequence of SEQ ID NO:74 through SEQ ID NO:146 or fragments of such oil-associated genes such as substantial parts of oil-associated genes providing the protein coding sequence part of the oil-associated gene. The oil-associated genes of this invention have been identified by marker trait association.


Homologous oil-associated genes have been identified in other plants and in other organisms such as fungi, algae and bacteria using the nucleic acid sequence of a known oil-associated gene or the amino acid sequence of a protein encoded by an oil-associated gene in any of a variety of search algorithms, e.g. the BLAST search algorithm, in public or proprietary DNA and protein databases. Existence of a gene is inferred if significant sequence similarity extends over the sequence of the target gene. Because homology-based methods may overlook genes unique to the source organism, for which homologous nucleic acid molecules have not yet been identified in databases, gene prediction programs are also used. Gene prediction programs generally use “signals” in the sequence, such as splice sites or “content” statistics, such as codon bias; to predict gene structures (Stormo, Genome Research 10: 394-397, 2000). Proteins encoded by homologs of oil-associated genes are identified by reference to Tables 4 and 5 have amino acid sequences of SEQ IS NO:220 through SEQ ID NO:2337.


With respect to nucleotide sequences, degeneracy of the genetic code provides the possibility to substitute at least one base of the base sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, the DNA of the present invention may also have any codon changed in a sequence of SEQ ID NO: 1 through SEQ ID NO: 146 by substitution in accordance with degeneracy of genetic code. See U.S. Pat. No. 5,500,365, incorporated herein by reference.


More particularly, the homologous oil-associated genes can be characterized by reference to an artificial consensus sequence of conserved amino acids determined from an alignment of protein sequence encoded by such homologs.


Characteristics of Maize Oil Markers


The maize loci of this invention comprise a DNA sequence that comprises at least 20 consecutive nucleotides and includes or is adjacent to one or more polymorphisms identified in Table 1. Such maize loci have a nucleic acid sequence having at least 90% sequence identity or at least 95% or for some alleles at least 98% and in many cases at least 99% sequence identity, to the sequence of the same number of nucleotides in either strand of a segment of maize DNA that includes or is adjacent to the polymorphism. The nucleotide sequence of one strand of such a segment of maize DNA may be found in a polymorphic locus with a sequence in the group consisting of SEQ ID NO:1 through SEQ ID NO:73. It is understood by the very nature of polymorphisms that for at least some alleles there will be no identity to the polymorphism, per se. Thus, sequence identity can be determined for sequence that is exclusive of the polymorphism sequence. The polymorphisms in each locus are identified more particularly in Table 1.


For many genotyping applications it is useful to employ as markers polymorphisms from more than one locus. Thus, aspects of the invention use a collection of different loci. The number of loci in such a collection can vary but will be a finite number, e.g., as few as 2 or 5 or 10 or 25 loci or more, for instance up to 40 or 75 or 100 or more loci.


Another aspect of the invention provides nucleic acid molecules that are capable of hybridizing to the polymorphic maize loci of this invention, e.g. PCR primers and hybridization probes. In certain embodiments of the invention, e.g., which provide PCR primers, such molecules comprise at least 15 nucleotide bases. Molecules useful as primers can hybridize under high stringency conditions to one of the strands of a segment of DNA in a polymorphic locus of this invention. Primers for amplifying DNA are provided in pairs, i.e., a forward primer and a reverse primer. One primer will be complementary to one strand of DNA in the locus and the other primer will be complementary to the other strand of DNA in the locus, i.e., the sequence of a primer is at least 90% or at least 95% identical to a sequence of the same number of nucleotides in one of the strands. It is understood that such primers can hybridize to a sequence in the locus that is distant from the polymorphism, e.g., at least 5, 10, 20, 50 or up to about 100 nucleotide bases away from the polymorphism. Design of a primer of this invention will depend on factors well known in the art, e.g., avoidance of repetitive sequence.


Another aspect of the nucleic acid molecules of this invention are hybridization probes for polymorphism assays. In one aspect of the invention such probes are oligonucleotides comprising at least 12 nucleotide bases and a detectable label. The purpose of such a molecule is to hybridize, e.g., under high stringency conditions, to one strand of DNA in a segment of nucleotide bases that includes or is adjacent to the polymorphism of interest in an amplified part of a polymorphic locus. Such oligonucleotides are at least 90% or at least 95% identical to the sequence of a segment of the same number of nucleotides in one strand of maize DNA in a polymorphic locus. The detectable label can be a radioactive element or a dye. In preferred aspects of the invention, the hybridization probe further comprises a fluorescent label and a quencher, e.g., for use in hybridization probe assays of the type known as Taqman assays, available from Applied Biosystems of Foster City, Calif.


For assays where the molecule is designed to hybridize adjacent to a polymorphism that is detected by single base extension, e.g., of a labeled dideoxynucleotide, such molecules can comprise at least 15 or at least 16 or 17 nucleotide bases in a sequence that is at least 90% or at least 95% identical to a sequence of the same number of consecutive nucleotides in either strand of a segment of polymorphic maize DNA. Oligonucleotides for single base extension assays are available from Orchid Biosystems.


Such primer and probe molecules are generally provided in groups of two primers and one or more probes for use in genotyping assays. Moreover, it is often desirable to conduct a plurality of genotyping assays for a plurality of polymorphisms. Thus, this invention also provides collections of nucleic acid molecules, e.g., in sets that characterize a plurality of polymorphisms.


Characteristics of Protein and Polypeptide Molecules


The nucleic acid molecules of this invention encode certain protein or smaller polypeptide molecules including those having an amino acid sequence of SEQ ID NO: 147 through SEQ ID NO: 219. Homologs of the polypeptides of the present invention may be identified by comparison of the amino acid sequence of the polypeptide to amino acid sequences of polypeptides from the same or different plant sources, e.g. manually or by using known homology-based search algorithms such as those commonly known and referred to as BLAST, FASTA, and Smith-Waterman.


A further aspect of the invention comprises functional homolog proteins which differ in one or more amino acids from those of a polypeptide provided herein as the result of one or more of the well-known conservative amino acid substitutions, e.g. valine is a conservative substitute for alanine and threonine is a conservative substitute for serine. Conservative substitutions for an amino acid within the native polypeptide sequence can be selected from other members of a class to which the naturally occurring amino acid belongs. Representative amino acids within these various classes include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; and (4) neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. Conserved substitutes for an amino acid within a native amino acid sequence can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Naturally conservative amino acids substitution groups are: valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the invention comprises polypeptides which differ in one or more amino acids from those of a described protein sequence as the result of deletion or insertion of one or more amino acids in a native sequence.


Recombinant DNA Constructs for Plant Transformation


The present invention contemplates the use of polynucleotides which encode a protein effective for imparting altered oil levels in plants. Such polynucleotides are assembled in recombinant DNA constructs using methods known to those of ordinary skill in the art. A useful technology for building DNA constructs and vectors for transformation is the GATEWAY™ cloning technology (available from Invitrogen Life Technologies, Carlsbad, Calif.) uses the site specific recombinase LR cloning reaction of the Integrase/att system from bacteriophage lambda vector construction, instead of restriction endonucleases and ligases. The LR cloning reaction is disclosed in U.S. Pat. Nos. 5,888,732 and 6,277,608, U.S. Patent Application Publications 2001283529, 2001282319 and 20020007051, all of which are incorporated herein by reference. The GATEWAY™ Cloning Technology Instruction Manual which is also supplied by Invitrogen also provides concise directions for routine cloning of any desired DNA into a vector comprising operable plant expression elements.


Transgenic DNA constructs used for transforming plant cells will comprise the heterologous DNA which one desires to introduced into and a promoter to express the heterologous DNA in the host maize cells. As is well known in the art such constructs typically also comprise a promoter and other regulatory elements, 3′ untranslated regions (such as polyadenylation sites), transit or signal peptides and marker genes elements as desired. For instance, see U.S. Pat. Nos. 5,858,642 and 5,322,938 which disclose versions of the constitutive promoter derived from cauliflower mosaic virus (CaMV35S), U.S. Pat. No. 6,437,217 which discloses a maize RS81 promoter, U.S. Pat. No. 5,641,876 which discloses a rice actin promoter, U.S. Pat. No. 6,426,446 which discloses a maize RS324 promoter, U.S. Pat. No. 6,429,362 which discloses a maize PR-1 promoter, U.S. Pat. No. 6,232,526 which discloses a maize A3 promoter, U.S. Pat. No. 6,177,611 which discloses constitutive maize promoters, U.S. Pat. No. 6,433,252 which discloses a maize L3 oleosin promoter, U.S. Pat. No. 6,429,357 which discloses a rice actin 2 promoter and intron, U.S. Pat. No. 5,837,848 which discloses a root specific promoter, U.S. Pat. No. 6,084,089 which discloses cold inducible promoters, U.S. Pat. No. 6,294,714 which discloses light inducible promoters, U.S. Pat. No. 6,140,078 which discloses salt inducible promoters, U.S. Pat. No. 6,252,138 which discloses pathogen inducible promoters, U.S. Pat. No. 6,175,060 which discloses phosphorus deficiency inducible promoters, U.S. Patent Application Publication 2002/0192813A1 which discloses 5′, 3′ and intron elements useful in the design of effective plant expression vectors, U.S. patent application Ser. No. 09/078,972 which discloses a coixin promoter, U.S. patent application Ser. No. 09/757,089 which discloses a maize chloroplast aldolase promoter, all of which are incorporated herein by reference.


In many aspects of the invention it is preferred that the promoter element in the DNA construct should be seed or kernel tissue specific. Such promoters can be identified and isolated by those skilled in the art from the regulatory region of plant genes which are over expressed in seed tissue, e.g. embryo or endosperm. For example, specific seed tissue-specific promoters for use in this invention include an L3 oleosin promoter as disclosed in U.S. Pat. No. 6,433,252, a gamma coixin promoter as disclosed in U.S. patent application Ser. No. 09/078,972, and emb5 promoter as disclosed in U.S. provisional application Ser. No. 60/434,242, all of which are incorporated herein by reference.


In general, it is preferred to introduce heterologous DNA randomly, i.e. at a non-specific location, in the plant genome. In special cases, it may be useful to target heterologous DNA insertion in order to achieve site specific integration, e.g. to replace an existing gene in the genome. In some other cases it may be useful to target a heterologous DNA integration into the genome at a predetermined site from which it is known that gene expression occurs. Several site specific recombination systems exist which are known to function in plants and include cre-lox as disclosed in U.S. Pat. No. 4,959,317 and FLP-FRT as disclosed in U.S. Pat. No. 5,527,695, both incorporated herein by reference.


Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. For a description of the use of a chloroplast transit peptide see U.S. Pat. No. 5,188,642, incorporated herein by reference.


In practice, DNA is introduced into only a small percentage of target cells in any one experiment. Selectable marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred selectable marker genes confer resistance to a selective agent, such as an antibiotic or herbicide. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Useful selectable marker genes include those conferring resistance to antibiotics such as kanamycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (EPSPS). Examples of such selectable marker genes are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047, all of which are incorporated herein by reference. Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.


Exogenous Oil-Associated Genes for Modification of Plant Phenotypes


A particularly important advance of the present invention is that it provides DNA sequences useful for producing desirable oil-related phenotypes in plants, preferably in crop plants such as soybean, cotton, canola, sunflower, safflower, flax and most preferably in maize.


The choice of a selected DNA sequence for expression in a plant host cell in accordance with the invention will depend on the purpose of gene expression, e.g., expression of a native gene or homolog by a constitutive promoter, over expression of a native gene or homolog, suppression of a native gene, or altered tissue- or stage-specific expression of a native gene or homolog by a tissue- or stage-specific promoter.


In certain embodiments of the invention, transformation of a recipient cell may be carried out with more than one exogenous DNA coding region. As used herein, an “exogenous coding region” or “selected coding region” is a coding region not normally found in the host genome in an identical context. By this, it is meant that the coding region may be isolated from a different species than that of the host genome, or alternatively, isolated from the host genome, but it is operably linked to one or more regulatory regions that differ from those found in the unaltered, native gene. Two or more exogenous coding regions also can be supplied in a single transformation event using either distinct transgene-encoding vectors, or using a single vector incorporating two or more coding sequences.


Enhancement of an oil-related trait can also be effected by suppression of one or more genes that express proteins that divert oil producing materials into competing products or that degrade oil products. Site-directed inactivation of a gene, while possible, is typically difficult to achieve. Other more effective methods of gene suppression include the use anti-sense RNA, co-suppression, interfering RNA, processing defective RNA, transposon tagging, backcrossing or homologous recombination. Post transcriptional gene suppression by RNA interference is a superior and preferred method of gene suppression. In a preferred embodiment gene suppression may complement over expression of an oil-associated gene.


Transformation Methods and Transgenic Plants


Methods and compositions for transforming plants by introducing a transgenic DNA construct into a plant genome in the practice of this invention can include any of the well-known and demonstrated methods. Preferred methods of plant transformation are microprojectile bombardment as illustrated in U.S. Pat. Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208: 6,194,636 and 6,399,861 and Agrobacterium-mediated transformation as illustrated in U.S. Pat. Nos. 5,824,877; 5,591,616; 5,981,840 and 6,384,301, all of which are incorporated herein by reference. See also U.S. application Ser. No. 09/823,676, incorporated herein by reference, for a description of vectors, transformation methods, and production of transformed Arabidopsis thaliana plants where genes in a recombinant DNA construct are constitutively expressed by a CaMV35S promoter.


Transformation methods of this invention to provide plants with enhanced environmental stress tolerance are preferably practiced in tissue culture on media and in a controlled environment. “Media” refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Those cells which are capable of proliferating as callus also are recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, e.g. various media and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Pat. No. 6,194,636 and U.S. patent application Ser. No. 09/757,089, which are incorporated herein by reference.


Regeneration and Seed Production


Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. Such media is well-known to one of skill in the art.


The transformed cells, identified by selection or screening and cultured in an appropriate medium that supports regeneration, will then be allowed to mature into plants. Developing plantlets are transferred to soil-less plant growth mix, and hardened off, e.g., in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO2, and 25-250 microeinsteins m−2s−1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are preferably matured either in a growth chamber or greenhouse. Plants are regenerated from about 6 wk to 10 months after a transformant is identified, depending on the initial tissue. During regeneration, cells are grown on solid media in tissue culture vessels. Regenerating plants are preferably grown at about 19° C. to 28° C. After the regenerating plants have reached the stage of shoot and root development, they may be transferred to a greenhouse for further growth and testing. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced.


Progeny may be recovered from transformed plants and tested for expression of the exogenous expressible gene. The transgenic seeds of this invention can be harvested from fertile transgenic plants and be used to grow progeny generations of transformed plants of this invention, including hybrid plants; said progeny generations will contain the DNA construct expressing an oil-associated gene which provides the benefits of enhanced oil production and/or storage.


Seeds of R0 transformed plants may occasionally require embryo rescue due to cessation of seed development and premature senescence of plants. To rescue developing embryos, they are excised from surface-disinfected seeds 10-20 days post-pollination and cultured. An embodiment of media used for culture at this stage comprises MS salts, 2% sucrose, and 5.5 g/l agarose. In embryo rescue, large embryos (defined as greater than 3 mm in length) are germinated directly on an appropriate media. Embryos smaller than that may be cultured for 1 wk on media containing the above ingredients along with 10−5M abscisic acid and then transferred to growth regulator-free medium for germination.


Characterization of Transgenic Plants for Presence of Exogenous DNA


To confirm the presence of the exogenous DNA in regenerating plants, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCR; “biochemical” assays, such as detecting the presence of RNA, e.g., double-stranded RNA, or a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant. Genomic DNA may be isolated from callus cell lines or any plant parts to determine the presence of the exogenous gene through the use of techniques well known to those skilled in the art.


The presence of DNA elements introduced through the methods of this invention may be determined by polymerase chain reaction (PCR). Using this technique, discreet fragments of DNA are amplified and detected by gel electrophoresis. This type of analysis permits one to determine whether a gene is present in a stable transformant, but it does not necessarily prove integration of the introduced gene into the host cell genome. Typically, DNA has been integrated into the genome of all transformants that demonstrate the presence of the gene through PCR analysis. In addition, it is not possible using PCR techniques to determine whether transformants have exogenous genes introduced into different sites in the genome, i.e., whether transformants are of independent origin. Using PCR techniques it is possible to clone fragments of the host genomic DNA adjacent to an introduced gene.


Positive proof of DNA integration into the host genome and the independent identities of transformants may be determined using the technique of Southern hybridization. Using this technique, specific DNA sequences that were introduced into the host genome and flanking host DNA sequences can be identified. Hence the Southern hybridization pattern of a given transformant serves as an identifying characteristic of that transformant. In addition, it is possible through Southern hybridization to demonstrate the presence of introduced genes in high molecular weight DNA, i.e., confirm that the introduced gene has been integrated into the host cell genome. The technique of Southern hybridization provides information that can be obtained using PCR, e.g., the presence of a gene, but also demonstrates integration into the genome and characterizes each individual transformant. It is contemplated that using the techniques of dot or slot blot hybridization, which are modifications of Southern hybridization techniques, one could obtain the same information that is derived from PCR, e.g., the presence of a gene.


Both PCR and Southern hybridization techniques can be used to demonstrate transmission of a transgene to progeny. In most instances the characteristic Southern hybridization pattern for a given transformant will segregate in progeny as one or more Mendelian genes, indicating stable inheritance of the transgene.


Further information about the nature of the RNA product may be obtained by Northern blotting. This technique will demonstrate the presence of an RNA species and give information about the integrity of that RNA. The presence or absence of an RNA species also can be determined using dot or slot blot Northern hybridizations. These techniques are modifications of Northern blotting and will only demonstrate the presence or absence of an RNA species. It is further contemplated that TAQMAN® technology (Applied Biosystems, Foster City, Calif.) may be used to quantitate both DNA and RNA in a transgenic cell.


Although Southern blotting and PCR may be used to detect the gene(s) in question, they do not provide information as to whether the gene is being expressed. Expression may be evaluated by specifically identifying the protein products of the introduced genes or evaluating the phenotypic changes brought about by their expression. The unique structures of individual proteins offer opportunities for use of specific antibodies to detect their presence in formats such as an ELISA assay. Combinations of approaches may be employed with even greater specificity such as Western blotting in which antibodies are used to locate individual gene products that have been separated by electrophoretic techniques. Additional techniques may be employed to absolutely confirm the identity of the product of interest such as evaluation by amino acid sequencing following purification.


Event-Specific Transgene Assays


Southern blotting, PCR and RT-PCR techniques can be used to identify the presence or absence of a given transgene but, depending upon experimental design, may not specifically and uniquely identify identical or related transgene constructs located at different insertion points within the recipient genome. To more precisely characterize the presence of transgenic material in a transformed plant, one skilled in the art could identify the point of insertion of the transgene and, using the sequence of the recipient genome flanking the transgene, develop an assay that specifically and uniquely identifies a particular insertion event. Many methods can be used to determine the point of insertion such as, but not limited to, Genome Walker™ technology (CLONTECH, Palo Alto, Calif.), Vectorette™ technology (Sigma, St. Louis, Mo.), restriction site oligonucleotide PCR, uneven PCR, and generation of genomic DNA clones containing the transgene of interest in a vector such as, but not limited to, lambda phage.


Once the sequence of the genomic DNA directly adjacent to the transgenic insert on either or both sides has been determined, one skilled in the art can develop an assay to specifically and uniquely identify the insertion event. For example, two oligonucleotide primers can be designed, one wholly contained within the transgene and one wholly contained within the flanking sequence, that can be used together with the PCR technique to generate a PCR product unique to the inserted transgene. In one embodiment, the two oligonucleotide primers for use in PCR could be designed such that one primer is complementary to sequences in both the transgene and adjacent flanking sequence such that the primer spans the junction of the insertion site while the second primer could be homologous to sequences contained wholly within the transgene. In another embodiment, the two oligonucleotide primers for use in PCR could be designed such that one primer is complementary to sequences in both the transgene and adjacent flanking sequence such that the primer spans the junction of the insertion site while the second primer could be homologous to sequences contained wholly within the genomic sequence adjacent to the insertion site. Confirmation of the PCR reaction may be monitored by, but not limited to, size analysis on gel electrophoresis, sequence analysis, hybridization of the PCR product to a specific radiolabeled DNA or RNA probe or to a molecular beacon, or use of the primers in conjugation with a TAQMAN™ probe and technology (Applied Biosystems, Foster City, Calif.)


Site-Specific Integration or Excision of Transgenes


It is specifically contemplated by the inventors that one could employ techniques for the site-specific integration or excision of transformation constructs prepared in accordance with the instant invention. An advantage of site-specific integration or excision is that it can be used to overcome problems associated with conventional transformation techniques, in which transformation constructs typically randomly integrate into a host genome and multiple copies of a construct may integrate. Site-specific integration can be achieved in plants by means of homologous recombination as disclosed, for example, in U.S. Pat. Nos. 5,527,695 and 5,658,772, incorporated herein by reference.


Deletion of Sequences Located within the Transgenic Insert


During the transformation process it is often necessary to include ancillary sequences, such as selectable marker or reporter genes, for tracking the presence or absence of a desired trait gene transformed into the plant on the DNA construct. Such ancillary sequences often do not contribute to the desired trait or characteristic conferred by the phenotypic trait gene. Homologous recombination is a method by which introduced sequences may be selectively deleted in transgenic plants.


Deletion of sequences by homologous recombination relies upon directly repeated DNA sequences positioned about the region to be excised, so that the repeated DNA sequences direct excision utilizing native cellular recombination mechanisms. The first fertile transgenic plants are crossed to produce either hybrid or inbred progeny plants, and from those progeny plants, one or more second fertile transgenic plants are selected that contain a second DNA sequence that has been altered by recombination, preferably resulting in the deletion of the ancillary sequence. The first fertile plant can be either hemizygous or homozygous for the DNA sequence containing the directly repeated DNA that will drive the recombination event as disclosed in U.S. application Ser. No. 09/521,557, incorporated herein by reference.


Detecting Polymorphisms


Polymorphisms in DNA sequences can be detected by a variety of effective methods well known in the art including those methods disclosed in U.S. Pat. Nos. 5,468,613 and 5,217,863 by hybridization to allele-specific oligonucleotides; in U.S. Pat. Nos. 5,468,613 and 5,800,944 by probe ligation; in U.S. Pat. No. 5,616,464 by probe linking; and in U.S. Pat. Nos. 6,004,744; 6,013,431; 5,595,890; 5,762,876; and 5,945,283 by labeled base extension, all of which are incorporated herein by reference.


In another preferred method for detecting polymorphisms, SNPs and Indels can be detected by methods disclosed in U.S. Pat. Nos. 5,210,015; 5,876,930; and 6,030,787 in which an oligonucleotide probe having a 5′fluorescent reporter dye and a 3′quencher dye covalently linked to the 5′ and 3′ ends of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in the suppression of the reporter fluorescence, e.g., by Forster-type energy transfer. A PCR reaction is designed such that forward and reverse primers hybridize to specific sequences of the target DNA flanking a polymorphism. The hybridization probe hybridizes to polymorphism-containing sequence within the amplified PCR product. In the subsequent PCR cycle, DNA polymerase with 5′→3′ exonuclease activity cleaves the probe and separates the reporter dye from the quencher dye resulting in increased fluorescence of the reporter. A useful assay is available from AB Biosystems as the Taqman® assay, which employs four synthetic oligonucleotides in a single reaction that concurrently amplifies the maize genomic DNA, discriminates between the alleles present, and directly provides a signal for discrimination and detection. Two of the four oligonucleotides serve as PCR primers and generate a PCR product encompassing the polymorphism to be detected. Two others are allele-specific fluorescence-resonance-energy-transfer (FRET) probes. FRET probes incorporate a fluorophore and a quencher molecule in close proximity so that the fluorescence of the fluorophore is quenched. The signal from a FRET probe is generated by degradation of the FRET oligonucleotide, so that the fluorophore is released from proximity to the quencher, and is thus able to emit light when excited at an appropriate wavelength. In the assay, two FRET probes bearing different fluorescent reporter dyes are used, where a unique dye is incorporated into an oligonucleotide that can anneal with high specificity to only one of the two alleles. Useful reporter dyes include 6-carboxy-4,7,2′,7′-tetrachlorofluorecein (TET), VIC (a dye from Applied Biosystems Foster City, Calif.), and 6-carboxyfluorescein phosphoramidite (FAM). A useful quencher is 6-carboxy-N,N,N′,N′-tetramethylrhodamine (TAMRA). Additionally, the 3′end of each FRET probe is chemically blocked so that it cannot act as a PCR primer. During the assay, maize genomic DNA is added to a buffer containing the two PCR primers and two FRET probes. Also present is a third fluorophore used as a passive reference, e.g., rhodamine X (ROX), to aid in later normalization of the relevant fluorescence values (correcting for volumetric errors in reaction assembly). Amplification of the genomic DNA is initiated. During each cycle of the PCR, the FRET probes anneal in an allele-specific manner to the template DNA molecules. Annealed (but not non-annealed) FRET probes are degraded by TAQ DNA polymerase as the enzyme encounters the 5′ end of the annealed probe, thus releasing the fluorophore from proximity to its quencher. Following the PCR reaction, the fluorescence of each of the two fluorescers, as well as that of the passive reference, is determined fluorometrically. The normalized intensity of fluorescence for each of the two dyes will be proportional to the amounts of each allele initially present in the sample, and thus the genotype of the sample can be inferred.


To design primers and probes for the assay the locus sequence is first masked to prevent design of any of the three primers to sites that match known maize repetitive elements (e.g., transposons) or are of very low sequence complexity (di- or tri-nucleotide repeat sequences). Design of primers to such repetitive elements will result in assays of low specificity, through amplification of multiple loci or annealing of the FRET probes to multiple sites.


PCR primers are designed (a) to have a length in the size range of 18 to 25 bases and matching sequences in the polymorphic locus, (b) to have a calculated melting temperature in the range of 57° C. to 60° C., e.g., corresponding to an optimal PCR annealing temperature of 52° C. to 55° C., (c) to produce a product that includes the polymorphic site and has a length in the size range of 75 to 250 base pairs. The PCR primers are preferably located on the locus so that the polymorphic site is at least one base away from the 3′ end of each PCR primer. The PCR primers must not contain regions that are extensively self- or inter-complementary.


FRET probes are designed to span the sequence of the polymorphic site, preferably with the polymorphism located in the 3′ most ⅔ of the oligonucleotide. In the preferred embodiment, the FRET probes will have incorporated at their 3′end a chemical moiety that, when the probe is annealed to the template DNA, binds to the minor groove of the DNA, thus enhancing the stability of the probe-template complex. The probes should have a length in the range of 12 to 17 bases and, with the 3′MGB, have a calculated melting temperature of 5° C. to 7° C. above that of the PCR primers. Probe design is disclosed in U.S. Pat. Nos. 5,538,848; 6,084,102; and 6,127,121.


Use of Polymorphisms to Establish Marker/Trait Associations


The polymorphisms in the loci of this invention can be used in marker/trait associations that are inferred from statistical analysis of genotypes and phenotypes of the members of a population. These members may be individual organisms of, e.g., maize, families of closely related individuals, inbred lines, dihaploids or other groups of closely related individuals. Such maize groups are referred to as “lines”, indicating line of descent. The population may be descended from a single cross between two individuals or two lines (e.g., a mapping population) or it may consist of individuals with many lines of descent. Each individual or line is characterized by a single or average trait phenotype and by the genotypes at one or more marker loci.


Several types of statistical analysis can be used to infer marker/trait association from the phenotype/genotype data, but a basic idea is to detect markers, i.e., polymorphisms, for which alternative genotypes have significantly different average phenotypes. For example, if a given marker locus A has three alternative genotypes (AA, Aa and aa), and if those three classes of individuals have significantly different phenotypes, then one infers that locus A is associated with the trait. The significance of differences in phenotype may be tested by several types of standard statistical tests such as linear regression of marker genotypes on phenotype or analysis of variance (ANOVA). Commercially available, statistical software packages commonly used to do this type of analysis include SAS Enterprise Miner (SAS Institute Inc., Cary, N.C.) and Splus (Insightful Corporation. Cambridge, Mass.).


Often the goal of an association study is not simply to detect marker/trait associations, but to estimate the location of genes affecting the trait directly (i.e., QTLs) relative to the marker locations. In a simple approach to this goal, one makes a comparison among marker loci of the magnitude of difference among alternative genotypes or the level of significance of that difference. Trait genes are inferred to be located nearest the marker(s) that have the greatest associated genotypic difference. In a more complex analysis, such as interval mapping (Lander and Botstein, Genetics 121:185-199, 1989), each of many positions along the genetic map (say at 1 cM intervals) is tested for the likelihood that a QTL is located at that position. The genotype/phenotype data are used to calculate for each test position a LOD score (log of likelihood ratio). When the LOD score exceeds a critical threshold value, there is significant evidence for the location of a QTL at that position on the genetic map (which will fall between two particular marker loci).


1. Linkage Disequilibrium Mapping and Association Studies


Another approach to determining trait gene location is to analyze trait-marker associations in a population within which individuals differ at both trait and marker loci. Certain marker alleles may be associated with certain trait locus alleles in this population due to population genetic process such as the unique origin of mutations, founder events, random drift and population structure. This association is referred to as linkage disequilibrium. In linkage disequilibrium mapping, one compares the trait values of individuals with different genotypes at a marker locus. Typically, a significant trait difference indicates close proximity between marker locus and one or more trait loci. If the marker density is appropriately high and the linkage disequilibrium occurs only between very closely linked sites on a chromosome, the location of trait loci can be very precise.


A specific type of linkage disequilibrium mapping is known as association studies. This approach makes use of markers within candidate genes, which are genes that are thought to be functionally involved in development of the trait because of information such as biochemistry, physiology, transcriptional profiling and reverse genetic experiments in model organisms. In association studies, markers within candidate genes are tested for association with trait variation. If linkage disequilibrium in the study population is restricted to very closely linked sites (i.e., within a gene or between adjacent genes), a positive association provides nearly conclusive evidence that the candidate gene is a trait gene.


2. Positional Cloning and Transgenic Applications


Traditional linkage mapping typically localizes a trait gene to an interval between two genetic markers (referred to as flanking markers). When this interval is relatively small (say less than 1 Mb), it becomes feasible to precisely identify the trait gene by a positional cloning procedure. A high marker density is required to narrow down the interval length sufficiently. This procedure requires a library of large insert genomic clones (such as a BAC library), where the inserts are pieces (usually 100-150 kb in length) of genomic DNA from the species of interest. The library is screened by probe hybridization or PCR to identify clones that contain the flanking marker sequences. Then a series of partially overlapping clones that connects the two flanking clones (a “contig”) is built up through physical mapping procedures. These procedures include fingerprinting, STS content mapping and sequence-tagged connector methodologies. Once the physical contig is constructed and sequenced, the sequence is searched for all transcriptional units. The transcriptional unit that corresponds to the trait gene can be determined by comparing sequences between mutant and wild type strains, by additional fine-scale genetic mapping, and/or by functional testing through plant transformation. Trait genes identified in this way become leads for transgenic product development. Similarly, trait genes identified by association studies with candidate genes become leads for transgenic product development.


3. Marker-Aided Breeding and Marker-Assisted Selection


When a trait gene has been localized in the vicinity of genetic markers, those markers can be used to select for improved values of the trait without the need for phenotypic analysis at each cycle of selection. In marker-aided breeding and marker-assisted selection, associations between trait genes and markers are established initially through genetic mapping analysis (as in sections 1 or 2 above). In the same process, one determines which marker alleles are linked to favorable trait gene alleles. Subsequently, marker alleles associated with favorable trait gene alleles are selected in the population. This procedure will improve the value of the trait provided that there is sufficiently close linkage between markers and trait genes. The degree of linkage required depends upon the number of generations of selection because, at each generation, there is opportunity for breakdown of the association through recombination.


4. Prediction of Crosses for New Inbred Line Development


The associations between specific marker alleles and favorable trait gene alleles also can be used to predict what types of progeny may segregate from a given cross. This prediction may allow selection of appropriate parents to generation populations from which new combinations of favorable trait gene alleles are assembled to produce a new inbred line. For example, if line A has marker alleles previously known to be associated with favorable trait alleles at loci 1, 20 and 31, while line B has marker alleles associated with favorable effects at loci 15, 27 and 29, then a new line could be developed by crossing A×B and selecting progeny that have favorable alleles at all 6 trait loci.


5. Hybrid Prediction


Commercial corn seed is produced by making hybrids between two elite inbred lines that belong to different “heterotic groups”. These groups are sufficiently distinct genetically that hybrids between them show high levels of heterosis or hybrid vigor (i.e., increased performance relative to the parental lines). By analyzing the marker constitution of good hybrids, one can identify sets of alleles at different loci in both male and female lines that combine well to produce heterosis. Understanding these patterns, and knowing the marker constitution of different inbred lines, can allow prediction of the level of heterosis between different pairs of lines. These predictions can narrow down the possibilities of which line(s) of opposite heterotic group should be used to test the performance of a new inbred line.


6. Identity by Descent


One theory of heterosis predicts that regions of identity by descent (IBD) between the male and female lines used to produce a hybrid will reduce hybrid performance. Identity by descent can be inferred from patterns of marker alleles in different lines. An identical string of markers at a series of adjacent loci may be considered identical by descent if it is unlikely to occur independently by chance. Analysis of marker fingerprints in male and female lines can identify regions of IBD. Knowledge of these regions can inform the choice of hybrid parents, because avoiding IBD in hybrids is likely to improve performance. This knowledge may also inform breeding programs in that crosses could be designed to produce pairs of inbred lines (one male and one female) that show little or no IBD.


A fingerprint of an inbred line is the combination of alleles at a set of marker loci. High density fingerprints can be used to establish and trace the identity of germplasm, which has utility in germplasm ownership protection.


Genetic markers are used to accelerate introgression of transgenes into new genetic backgrounds (i.e., into a diverse range of germplasm). Simple introgression involves crossing a transgenic line to an elite inbred line and then backcrossing the hybrid repeatedly to the elite (recurrent) parent, while selecting for maintenance of the transgene. Over multiple backcross generations, the genetic background of the original transgenic line is replaced gradually by the genetic background of the elite inbred through recombination and segregation. This process can be accelerated by selection on marker alleles that derive from the recurrent parent.


Use of Polymorphism Assay for Mapping a Library of DNA Clones


The polymorphisms and loci of this invention are useful for identifying and mapping DNA sequence of QTLs and genes linked to the polymorphisms. For instance, BAC or YAC clone libraries can be queried using polymorphisms linked to a trait to find a clone containing specific QTLs and genes associated with the trait. For instance, QTLs and genes in a plurality, e.g., hundreds or thousands, of large, multi-gene sequences can be identified by hybridization with an oligonucleotide probe that hybridizes to a mapped and/or linked polymorphism. Such hybridization screening can be improved by providing clone sequence in a high density array. The screening method is more preferably enhanced by employing a pooling strategy to significantly reduce the number of hybridizations required to identify a clone containing the polymorphism. When the polymorphisms are mapped, the screening effectively maps the clones.


For instance, in a case where thousands of clones are arranged in a defined array, e.g., in 96-well plates, the plates can be arbitrarily arranged in three-dimensionally, arrayed stacks of wells each comprising a unique DNA clone. The wells in each stack can be represented as discrete elements in a three dimensional array of rows, columns and plates. In one aspect of the invention the number of stacks and plates in a stack are about equal to minimize the number of assays. The stacks of plates allow the construction of pools of cloned DNA.


For a three-dimensionally arrayed stack, pools of cloned DNA can be created for (a) all of the elements in each row, (b) all of the elements of each column, and (c) all of the elements of each plate. Hybridization screening of the pools with an oligonucleotide probe that hybridizes to a polymorphism unique to one of the clones will provide a positive indication for one column pool, one row pool and one plate pool, thereby indicating the well element containing the target clone.


In the case of multiple stacks, additional pools of all of the clone DNA in each stack allows indication of the stack having the row-column-plate coordinates of the target clone. For instance, a 4608 clone set can be disposed in 48 96-well plates. The 48 plates can be arranged in 8 sets of 6-plate stacks providing 6×12×8 three-dimensional arrays of elements, i.e., each stack comprises 6 stacks of 8 rows and 12 columns. For the entire clone set there are 36 pools, i.e., 6 stack pools, 8 row pools, 12 column pools and 8 stack pools. Thus, a maximum of 36 hybridization reactions is required to find the clone harboring QTLs or genes associated or linked to each mapped polymorphism.


Once a clone is identified, genes within that clone can be tested for whether they affect the trait by analysis of recombinants in a mapping population, further linkage disequilibrium analysis, and ultimately transgenic testing. Additional genes can be identified by finding additional clones overlapping the one containing the original polymorphism through contig building, as described above.


Breeding Plants of the Invention


In addition to direct transformation of a particular plant genotype with a construct prepared according to the current invention, transgenic plants may be made by crossing a plant having a construct of the invention to a second plant lacking the construct. For example, a selected coding region operably linked to a promoter can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the current invention not only encompasses a plant directly regenerated from cells that have been transformed in accordance with the current invention, but also the progeny of such plants. As used herein the term “progeny” denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention, wherein the progeny comprises a construct prepared in accordance with the invention. “Crossing” a plant to provide a plant line having one or more added transgenes relative to a starting plant line, as disclosed herein, is defined as the techniques that result in a transgene of the invention being introduced into a plant line by crossing a starting line with a donor plant line that comprises a transgene of the invention. To achieve this one could, for example, perform the following steps:

    • (a) plant seeds of the first (starting line) and second (donor plant line that comprises a transgene of the invention) parent plants;
    • (b) grow the seeds of the first and second parent plants into plants that bear flowers;
    • (c) pollinate a flower from the first parent plant with pollen from the second parent plant; and
    • (d) harvest seeds produced on the parent plant bearing the fertilized flower.


      Backcrossing is herein defined as the process including the steps of:
    • (a) crossing a plant of a first genotype containing a desired gene, DNA sequence or element to a plant of a second genotype lacking the desired gene, DNA sequence or element;
    • (b) selecting one or more progeny plants containing the desired gene, DNA sequence or element;
    • (c) crossing the progeny plant to a plant of the second genotype; and
    • (d) repeating steps (b) and (c) for the purpose of transferring the desired gene, DNA sequence or element from a plant of a first genotype to a plant of a second genotype.


Plant Breeding


Introgression of a DNA element into a plant genotype is defined as the result of the process of backcross conversion. A plant genotype into which a DNA sequence has been introgressed may be referred to as a backcross converted genotype, line, inbred, or hybrid. Similarly a plant genotype lacking the desired DNA sequence may be referred to as an unconverted genotype, line, inbred, or hybrid.


Backcrossing can be used to improve a starting plant. Backcrossing transfers a specific desirable trait from one source to an inbred or other plant that lacks that trait. This can be accomplished, for example, by first crossing a superior inbred (A) (recurrent parent) to a donor inbred (non-recurrent parent), which carries the appropriate gene(s) for the trait in question, for example, a construct prepared in accordance with the current invention. The progeny of this cross first are selected in the resultant progeny for the desired trait to be transferred from the non-recurrent parent, then the selected progeny are mated back to the superior recurrent parent (A). After five or more backcross generations with selection for the desired trait, the progeny are hemizygous for loci controlling the characteristic being transferred but are like the superior parent for most or almost all other genes. The last backcross generation would be selfed to give progeny that are pure breeding for the gene(s) being transferred, i.e., one or more transformation events.


Therefore, through a series a breeding manipulations, a selected transgene may be moved from one line into an entirely different line without the need for further recombinant manipulation. Transgenes are valuable in that they typically behave genetically as any other gene and can be manipulated by breeding techniques in a manner identical to any other corn gene. Therefore, one may produce inbred plants that are true breeding for one or more transgenes. By crossing different inbred plants, one may produce a large number of different hybrids with different combinations of transgenes. In this way, plants may be produced that have the desirable agronomic properties frequently associated with hybrids (“hybrid vigor”), as well as the desirable characteristics imparted by one or more transgene(s).


It is desirable to introgress the genes of the present invention into maize hybrids for characterization of the phenotype conferred by each gene in a transformed plant. The host genotype into which the transgene was introduced, preferably LH59, is an elite inbred and therefore only limited breeding is necessary in order to produce high yielding maize hybrids. The transformed plant, regenerated from callus is crossed, to the same genotype, e.g., LH59. The progeny are self-pollinated twice, and plants homozygous for the transgene are identified. Homozygous transgenic plants are crossed to a testcross parent in order to produce hybrids. The test cross parent is an inbred belonging to a heterotic group that is different from that of the transgenic parent and for which it is known that high yielding hybrids can be generated, for example hybrids are produced from crosses of LH59 to either LH195 or LH200.


The following examples illustrate the identification of polymorphic markers useful for mapping and isolating genes of this invention and as markers of QTLs and genes associated with an oil-related trait. Other examples illustrate the identification of oil-related genes and partial genes. Still other examples illustrate methods for inserting genes of this invention into a plant expression vector, i.e., operably linked to a promoter and other regulatory elements, to confer an oil-related trait to a transgenic plant.


EXAMPLE 1

This example illustrates the identification of oil-associated genes and maize oil markers.


a. Candidate Oil Genes


A set of more than 800 candidate oil genes was identified (a) as homologs of plant genes that are believed to be in an oil-related metabolic pathway of a model plant such as Arabidopsis thaliana; (b) by comparing transcription profiling results for high oil and low oil maize lines; and (c) by subtractive hybridization between endosperm tissues of high oil and low oil maize lines. The sequences of the candidate oil genes were queried against a proprietary collection of maize genes and partial maize genes, e.g., genomic sequence or ESTs, to identify a set of more than 800 candidate maize oil genes.


b. Maize Polymorphisms


Maize polymorphisms were identified by comparing alignments of DNA sequences from separate maize lines. Candidate polymorphisms were qualified by the following parameters:

    • (a) The minimum length of sequence for a synthetic reference sequence is 200 bases.
    • (b) The percentage identity of observed bases in a region of 15 bases on each side of a candidate SNP, is 75%.
    • (c) The minimum phred quality in each of the various sequences at a polymorphism site is 35.
    • (d) The minimum phred quality in a region of 15 bases on each side of the polymorphism site is 20.


      c. Oil Informative Markers


The SNP and Indel polymorphisms in each locus were qualified for detection by development of an assay, e.g., Taqman® assay (Applied Biosystems, Foster City, Calif.). Assay qualified polymorphisms are evaluated for oil informativeness by comparing allelic frequencies in the two parental lines of an association study population. The parent lines were representatives of an oil rich maize population and an oil poor maize population, i.e., the University of Illinois High Oil and Low Oil maize lines as described by Dudley and Lambert (1992, Maydica 37: 81-87). Informativeness is reported as an allelic frequency difference between parental populations, i.e. the high oil line and the low oil line. When one of the parents, e.g., the high oil line, is fixed, its allelic frequency is 1. Markers were qualified if they had an allelic frequency difference of at least 0.6. If the marker was fixed in either parent with a frequency of 0 or 1, a marker could be selected at a lower allelic frequency difference of at least 0.4. The informative markers were viewed on a genetic map to identify marker-deficient regions of chromosomes. Markers with lower allelic frequency difference, e.g., as low as 0.15, were selected to fill in the marker-deficient regions of chromosomes. A set of informative markers were used in a marker-trait association study to verify oil-associated genes from the set of candidate oil genes.


d. Labeled Probe Degradation Assay for SNP Detection


A quantity of maize genomic template DNA (e.g., about 2-20 ng) is mixed in 5 μL total volume with four oligonucleotides, which can be designed by Applied Biosystems, i.e., a forward primer, a reverse primer, a hybridization probe having a VIC reporter attached to the 5′ end, and a hybridization probe having a FAM reporter attached to the 5′end as well as PCR reaction buffer containing the passive reference dye ROX. The PCR reaction is conducted for 35 cycles using a 60° C. annealing-extension temperature. Following the reaction, the fluorescence of each fluorophore as well as that of the passive reference is determined in a fluorimeter. The fluorescence value for each fluorophore is normalized to the fluorescence value of the passive reference. The normalized values are plotted against each other for each sample. The data points should fall into clearly separable clusters.


To confirm that an assay produces accurate results, each new assay is performed on a number of replicates of samples of known genotypic identity representing each of the three possible genotypes, i.e., two homozygous alleles and a heterozygous sample. To be a valid and useful assay, it must produce clearly separable clusters of data points, such that one of the three genotypes can be assigned for at least 90% of the data points, and the assignment is observed to be correct for at least 98% of the data points. Subsequent to this validation step, the assay is applied to progeny of a cross between two highly inbred individuals to obtain segregation data, which are then used to calculate a genetic map position for the polymorphic locus.


e. Marker Mapping


The maize markers were genetically mapped based on the genotypes of certain SNPs. The genotypes were combined with genotypes for public core SSR and RFLP markers scored on recombinant inbred lines. Before mapping, any loci showing distorted segregation (P<0.01 for a Chi-square test of a 1:1 segregation ratio) were removed. These loci could be added to the map later but without allowing them to change marker order.


A map was constructed using the JoinMap version 2.0 software, which is described by Stam (“Construction of integrated genetic linkage maps by means of a new computer package: JoinMap, The Plant Journal, 3: 739-744 (1993); Stam, P. and van Ooijen, J. W. “JoinMap version 2.0: Software for the calculation of genetic linkage maps (1995) CPRO-DLO, Wageningen). JoinMap implements a weighted-least squares approach to multipoint mapping in which information from all pairs of linked loci (adjacent or not) is incorporated. Linkage groups were formed using a LOD threshold of 5.0. The SSR and RFLP public markers were used to assign linkage groups to chromosomes. Linkage groups were merged within chromosomes before map construction.


Haldane's mapping function was used to convert recombination fractions to map distances. Lenient criteria was applied for excluding pairwise linkage data; only data with a LOD not greater than 0.001 or a recombination fraction not less than 0.499 are excluded. Parameters for ordering loci were a jump threshold of 5.0, a triplet threshold of 7.0 and a ripple value of 3. About 38% of the loci were ordered in two rounds of map construction with a jump threshold of 5.0, which prevents the addition of a locus to the map if such addition results in a jump of more than 5.0 to a goodness-of-fit criterion. The remaining loci were added to the map without application of such a jump threshold. Addition of these loci had a negligible effect on the map order and distances for the initial loci. Mapped SNP polymorphisms are identified in Table 6.


f. Marker Trait Association


The informative maize markers were used in an association study to identify which of the candidate genes were more significantly associated with oil level in corn (Zea mays).


The University of Illinois has corn lines differing in seed oil that have been developed by long-term selection. A high oil line (IHO) produces about 18% seed oil and a low oil line (ILO) produces about 1.5% seed oil. The IHO and ILO lines are available from the University of Illinois for research. A random mated population (RMn) was produced from random mating offspring of a cross between IHO and ILO by chain crossing for 10 generations to produce an RM10 population. From the RM10 population 504 S1-derived lines were developed by selfing and these lines constitute an association study population. This population along with 72 control samples were genotyped using oil informative SNPs.


Phenotypes were measured on 504 association population lines in replicated field trials with an alpha(0,1) incomplete block design. The field trials comprised the 504 lines grown in each of two years at each of 3 locations with 2 replicates per location. The lines were blocked within each replicate. These field trials were performed on the 504 RM10:S1 lines, per se, and on hybrids made by crossing each line to a tester line, i.e., line (7051), but detailed marker genotyping information was obtained for only 499 of the lines.


Analysis of Variance


One approach to detecting marker-trait associations is to do analysis of variance (ANOVA) of each marker separately (i.e. single marker ANOVA with a model of trait=marker−x). When 488 markers were analyzed in this way for both per se and hybrid data, 186 markers were identified as having a significant effect on oil % at the alpha=0.05 level. See prior U.S. application Ser. No. 10/389,566.


Multiple Regression Analysis


An alternative statistical approach is to use multiple regression to determine which of a set of markers are simultaneously significantly associated with a trait of interest. First, it was established that a simple additive model is appropriate for these data. An analysis of variance of the raw observations was used to estimate variance components for environment (location×year combination), genotype (RM10:S1 line) and the genotype×environment interaction. The genotype×environment interaction variance component is < 1/0th the component for genotype. Similarly, ANOVAs of the line means show little or no dominance. In 488 tests of dominance (one per marker), only 27 have a p-value <0.05, which is close to the number expected by chance (24). All pairwise interactions between markers were tested also and we observed just 5.7% of the tests significant at the 5% level. Therefore, in subsequent analyses the genotypes were coded as −1, 0, 1 (for AA, Aa, aa) and multiple regression models without interaction terms were used.


One reason for using a multiple regression approach is that it is expected to be more sensitive in detecting trait effects in the presence of multiple QTLs. The reason is that, with single marker regression, nearly all the variance is in the error term. With multiple regression, if some of the markers account for variation in the trait, that variation is removed from the error term, thus providing greater statistical power. Of two new multiple regression methods that were evaluated along with single marker ANOVA, stepwise multiple regression was found to perform best in simulations. For details of the simulation results, see Laurie et al, in preparation.


Stepwise multiple regression was done with the “maxr” option of “PROC REG” of SAS software. “The MAXR method begins by finding the one-variable model producing the highest R2. Then another variable, the one that yields the greatest increase in R2, is added. Once the two-variable model is obtained, each of the variables in the model is compared to each variable not in the model. For each comparison, the MAXR method determines if removing one variable and replacing it with the other variable increases R2. After comparing all possible switches, the MAXR method makes the switch that produces the largest increase in R2. Comparisons begin again, and the process continues until the MAXR method finds that no switch could increase R2. Thus, the two-variable model achieved is considered the “best” two-variable model the technique can find. Another variable is then added to the model, and the comparing-and-switching process is repeated to find the “best” three-variable model, and so forth. “(SAS Online Documentation, 1999 SAS Institute, Inc., Version 8). The “best” model (in terms of maximizing R2) was identified by MAXR for each model size in the range of 1 to 120 markers.


The “best” subset size was selected by minimizing a criterion that is equivalent to maximum likelihood with a penalty on model complexity. In general, the criterion=−2 log likelihood of the model−pk, where p is the number of parameters in the model (the number of markers plus one for the intercept) and k is a penalty factor. The Schwarz Bayesian Criterion (BIC, Rawlings, J. O., S. G. Pantula and D. A. Dickey, 1998, Applied Regression Analysis. Springer-Verlag, New York.) was used, for which k=ln(n), in this case, ln(499)=6.2). The “best” model dimension is taken as the minimum value of SBC, evaluated from 1 to 120 regressors.


Analyzing the RM10:S1 per se data by maxr/bic, 50 markers are selected. One disadvantage of the maxr/bic procedure is that it is difficult to assess statistical significance in a rigorous way. Although one gets probability values from tests of the partial regression coefficients, those values are not easily interpreted because the data were used to select markers that maximize the R2 of regression. The p-values of the single-marker regressions are straightforward probabilities. If the 50 markers having lowest single marker p-values are selected, the greatest p-value is 0.0097. Since these markers are highly significant and the simulations show that maxr/bic essentially always does better than single marker regressions, it is assumed that the maxr/bic selected markers are at least as “significant” as those selected by single marker regression. Analyzing the hybrid data by maxr/bic, 39 markers are selected. If the 39 markers with lowest p-values of single marker regression from hybrids are selected, the largest p-value in the set is 0.0029.


There are 73 markers that are selected in either the per se and/or hybrid data sets (16 of these are selected in both). These 73 markers are significantly associated with oil in maize, which means it is very likely that they either directly cause variation in oil or they are closely linked to QTL that cause such variation. These 73 significant markers which are very likely to either reside within an oil gene or to be closely linked to an oil gene are in the 73 polymorphic loci of SEQ ID NO: 1 through SEQ ID NO:73 and identified more particularly in Table 1. A set of 73 of the candidate genes having sequence that overlaps with any one or more of the 73 genomic amplicons of SEQ ID NO:1 through SEQ ID NO:73 were identified and designated as oil-associated genes and are identified as having a cDNA sequence of SEQ ID NO:74 through SEQ ID NO:146. Because these oil-associated genes contain or are associated by linkage disequilibrium to a statistically significant maize oil marker, these oil-associated genes are most likely to be oil genes.


Tables 1-5 provides a description of 73 genomic amplicons defining polymorphic loci of the maize oil markers of this invention, 73 oil-associated genes and the cognate proteins and homologous proteins. These particular aspects of the invention are identified by:


“seq_num”, which refers to the sequence number of the nucleic acid sequence or amino acid sequence, e.g., a SEQ ID NO.; and


“seq_id”, which refers to an arbitrary identifying name for an amplicon, e.g. “Amplicon nnn”, for an oil-associated gene, e.g., “MRT4577_nnnnC”, for a cognate protein of an oil-associated gene, e.g. “MRT4577_nnnnP”, of for a cognate protein of a homolog to an oil-associated gene, e.g. “MRT4577_nnnnP” or a name from a database such as GenBank, e.g. “gi:6539874”.


“organism_name” which refers to the source organism for the gene or protein.


More particularly, the maize oil markers in the 73 genomic amplicons are described by:


MUTATION_ID, which refers to one or more arbitrary identifying names for each polymorphism;


START_POS which refers to the position in the nucleotide sequence of the polymorphic maize DNA locus where the polymorphism begins;


END_POS which refers to the position in the nucleotide sequence of the polymorphic maize DNA locus where the polymorphism ends; for SNPs the START_POS and END_POS are common;


TYPE which refers to the identification of the polymorphism as an SNP or IND (Indel);


ALLELEn and STRAINn which refer to the nucleotide sequence of a polymorphism in a specific allelic maize variety; and


GENE_ID refers to the SEQ_ID of the oil-associated gene identified later in Table 1.


More particularly, the oil-associated genes and their cognate proteins are described by:


DESCRIPTION, which refers to a functional description of an oil-associated gene, e.g., “gene encoding MRT4577_nnnnP” or a functional description of a cognate protein, e.g., a GenBank annotation or “long ORF” indicating no known protein function for an amino acid sequence that is translated from a longest available ORF.


Table 6 provides genetic map positions of maize oil markers and linked oil-associated genes; a description of the probability of significance of the marker/trait association (as determined from per se or hybrid association analysis for the marker); and the identification and sequence number of the oil-associated gene and their translated proteins. More particularly, Table 6 identifies maize oil markers, oil-associated genes and proteins by:


“Map Position” which identifies the distance measured in cM from the 5′ end of a maize chromosome for the SNP identified by “Mutation ID”, which refers to an arbitrary identifying name for each polymorphism;


Seq Num, which refers to the sequence number of a genomic amplicon containing the maize oil marker;


Protein Seq Num, which refers to the sequence number of the amino acid sequence, e.g., a SEQ ID NO, for the cognate protein encoded by a linked oil-associated gene.

TABLE 6Map PositionMutation IDSeq NumProtein Seq Num1-30.4144506672131-44104827552011-46.837716351811-60.640189381841-85.969188501961-86.336286321781-99107077582041-124.633373271731-129.5962651511-132.134903281741-178.6151382732192-5.831064221682-19.582235531992-35.91369191552-92.555111472-114.922775161622-12741850401862-152.443579431893-9.11066771533-19.732137251713-58.629867211673-59.321190141603-61.732247261723-62.7973961523-111.4110780622084-38.7110069612074-80106845572034-108.239511371834-109.223289181644-110.3897941504-119.218439131594-128.132049241704-135.817900121584-144.835338291755-39.9109403602065-57.752081451915-62.351419441905-66.9146415712175-69.6144731682145-76.429820201665-80.9143418662125-83104850562025-100.935377301765-104.558375461926-52.8446321486-53.160751491956-58.159008481946-61.5148039722186-67.514694111576-110.431684231696-12137634341807-6242164411877-72.842930421887-99.835408311777-107.538914361827-122.2145260702167-124.515184101567-186.536490331798-16.440320391858-40.9107937592058-53.9145200692158-55.723091171638-59.377568511978-65.8104389542008-106.81310081549-20.558904471939-94.6112139642109-110.3893731499-110.378438521989-165.81108866320910-50.51434086521110-56.7227171516110-73.62744719165


EXAMPLE 2

This example illustrates transgenic corn with altered oil level using recombinant DNA from an oil-associated gene.


GATEWAY™ destination vectors (available from Invitrogen Life Technologies, Carlsbad, Calif.) are constructed for insertion of recombinant DNA from oil-associated genes for corn transformation. The elements of each destination vector are summarized in Table 7 below and include a selectable marker transcription region and a DNA insertion transcription region. The selectable marker transcription region comprises a Cauliflower Mosaic Virus 35S promoter operably linked to a gene encoding neomycin phosphotransferase II (nptII) followed by both the 3′ region of the Agrobacterium tumefaciens nopaline synthase gene (nos) and the 3′ region of the potato proteinase inhibitor II (pinII) gene. The DNA insertion transcription region comprises a rice actin 1 promoter, a rice actin 1 exon 1 intron1 enhancer, an att-flanked insertion site and the 3′ region of the potato pinII gene. Following standard procedures provided by Invitrogen the att-flanked insertion region is replaced by recombination with DNA from an oil-associated gene, in a sense orientation for expression of the cognate protein from an oil-associated gene and in a gene suppression orientation (i.e. either anti-sense orientation or in a sense- and anti-sense orientation) for a suppression of an oil associated gene. Although the vector with DNA from an oil-associated gene inserted at the att-flanked insertion region is useful for plant transformation by direct DNA delivery, such as microprojectile bombardment, it is preferable to bombard target plant tissue with tandem transcription units that have been cut from the vector. For Agrobacterium-mediated transformation of plants the vector also comprises T-DNA borders from Agrobacterium flanking the transcription units.


Vectors for Agrobacterium-mediated transformation are prepared with recombinant DNA from each of the oil-associated genes having a sequence of SEQ ID NO: 74 through SEQ ID NO: 146 and for each of the homologous oil-associated genes encoding a protein having an amino acid sequence of SEQ ID NO: 220 through SEQ ID NO: 2337 with the DNA solely in sense orientation for expression of the oil-associated protein. Each vector is transformed into corn callus which is propagated into a plant that is grown to produce transgenic seed. Progeny plants are self-pollinated to produce seed which is selected for homozygous seed. Homozygous seed is used for producing inbred plants, for introgressing the trait into elite lines, and for crossing to make hybrid seed. Progeny transgenic plants (both inbreds of the transgenic plant and hybrids with other corn lines) comprise the recombinant DNA from an oil-associated gene and have enhanced oil in seed. Transgenic corn including inbred and hybrids with enhanced oil are also produced with recombinant DNA from each of the homologous genes of an oil-associated gene that encode a protein having an amino acid sequence of SEQ ID NO:220 through SEQ ID NO:2337. Transgenic corn plants with recombinant DNA from each oil-associated gene and each homolog of an oil-associated gene are also produced where the rice actin 1 promoter and enhancer are replaced with each of the promoters in the group consisting of a maize globulin 1 promoter, a maize L3 oleosin promoter, a maize emb5 promoter, a zein Z27 promoter, a gamma coixin promoter, and a CaMV 35S promoter. Seed produced by the plants is provided to growers to enable production of corn crops with enhanced oil.


Vectors for Agrobacterium-mediated transformation are also prepared with recombinant DNA from each of the oil-associated genes having a sequence of SEQ ID NO: 74 through SEQ ID NO: 146 in a gene suppression orientation for suppression of the maize endogenous oil-associated gene. Each vector is transformed into corn callus which is propagated into a plant that is grown to produce transgenic seed. Progeny plants are self-pollinated to produce seed which is selected for homozygous seed. Homozygous seed is used for producing inbred plants, for introgressing the trait into elite lines, and for crossing to make hybrid seed. Progeny transgenic plants (both inbreds of the transgenic plant and hybrids with other corn lines) comprise the recombinant DNA from an oil-associated gene and have reduced oil in seed. Transgenic corn plants with recombinant DNA for suppressing each oil-associated gene are also produced where the rice actin 1 promoter and enhancer are replaced with each of the promoters in the group consisting of a maize globulin 1 promoter, a maize L3 oleosin promoter, a maize emb5 promoter, a zein Z27 promoter, a gamma coixin promoter, and a CaMV 35S promoter. Seed produced by the plants is provided to growers to enable production of corn crops with reduced oil.

TABLE 7Elements of an exemplary corn transformation vectorFUNCTIONELEMENTREFERENCERice actin 1U.S. Pat. No. 5,641,876promoterDNA insertionRice actin 1U.S. Pat. No. 5,641,876transcription regionpromoterDNA insertiontext missing or illegible when filedactin 1text missing or illegible when filedg Technologytranscription regionexon 1, intron 1Instruction Manual(att-flankedenhancerinsertion region)CmR geneGATEWAY ™CloningTechnology InstructionManualccdA, ccdB genesGATEWAY ™CloningTechnology InstructionManualattR2GATEWAY ™CloningTechnology InstructionManualDNA insertionPotato pinIIAn et al. (1989) Planttranscription region3′ regionCell 1: 115-122selectable markerCaMV 35S promoterU.S. Pat. No. 5,858,742transcription regionnptII selectableU.S. Pat. No. 5,858,742markernos 3regionU.S. Pat. No. 5,858,742PinII 3′ regionAn et al. (1989) PlantCell 1: 115-122ColE1 origin ofreplicationF1 origin ofreplicationBla ampicillinresistance


EXAMPLE 3

This example illustrates transgenic soybean with altered oil level using recombinant DNA from an oil-associated gene.


GATEWAY™ destination vectors (available from Invitrogen Life Technologies, Carlsbad, Calif.) are constructed for insertion of recombinant DNA from oil-associated genes for soybean transformation. Constructs for use in transformation of soybean are prepared by restriction enzyme based cloning into a common expression vector. Elements of an exemplary common expression vector are shown in Table 8 below and include a selectable marker expression cassette and a gene of interest expression cassette. The selectable marker expression cassette comprises Arabidopsis act 7 gene (AtAct7) promoter with intron and 5′UTR, the transit peptide of Arabidopsis EPSPS, the synthetic CP4 coding region with dicot preferred codon usage and a 3′ UTR of the nopaline synthase gene. The gene of interest expression cassette comprises a Cauliflower Mosaic Virus 35S promoter operably linked to an oil-associated gene in a sense orientation for expression of an oil-enhancing protein and in a gene suppression orientation (i.e. either anti-sense orientation or in a sense- and anti-sense orientation for suppression of an oil-associated gene.


Vectors similar to that described above are be constructed for use in Agrobacterium mediated soybean transformation systems, with recombinant DNA from each of the oil-associated genes having a sequence of SEQ ID NO:74 though SEQ ID NO:146 and homologous genes which encode proteins with an amino acid sequence of SEQ ID NO:220 through SEQ ID NO:2337 with the DNA in sense orientation for expression of the cognate protein. Transgenic soybean plants are produced using vectors for each oil-associated gene and homolog; the transgenic soybean plants have enhanced oil in the seed. Transgenic soybean plants are also produced for recombinant DNA from each of the oil-associated genes and homologs is transcribed by each of the promoters in the group consisting of a maize globulin 1 promoter, a maize L3 oleosin promoter, a maize emb5 promoter, a zein Z27 promoter, a gamma coixin promoter, and a CaMV 35S promoter. Seed produced by the plants is provided to growers to enable production of soybean crops with enhanced oil.


Vectors for Agrobacterium-mediated transformation are also prepared with recombinant DNA from each of the homologs of oil-associated genes from Glycine max, e.g. DNA encoding the protein with the amino acid sequence of SEQ ID NO:244, 318, 318, 353 and each of the others listed in Table 5, in a gene suppression orientation for suppression of the endogenous soybean homolog. Each vector is transformed into corn callus which is propagated into a plant that is grown to produce transgenic seed. Progeny plants are self-pollinated to produce seed which is selected for homozygous seed. Homozygous seed is used for producing inbred plants, for introgressing the trait into elite lines, and for crossing to make hybrid seed. Progeny transgenic plants (both inbreds of the transgenic plant and hybrids with other corn lines) comprise the recombinant DNA from an oil-associated gene and have reduced oil in seed. Transgenic corn plants with recombinant DNA for suppressing each oil-associated gene are also produced where the rice actin 1 promoter and enhancer are replaced with each of the promoters in the group consisting of a maize globulin 1 promoter, a maize L3 oleosin promoter, a maize emb5 promoter, a zein Z27 promoter, a gamma coixin promoter, and a CaMV 35S promoter. Seed produced by the plants is provided to growers to enable production of corn crops with reduced oil.

TABLE 8Elements of an exemplary soybean transformation constructFunctionElementReferenceAgro transformationB-ARGtu.right borderDepicker, A. etal (1982) Mol ApplGenet 1: 561-573Antibiotic resistanceCR-Ec.aadA-SPC/STRRepresser of primersCR-Ec.ropfrom the ColE1 plasmidOrigin of replicationOR-Ec.oriV-RK2Agro transformationB-ARGtu.left borderBarker, R. F. etal (1983) PlantMol Biol 2:335-350Plant selectableArabidopsis act 7McDowell et al.marker expressiongene (AtAct7)(1996) Plantcassettepromoter withPhysiol. 111:intron and 5′UTR699-711.5′ UTR ofArabidopsis act 7geneIntron in 5′UTRof AtAct7Transit peptideKlee, H. J. et alregion of(1987) MGG 210:Arabidopsis EPSPS437-442Synthetic CP4coding region withdicot preferredcodon usageA 3′ UTR of theU.S. Pat. No.nopaline synthase5,858,742gene ofAgrobacteriumtumefaciens TiplasmidPlant gene ofPromoter for 35SU.S. Pat. No.interest expressionRNA from CaMV5,322,938cassettecontaining aduplication ofthe −90 to −350regionGene of interestinsertion siteCotton E6 3′GenBank accessionendU30508



















TABLE 1














ALLELE1
ALLELE2
ALLELE3
ALLELE4



SEQ_NUM
SEQ_ID
MUTATION_ID
START_POS
END_POS
TYPE
STRAINS1
STRAINS2
STRAINS3
STRAINS4
CANDIDATE_ID






































1
Amplicon150
548
85
85
SNP
A

C

MRT4577_407583C


1
Amplicon150
549
108
108
SNP
C

T

MRT4577_407583C


1
Amplicon150
550
158
158
SNP
A

T

MRT4577_407583C


1
Amplicon150
551
175
175
SNP
G

T

MRT4577_407583C


2
Amplicon50699
4463
282
282
SNP
C
b73
T
mo17
MRT4577_37957C


3
Amplicon174322
8937
152
152
SNP
A
mo17
T
b73
MRT4577_306229C


4
Amplicon174423
8979
197
197
SNP
A
mo17
T
b73
MRT4577_305583C


5
Amplicon175589
9626
239
239
SNP
C
mo17
G
b73
MRT4577_189292C


5
Amplicon175589
9627
261
261
SNP
A
b73
C
mo17
MRT4577_189292C


6
Amplicon175758
9739
291
291
SNP
A
b73
G
mo17
MRT4577_409052C


7
Amplicon176352
9927
41
41
SNP
A
mo17
T
b73
MRT4577_371170C


7
Amplicon176352
10667
309
309
SNP
A
mo17
G
b73
MRT4577_371170C


8
Amplicon176822
11713
301
301
SNP
C
mo17
G
b73
MRT4577_169297C


8
Amplicon176822
13100
287
287
SNP
A
b73
C
mo17
MRT4577_169297C


9
Amplicon177147
13685
231
231
SNP
A
b73
G
mo17
MRT4577_273665C


9
Amplicon177147
13687
246
246
SNP
C
b73
T
mo17
MRT4577_273665C


9
Amplicon177147
13688
301
301
SNP
A
b73
C
mo17
MRT4577_273665C


9
Amplicon177147
13689
393
393
SNP
A
b73
C
mo17
MRT4577_273665C


9
Amplicon177147
13691
490
490
SNP
C
mo17
T
b73
MRT4577_273665C


10
Amplicon177165
13783
67
67
SNP
A
b73
G
mo17
MRT4577_285101C


10
Amplicon177165
13785
102
102
SNP
C
mo17
T
b73
MRT4577_285101C


10
Amplicon177165
13787
112
112
IND
*
mo17
T
b73
MRT4577_285101C


10
Amplicon177165
13791
144
144
SNP
C
mo17
T
b73
MRT4577_285101C


10
Amplicon177165
13793
145
145
SNP
A
mo17
T
b73
MRT4577_285101C


10
Amplicon177165
13795
191
191
SNP
A
mo17
T
b73
MRT4577_285101C


10
Amplicon177165
13797
192
192
SNP
A
b73
C
mo17
MRT4577_285101C


10
Amplicon177165
13799
194
194
SNP
C
mo17
G
b73
MRT4577_285101C


10
Amplicon177165
13801
230
230
SNP
A
b73
G
mo17
MRT4577_285101C


10
Amplicon177165
13803
242
244
IND
***
b73
TAC
mo17
MRT4577_285101C


10
Amplicon177165
13805
275
275
SNP
A
b73
G
mo17
MRT4577_285101C


10
Amplicon177165
13807
335
335
SNP
A
mo17
C
b73
MRT4577_285101C


10
Amplicon177165
13811
568
568
SNP
C
b73
T
mo17
MRT4577_285101C


10
Amplicon177165
15184
391
391
SNP
C
b73
T
mo17
MRT4577_285101C


11
Amplicon177361
14692
75
75
SNP
C
b73
G
mo17
MRT4577_284415C


11
Amplicon177361
14694
105
105
SNP
A
mo17
C
b73
MRT4577_284415C


11
Amplicon177361
14697
529
529
SNP
C
b73
T
mo17
MRT4577_284415C


11
Amplicon177361
14698
557
557
SNP
C
b73
T
mo17
MRT4577_284415C


11
Amplicon177361
14700
561
561
SNP
G
mo17
T
b73
MRT4577_284415C


12
Amplicon177729
16576
64
64
SNP
C
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16578
84
84
SNP
A
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16582
209
209
SNP
G
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16584
249
249
SNP
C
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16585
251
254
IND
****
b73
GGAC
mo17
MRT4577_38704C


12
Amplicon177729
16588
332
332
SNP
G
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16589
378
378
SNP
G
mo17
T
b73
MRT4577_38704C


12
Amplicon177729
16591
392
392
SNP
A
b73
T
mo17
MRT4577_38704C


12
Amplicon177729
16593
398
398
SNP
C
b73
T
mo17
MRT4577_38704C


12
Amplicon177729
16595
399
399
IND
*
b73
T
mo17
MRT4577_38704C


12
Amplicon177729
17900
156
156
SNP
A
mo17
G
b73
MRT4577_38704C


12
Amplicon177729
17908
257
260
IND
****
b73
CTGG
mo17
MRT4577_38704C


13
Amplicon177848
17120
151
151
SNP
A
mo17
G
b73
MRT4577_47332C


13
Amplicon177848
18439
172
172
SNP
A
b73
G
mo17
MRT4577_47332C


14
Amplicon178666
21190
286
286
SNP
A
b73
G
mo17
MRT4577_386264C


14
Amplicon178666
21192
499
499
SNP
C
mo17
T
b73
MRT4577_386264C


15
Amplicon178700
22717
64
64
SNP
A
mo17
T
b73
MRT4577_25879C


16
Amplicon178723
21524
116
116
IND
*
mo17
T
b73
MRT4577_419574C


16
Amplicon178723
21526
118
118
IND
*
mo17
A
b73
MRT4577_419574C


16
Amplicon178723
21528
210
216
IND
*******
b73
AGCTAGC
mo17
MRT4577_419574C


16
Amplicon178723
21530
218
218
IND
*
b73
T
mo17
MRT4577_419574C


16
Amplicon178723
21532
482
482
SNP
C
mo17
T
b73
MRT4577_419574C


16
Amplicon178723
21533
486
486
SNP
C
mo17
G
b73
MRT4577_419574C


16
Amplicon178723
21535
488
488
SNP
C
b73
G
mo17
MRT4577_419574C


16
Amplicon178723
21536
489
489
IND
*
mo17
T
b73
MRT4577_419574C


16
Amplicon178723
21539
491
491
SNP
C
b73
T
mo17
MRT4577_419574C


16
Amplicon178723
21541
497
497
SNP
A
mo17
T
b73
MRT4577_419574C


16
Amplicon178723
21543
501
502
IND
**
mo17
GC
b73
MRT4577_419574C


16
Amplicon178723
21545
504
504
SNP
A
b73
G
mo17
MRT4577_419574C


16
Amplicon178723
22775
527
527
SNP
A
mo17
G
b73
MRT4577_419574C


17
Amplicon178785
23091
170
170
SNP
G
b73
T
mo17
MRT4577_414575C


18
Amplicon178833
23289
251
251
SNP
A
b73
G
mo17
MRT4577_199838C


19
Amplicon179515
26314
17
17
SNP
A
b73
G
mo17
MRT4577_409604C


19
Amplicon179515
26316
34
34
IND
*
b73
A
mo17
MRT4577_409604C


19
Amplicon179515
26318
96
96
SNP
A
b73
G
mo17
MRT4577_409604C


19
Amplicon179515
26319
133
133
SNP
A
b73
G
mo17
MRT4577_409604C


19
Amplicon179515
26321
162
162
SNP
C
mo17
G
b73
MRT4577_409604C


19
Amplicon179515
26322
282
284
IND
***
b73
CTG
mo17
MRT4577_409604C


19
Amplicon179515
26326
352
352
SNP
A
mo17
C
b73
MRT4577_409604C


19
Amplicon179515
27447
311
311
SNP
C
b73
G
mo17
MRT4577_409604C


20
Amplicon235434
29819
65
65
SNP
C
b73
T
mo17
MRT4577_391398C


20
Amplicon235434
29820
109
109
SNP
A
b73
G
mo17
MRT4577_391398C


20
Amplicon235434
29821
121
121
SNP
A
mo17
G
b73
MRT4577_391398C


20
Amplicon235434
29822
122
122
SNP
A
mo17
T
b73
MRT4577_391398C


20
Amplicon235434
29823
181
181
SNP
C
mo17
T
b73
MRT4577_391398C


20
Amplicon235434
29824
187
187
SNP
A
mo17
G
b73
MRT4577_391398C


20
Amplicon235434
29825
203
203
SNP
A
b73
C
mo17
MRT4577_391398C


20
Amplicon235434
29826
211
211
SNP
A
mo17
G
b73
MRT4577_391398C


20
Amplicon235434
29827
216
216
SNP
C
b73
T
mo17
MRT4577_391398C


21
Amplicon235455
29867
81
84
IND
****
mo17
TGAG
b73
MRT4577_234188C


21
Amplicon235455
29868
195
196
IND
**
mo17
AA
b73
MRT4577_234188C


21
Amplicon235455
29869
363
363
SNP
A
b73
G
mo17
MRT4577_234188C


21
Amplicon235455
29870
365
365
SNP
C
mo17
G
b73
MRT4577_234188C


21
Amplicon235455
29871
375
375
SNP
A
mo17
C
b73
MRT4577_234188C


22
Amplicon236049
31050
34
34
SNP
A
b73
C
mo17
MRT4577_264682C


22
Amplicon236049
31051
36
36
SNP
A
b73
C
mo17
MRT4577_264682C


22
Amplicon236049
31052
38
38
SNP
A
b73
G
mo17
MRT4577_264682C


22
Amplicon236049
31053
47
47
SNP
A
mo17
T
b73
MRT4577_264682C


22
Amplicon236049
31054
48
48
SNP
A
mo17
G
b73
MRT4577_264682C


22
Amplicon236049
31055
49
49
SNP
C
b73
G
mo17
MRT4577_264682C


22
Amplicon236049
31056
52
52
SNP
A
b73
T
mo17
MRT4577_264682C


22
Amplicon236049
31057
54
54
SNP
C
b73
T
mo17
MRT4577_264682C


22
Amplicon236049
31058
55
55
SNP
A
b73
C
mo17
MRT4577_264682C


22
Amplicon236049
31059
56
56
SNP
A
b73
C
mo17
MRT4577_264682C


22
Amplicon236049
31060
57
57
SNP
G
b73
T
mo17
MRT4577_264682C


22
Amplicon236049
31061
59
59
SNP
C
b73
G
mo17
MRT4577_264682C


22
Amplicon236049
31062
63
63
SNP
C
b73
T
mo17
MRT4577_264682C


22
Amplicon236049
31063
65
66
IND
**
mo17
TC
b73
MRT4577_264682C


22
Amplicon236049
31064
126
126
SNP
A
b73
C
mo17
MRT4577_264682C


22
Amplicon236049
31065
180
180
SNP
C
mo17
G
b73
MRT4577_264682C


22
Amplicon236049
31066
540
540
SNP
G
mo17
T
b73
MRT4577_264682C


23
Amplicon236326
31684
260
260
SNP
A
b73
T
mo17
MRT4577_287055C


24
Amplicon236499
32049
183
183
SNP
C
b73
T
mo17
MRT4577_49099C


24
Amplicon236499
32050
402
402
SNP
C
mo17
T
b73
MRT4577_49099C


24
Amplicon236499
32051
403
403
SNP
A
mo17
G
b73
MRT4577_49099C


25
Amplicon236541
32137
258
258
IND
*
b73
A
mo17
MRT4577_346921C


25
Amplicon236541
32138
420
430
IND
***********
mo17
CCGATCCATCT
b73
MRT4577_346921C


26
Amplicon236590
32244
27
27
SNP
C
b73
T
mo17
MRT4577_257780C


26
Amplicon236590
32245
82
82
SNP
A
b73
G
mo17
MRT4577_257780C


26
Amplicon236590
32246
92
98
IND
*******
mo17
AGTGCTG
b73
MRT4577_257780C


26
Amplicon236590
32247
162
162
SNP
C
b73
T
mo17
MRT4577_257780C


26
Amplicon236590
32248
275
275
SNP
C
b73
T
mo17
MRT4577_257780C


27
Amplicon276497
33373
96
96
SNP
C
mo17
T
b73
MRT4577_410376C


27
Amplicon276497
33374
128
128
SNP
C
mo17
T
b73
MRT4577_410376C


27
Amplicon276497
33375
131
131
SNP
C
mo17
T
b73
MRT4577_410376C


27
Amplicon276497
33376
363
363
SNP
C
b73
G
mo17
MRT4577_410376C


27
Amplicon276497
33377
371
371
SNP
G
b73
T
mo17
MRT4577_410376C


28
Amplicon277511
34895
48
48
SNP
C
b73
G
mo17
MRT4577_233403C


28
Amplicon277511
34896
49
49
SNP
C
b73
T
mo17
MRT4577_233403C


28
Amplicon277511
34897
53
53
IND
*
b73
C
mo17
MRT4577_233403C


28
Amplicon277511
34898
53
54
IND
**
b73
C*
mo17
MRT4577_233403C


28
Amplicon277511
34899
76
76
SNP
C
b73
T
mo17
MRT4577_233403C


28
Amplicon277511
34900
308
308
SNP
A
b73
C
mo17
MRT4577_233403C


28
Amplicon277511
34901
345
345
SNP
A
mo17
G
b73
MRT4577_233403C


28
Amplicon277511
34902
348
348
SNP
C
b73
T
mo17
MRT4577_233403C


28
Amplicon277511
34903
409
409
SNP
C
mo17
T
b73
MRT4577_233403C


29
Amplicon277876
35338
105
105
SNP
C
mo17
G
b73
MRT4577_294774C


29
Amplicon277876
35339
330
334
IND
*****
b73
CAAAG
mo17
MRT4577_294774C


29
Amplicon277876
35340
368
368
SNP
A
b73
G
mo17
MRT4577_294774C


30
Amplicon277914
35377
67
67
SNP
C
b73
G
mo17
MRT4577_402771C


31
Amplicon277962
35407
32
32
SNP
A
mo17
G
b73
MRT4577_397598C


31
Amplicon277962
35408
221
221
SNP
A
mo17
C
b73
MRT4577_397598C


31
Amplicon277962
35409
293
293
SNP
A
b73
C
mo17
MRT4577_397598C


31
Amplicon277962
35410
340
340
SNP
A
mo17
G
b73
MRT4577_397598C


32
Amplicon310739
36286
336
337
IND
**
mo17
AT
b73
MRT4577_204611C


32
Amplicon310739
36287
436
437
IND
**
b73
CT
mo17
MRT4577_204611C


32
Amplicon310739
36288
456
456
SNP
A
b73
G
mo17
MRT4577_204611C


33
Amplicon310854
36487
202
204
IND
***
b73
TGG
mo17
MRT4577_404797C


33
Amplicon310854
36488
228
229
IND
**
b73
AT
mo17
MRT4577_404797C


33
Amplicon310854
36489
236
236
IND
*
mo17
T
b73
MRT4577_404797C


33
Amplicon310854
36490
244
244
SNP
G
b73
T
mo17
MRT4577_404797C


33
Amplicon310854
36491
273
275
IND
***
b73
TAG
mo17
MRT4577_404797C


33
Amplicon310854
36492
273
276
IND
****
b73
TAGC
mo17
MRT4577_404797C


33
Amplicon310854
36493
316
317
IND
**
mo17
GA
b73
MRT4577_404797C


33
Amplicon310854
36494
320
320
SNP
C
b73
T
mo17
MRT4577_404797C


34
Amplicon311738
37631
272
272
SNP
C
mo17
G
b73
MRT4577_32764C


34
Amplicon311738
37632
334
341
IND
********
mo17
CGTTCTAA
b73
MRT4577_32764C


34
Amplicon311738
37633
390
398
IND
*********
b73
CGTTGGGGG
mo17
MRT4577_32764C


34
Amplicon311738
37634
543
543
SNP
G
mo17
T
b73
MRT4577_32764C


35
Amplicon346472
37715
393
393
SNP
A
b73
G
mo17
MRT4577_284905C


35
Amplicon346472
37716
513
513
SNP
C
b73
T
mo17
MRT4577_284905C


35
Amplicon346472
37717
523
523
IND
*
mo17
A
b73
MRT4577_284905C


35
Amplicon346472
37718
564
564
SNP
G
mo17
T
b73
MRT4577_284905C


35
Amplicon346472
37719
574
577
IND
****
b73
ACGA
mo17
MRT4577_284905C


36
Amplicon347285
38909
42
42
SNP
A
b73
T
mo17
MRT4577_386764C


36
Amplicon347285
38910
94
97
IND
****
mo17
TGCA
b73
MRT4577_386764C


36
Amplicon347285
38911
100
100
SNP
A
b73
G
mo17
MRT4577_386764C


36
Amplicon347285
38912
101
101
SNP
C
b73
T
mo17
MRT4577_386764C


36
Amplicon347285
38913
106
106
SNP
A
mo17
C
b73
MRT4577_386764C


36
Amplicon347285
38914
129
132
IND
****
mo17
ATTA
b73
MRT4577_386764C


36
Amplicon347285
38915
149
149
SNP
A
mo17
G
b73
MRT4577_386764C


36
Amplicon347285
38916
153
153
SNP
A
mo17
C
b73
MRT4577_386764C


36
Amplicon347285
38917
159
159
SNP
C
b73
T
mo17
MRT4577_386764C


36
Amplicon347285
38918
176
176
SNP
A
mo17
G
b73
MRT4577_386764C


36
Amplicon347285
38919
181
181
IND
*
mo17
G
b73
MRT4577_386764C


36
Amplicon347285
38920
281
281
SNP
C
b73
T
mo17
MRT4577_386764C


36
Amplicon347285
38921
376
376
SNP
C
b73
G
mo17
MRT4577_386764C


36
Amplicon347285
38922
512
512
SNP
G
b73
T
mo17
MRT4577_386764C


36
Amplicon347285
38923
518
518
SNP
C
mo17
T
b73
MRT4577_386764C


37
Amplicon347598
39507
138
138
SNP
C
mo17
T
b73
MRT4577_417745C


37
Amplicon347598
39508
434
435
IND
**
mo17
CC
b73
MRT4577_417745C


37
Amplicon347598
39509
478
480
IND
***
b73
GCT
mo17
MRT4577_417745C


37
Amplicon347598
39510
501
509
IND
*********
b73
ATGGCAGGC
mo17
MRT4577_417745C


37
Amplicon347598
39511
560
560
SNP
C
mo17
G
b73
MRT4577_417745C


38
Amplicon390056
40189
325
325
SNP
C
mo17
T
b73
MRT4577_43098C


39
Amplicon390137
40320
320
320
SNP
C
b73
T
mo17
MRT4577_222465C


40
Amplicon391267
41850
55
55
SNP
C
b73
T
mo17
MRT4577_326681C


40
Amplicon391267
41851
112
112
SNP
C
b73
G
mo17
MRT4577_326681C


40
Amplicon391267
41852
120
120
SNP
A
mo17
T
b73
MRT4577_326681C


41
Amplicon391526
42161
134
134
SNP
G
mo17
T
b73
MRT4577_361986C


41
Amplicon391526
42162
194
194
SNP
A
b73
G
mo17
MRT4577_361986C


41
Amplicon391526
42163
254
254
SNP
A
mo17
G
b73
MRT4577_361986C


41
Amplicon391526
42164
320
320
SNP
A
b73
G
mo17
MRT4577_361986C


41
Amplicon391526
42165
350
350
SNP
C
mo17
T
b73
MRT4577_361986C


41
Amplicon391526
42166
374
374
SNP
A
mo17
G
b73
MRT4577_361986C


42
Amplicon437734
42930
137
137
SNP
A
mo17
C
b73
MRT4577_418799C


42
Amplicon437734
42931
196
196
SNP
C
b73
T
mo17
MRT4577_418799C


42
Amplicon437734
42932
298
298
SNP
A
b73
G
mo17
MRT4577_418799C


42
Amplicon437734
42933
339
339
SNP
A
b73
G
mo17
MRT4577_418799C


42
Amplicon437734
42934
422
422
SNP
A
b73
G
mo17
MRT4577_418799C


42
Amplicon437734
42935
428
428
SNP
C
b73
T
mo17
MRT4577_418799C


43
Amplicon438229
43576
48
48
SNP
A
b73
T
mo17
MRT4577_300134C


43
Amplicon438229
43577
49
49
SNP
A
b73
T
mo17
MRT4577_300134C


43
Amplicon438229
43578
72
72
SNP
A
mo17
T
b73
MRT4577_300134C


43
Amplicon438229
43579
154
154
SNP
C
b73
T
mo17
MRT4577_300134C


43
Amplicon438229
43580
218
218
SNP
C
b73
T
mo17
MRT4577_300134C


43
Amplicon438229
43581
275
275
SNP
A
mo17
C
b73
MRT4577_300134C


44
Amplicon558095
51419
252
252
SNP
C
b73
T
mo17
MRT4577_415225C


45
Amplicon558289
52078
105
105
IND
*
mo17
G
b73
MRT4577_392856C


45
Amplicon558289
52080
107
107
IND
*
mo17
C
b73
MRT4577_392856C


45
Amplicon558289
52081
351
351
SNP
C
b73
T
mo17
MRT4577_392856C


46
Amplicon559759
58375
494
494
SNP
C
mo17
T
b73
MRT4577_56004C


47
Amplicon559897
58904
120
120
SNP
C
b73
G
mo17
MRT4577_403109C


47
Amplicon559897
58905
216
216
SNP
A
mo17
T
b73
MRT4577_403109C


47
Amplicon559897
58906
314
314
SNP
A
b73
T
mo17
MRT4577_403109C


48
Amplicon559922
59006
22
22
SNP
A
b73
T
mo17
MRT4577_221761C


48
Amplicon559922
59007
34
34
SNP
C
b73
G
mo17
MRT4577_221761C


48
Amplicon559922
59008
83
83
SNP
C
mo17
T
b73
MRT4577_221761C


48
Amplicon559922
59009
184
184
SNP
A
b73
C
mo17
MRT4577_221761C


48
Amplicon559922
59010
234
234
SNP
G
b73
T
mo17
MRT4577_221761C


48
Amplicon559922
59011
261
261
SNP
C
mo17
T
b73
MRT4577_221761C


49
Amplicon560371
60751
299
299
SNP
A
mo17
G
b73
MRT4577_405424C


49
Amplicon560371
60753
371
371
SNP
A
mo17
T
b73
MRT4577_405424C


49
Amplicon560371
60754
376
376
SNP
A
b73
C
mo17
MRT4577_405424C


49
Amplicon560371
60755
445
445
SNP
A
mo17
G
b73
MRT4577_405424C


50
Amplicon617780
69188
172
172
SNP
A
mo17
G
b73
MRT4577_401949C


51
Amplicon671043
77568
250
250
SNP
A
mo17
G
b73
MRT4577_417394C


52
Amplicon671315
78437
95
95
SNP
C
mo17
G
b73
MRT4577_213040C


52
Amplicon671315
78438
138
138
SNP
C
b73
T
mo17
MRT4577_213040C


53
Amplicon724218
82235
507
507
SNP
A
mo17
C
b73
MRT4577_394773C


54
Amplicon993221
104389
211
211
SNP
C
LH82
T
5CM1
MRT4577_26957C


54
Amplicon993221
104390
225
225
SNP
C
LH82
G
5CM1
MRT4577_26957C


54
Amplicon993221
104391
226
226
SNP
A
LH82
G
5CM1
MRT4577_26957C


54
Amplicon993221
104392
227
227
SNP
C
5CM1
T
LH82
MRT4577_26957C


54
Amplicon993221
104393
231
231
SNP
C
5CM1
T
LH82
MRT4577_26957C


54
Amplicon993221
104394
233
233
SNP
A
5CM1
G
LH82
MRT4577_26957C


54
Amplicon993221
104395
252
252
SNP
C
LH82
G
5CM1
MRT4577_26957C


55
Amplicon993328
104809
23
23
SNP
C
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104810
24
24
SNP
G
5CM1
T
LH82
MRT4577_399958C


55
Amplicon993328
104811
25
25
SNP
A
5CM1
G
LH82
MRT4577_399958C


55
Amplicon993328
104812
26
26
SNP
C
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104813
27
27
SNP
C
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104814
28
28
SNP
A
LH82
C
5CM1
MRT4577_399958C


55
Amplicon993328
104815
29
29
SNP
C
5CM1
G
LH82
MRT4577_399958C


55
Amplicon993328
104816
30
30
SNP
A
LH82
G
5CM1
MRT4577_399958C


55
Amplicon993328
104817
31
31
SNP
A
5CM1
G
LH82
MRT4577_399958C


55
Amplicon993328
104818
32
32
SNP
A
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104819
34
34
SNP
A
5CM1
C
LH82
MRT4577_399958C


55
Amplicon993328
104820
35
35
SNP
A
LH82
C
5CM1
MRT4577_399958C


55
Amplicon993328
104821
36
36
SNP
A
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104822
46
46
SNP
A
5CM1
C
LH82
MRT4577_399958C


55
Amplicon993328
104823
97
97
SNP
A
LH82
C
5CM1
MRT4577_399958C


55
Amplicon993328
104824
98
100
IND
***
5CM1
AAA
LH82
MRT4577_399958C


55
Amplicon993328
104825
184
184
SNP
C
LH82
T
5CM1
MRT4577_399958C


55
Amplicon993328
104826
213
213
SNP
C
5CM1
T
LH82
MRT4577_399958C


55
Amplicon993328
104827
276
276
SNP
A
5CM1
G
LH82
MRT4577_399958C


55
Amplicon993328
104828
475
475
SNP
C
5CM1
T
LH82
MRT4577_399958C


56
Amplicon993333
104845
33
33
SNP
A
5CM1
G
LH82
MRT4577_401698C


56
Amplicon993333
104846
41
41
SNP
C
5CM1
T
LH82
MRT4577_401698C


56
Amplicon993333
104847
142
142
SNP
A
5CM1
T
LH82
MRT4577_401698C


56
Amplicon993333
104848
324
324
SNP
A
LH82
C
5CM1
MRT4577_401698C


56
Amplicon993333
104849
366
366
SNP
G
LH82
T
5CM1
MRT4577_401698C


56
Amplicon993333
104850
400
400
SNP
A
5CM1
C
LH82
MRT4577_401698C


56
Amplicon993333
104851
432
432
SNP
G
LH82
T
5CM1
MRT4577_401698C


56
Amplicon993333
104852
435
435
SNP
C
5CM1
T
LH82
MRT4577_401698C


56
Amplicon993333
104853
456
456
SNP
A
LH82
T
5CM1
MRT4577_401698C


56
Amplicon993333
104854
457
457
SNP
A
LH82
T
5CM1
MRT4577_401698C


56
Amplicon993333
104855
461
461
IND
*
LH82
C
5CM1
MRT4577_401698C


57
Amplicon993789
106844
82
82
SNP
A
5CM1
G
LH82
MRT4577_289436C


57
Amplicon993789
106845
110
110
SNP
A
LH82
G
5CM1
MRT4577_289436C


58
Amplicon993841
107074
181
181
SNP
C
5CM1
T
LH82
MRT4577_221609C


58
Amplicon993841
107075
195
195
SNP
C
5CM1
T
LH82
MRT4577_221609C


58
Amplicon993841
107076
206
206
SNP
C
LH82
T
5CM1
MRT4577_221609C


58
Amplicon993841
107077
381
381
SNP
A
LH82
G
5CM1
MRT4577_221609C


58
Amplicon993841
107078
432
432
SNP
C
LH82
T
5CM1
MRT4577_221609C


59
Amplicon994045
107937
311
311
SNP
A
5CM1
G
LH82
MRT4577_28967C


59
Amplicon994045
107938
332
332
SNP
C
5CM1
T
LH82
MRT4577_28967C


59
Amplicon994045
107939
340
340
SNP
G
LH82
T
5CM1
MRT4577_28967C


59
Amplicon994045
107940
416
416
SNP
A
5CM1
C
LH82
MRT4577_28967C


60
Amplicon1017193
109396
440
449
IND
**********
LH82
ACACACACAC
5CM1
MRT4577_151195C


60
Amplicon1017193
109397
482
482
SNP
C
LH82
G
5CM1
MRT4577_151195C


60
Amplicon1017193
109398
488
491
IND
****
LH82
CTCA
5CM1
MRT4577_151195C


60
Amplicon1017193
109399
496
496
SNP
C
LH82
G
5CM1
MRT4577_151195C


60
Amplicon1017193
109400
500
500
SNP
C
LH82
G
5CM1
MRT4577_151195C


60
Amplicon1017193
109401
504
504
SNP
C
LH82
G
5CM1
MRT4577_151195C


60
Amplicon1017193
109402
511
511
SNP
A
5CM1
G
LH82
MRT4577_151195C


60
Amplicon1017193
109403
523
525
IND
***
LH82
TTC
5CM1
MRT4577_151195C


60
Amplicon1017193
109404
540
540
SNP
C
LH82
G
5CM1
MRT4577_151195C


61
Amplicon1017331
110063
17
17
SNP
G
5CM1
T
LH82
MRT4577_412840C


61
Amplicon1017331
110064
21
21
SNP
C
LH82
G
5CM1
MRT4577_412840C


61
Amplicon1017331
110065
123
123
SNP
A
5CM1
G
LH82
MRT4577_412840C


61
Amplicon1017331
110066
245
248
IND
****
LH82
TATA
5CM1
MRT4577_412840C


61
Amplicon1017331
110067
276
276
SNP
A
5CM1
G
LH82
MRT4577_412840C


61
Amplicon1017331
110068
281
281
SNP
C
5CM1
G
LH82
MRT4577_412840C


61
Amplicon1017331
110069
314
314
SNP
A
LH82
G
5CM1
MRT4577_412840C


61
Amplicon1017331
110070
375
375
SNP
G
5CM1
T
LH82
MRT4577_412840C


62
Amplicon1017493
110780
360
360
SNP
A
LH82
G
5CM1
MRT4577_45217C


63
Amplicon1017519
110886
94
99
IND
******
LH82
ATCTGC
5CM1
MRT4577_420096C


63
Amplicon1017519
110887
136
136
SNP
C
LH82
T
5CM1
MRT4577_420096C


63
Amplicon1017519
110888
262
265
IND
****
LH82
TTAT
5CM1
MRT4577_420096C


63
Amplicon1017519
110889
356
356
SNP
G
LH82
T
5CM1
MRT4577_420096C


63
Amplicon1017519
110890
403
403
IND
*
LH82
T
5CM1
MRT4577_420096C


63
Amplicon1017519
110891
405
409
IND
*****
LH82
CCTGT
5CM1
MRT4577_420096C


63
Amplicon1017519
110892
432
432
SNP
A
5CM1
T
LH82
MRT4577_420096C


63
Amplicon1017519
110894
465
471
IND
*******
LH82
GAACCAA
5CM1
MRT4577_420096C


63
Amplicon1017519
110895
547
547
SNP
C
5CM1
G
LH82
MRT4577_420096C


63
Amplicon1017519
110896
553
553
IND
*
LH82
A
5CM1
MRT4577_420096C


63
Amplicon1017519
110897
555
557
IND
***
LH82
CAT
5CM1
MRT4577_420096C


64
Amplicon1050237
112139
94
94
SNP
C
5CM1
G
LH82
MRT4577_220452C


65
Amplicon1459206
143407
116
116
SNP
C
LH82
T
5CM1
MRT4577_416979C


65
Amplicon1459206
143408
382
382
SNP
G
5CM1
T
LH82
MRT4577_416979C


65
Amplicon1459206
143409
517
517
SNP
A
LH82
C
5CM1
MRT4577_416979C


66
Amplicon1459208
143413
71
71
SNP
A
5CM1
G
LH82
MRT4577_5002C


66
Amplicon1459208
143418
206
206
SNP
A
5CM1
T
LH82
MRT4577_5002C


67
Amplicon1459269
144505
46
46
SNP
C
b73
T
mo17:5CM1:LH82
MRT4577_400334C


67
Amplicon1459269
144506
89
92
IND
****
b73
TCTA
mo17:5CM1:LH82
MRT4577_400334C


68
Amplicon1459277
144731
170
170
SNP
A
b73:mo17:5CM1
G
LH82
MRT4577_400556C


68
Amplicon1459277
144732
239
239
SNP
A
b73:mo17:5CM1
G
LH82
MRT4577_400556C


69
Amplicon1459300
145200
103
103
SNP
C
b73
G
mo17:5CM1:LH82
MRT4577_389607C


69
Amplicon1459300
145202
177
177
SNP
A
b73
G
mo17:5CM1:LH82
MRT4577_389607C


69
Amplicon1459300
145203
178
178
SNP
A
b73
C
mo17:5CM1:LH82
MRT4577_389607C


69
Amplicon1459300
145204
272
272
SNP
C
b73
G
mo17:5CM1:LH82
MRT4577_389607C


69
Amplicon1459300
145205
455
458
IND
****
mo17:LH82
ACGT
b73:5CM1
MRT4577_389607C


70
Amplicon1459304
145260
159
159
SNP
A
5CM1
C
LH82
MRT4577_405388C


70
Amplicon1459304
145261
173
173
SNP
C
LH82
G
5CM1
MRT4577_405388C


70
Amplicon1459304
145263
236
236
SNP
C
5CM1
T
LH82
MRT4577_405388C


70
Amplicon1459304
145264
526
526
SNP
C
5CM1
T
LH82
MRT4577_405388C


70
Amplicon1459304
145266
575
575
SNP
C
5CM1
T
LH82
MRT4577_405388C


71
Amplicon1459369
146410
124
124
SNP
G
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146411
155
160
IND
******
5CM1
ATCTTC
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146412
281
281
SNP
C
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146413
331
331
SNP
A
LH82
T
b73:mo17:5CM1
MRT4577_388272C


71
Amplicon1459369
146414
332
332
SNP
A
LH82
C
b73:mo17:5CM1
MRT4577_388272C


71
Amplicon1459369
146415
346
346
SNP
A
b73:LH82
G
mo17:5CM1
MRT4577_388272C


71
Amplicon1459369
146416
553
553
SNP
G
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146417
556
556
SNP
C
b73:mo17:LH82
G
5CM1
MRT4577_388272C


71
Amplicon1459369
146418
557
557
SNP
G
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146419
559
559
SNP
G
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146420
560
560
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146421
561
561
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146422
562
562
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146423
563
563
SNP
G
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146424
564
564
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146425
565
565
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146426
566
566
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146427
567
567
SNP
A
b73:mo17:LH82
C
5CM1
MRT4577_388272C


71
Amplicon1459369
146428
569
569
SNP
C
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146429
570
570
SNP
C
b73:mo17:LH82
G
5CM1
MRT4577_388272C


71
Amplicon1459369
146430
571
571
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146431
575
575
SNP
A
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146432
576
576
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146433
577
577
SNP
G
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146434
578
578
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146435
579
579
SNP
A
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146436
581
581
SNP
C
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146437
582
582
SNP
A
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146438
583
583
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146439
584
584
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146441
588
588
SNP
A
b73:mo17:LH82
C
5CM1
MRT4577_388272C


71
Amplicon1459369
146442
589
589
SNP
A
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146443
590
590
SNP
G
b73:mo17:LH82
T
5CM1
MRT4577_388272C


71
Amplicon1459369
146444
591
591
SNP
C
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146445
593
593
SNP
C
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146446
594
594
SNP
C
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146447
595
595
SNP
A
b73:mo17:LH82
C
5CM1
MRT4577_388272C


71
Amplicon1459369
146448
596
596
SNP
C
5CM1
T
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146449
598
598
SNP
A
5CM1
G
b73:mo17:LH82
MRT4577_388272C


71
Amplicon1459369
146450
599
599
SNP
A
b73:mo17:LH82
C
5CM1
MRT4577_388272C


72
Amplicon1460644
148039
95
95
SNP
C
b73:5CM1
T
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148040
116
116
SNP
A
LH82
C
b73:mo17:5CM1
MRT4577_61311C


72
Amplicon1460644
148041
126
126
SNP
C
5CM1
T
b73:mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148042
140
140
IND
*
5CM1
C
b73:mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148043
147
147
SNP
A
mo17
C
b73:5CM1:LH82
MRT4577_61311C


72
Amplicon1460644
148044
172
172
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148045
191
191
SNP
A
b73:mo17:5CM1
C
LH82
MRT4577_61311C


72
Amplicon1460644
148046
193
193
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148047
210
210
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148048
218
218
SNP
C
b73:mo17:5CM1
T
LH82
MRT4577_61311C


72
Amplicon1460644
148049
223
223
SNP
A
LH82
G
b73:mo17:5CM1
MRT4577_61311C


72
Amplicon1460644
148050
253
253
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148051
259
259
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148052
274
274
SNP
A
b73:5CM1:LH82
G
mo17
MRT4577_61311C


72
Amplicon1460644
148053
291
291
SNP
A
b73
G
mo17:5CM1:LH82
MRT4577_61311C


72
Amplicon1460644
148054
296
296
SNP
A
mo17:LH82
G
b73:5CM1
MRT4577_61311C


72
Amplicon1460644
148055
309
309
SNP
C
mo17
T
b73:5CM1:LH82
MRT4577_61311C


72
Amplicon1460644
148056
326
340
IND
***************
b73:5CM1
CCTTCGATGATATG
LH82
MRT4577_61311C


72
Amplicon1460644
148057
343
357
IND
***************
mo17
TCGACGATGACGCC
MRT4577_61311C


72
Amplicon1460644
148058
360
360
SNP
C
mo17:LH82
G
b73:5CM1
MRT4577_61311C


72
Amplicon1460644
148059
361
361
SNP
C
mo17:LH82
T
b73:5CM1
MRT4577_61311C


72
Amplicon1460644
148060
368
368
SNP
C
b73:5CM1
T
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148061
373
373
SNP
A
mo17:LH82
G
b73:5CM1
MRT4577_61311C


72
Amplicon1460644
148062
376
376
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148063
379
379
SNP
G
b73:5CM1:LH82
T
mo17
MRT4577_61311C


72
Amplicon1460644
148064
383
383
SNP
A
LH82
C
b73:mo17:5CM1
MRT4577_61311C


72
Amplicon1460644
148065
385
385
SNP
A
b73:5CM1
G
mo17:LH82
MRT4577_61311C


72
Amplicon1460644
148066
394
394
SNP
A
b73:5CM1:LH82
G
mo17
MRT4577_61311C


72
Amplicon1460644
148067
400
400
SNP
A
mo17
G
b73:5CM1:LH82
MRT4577_61311C


72
Amplicon1460644
148068
425
425
SNP
C
mo17:LH82
T
b73:5CM1
MRT4577_61311C


72
Amplicon1460644
148069
433
433
SNP
A
b73
G
mo17:5CM1:LH82
MRT4577_61311C


73
Amplicon1461872
151382
225
225
SNP
A
b73:LH82
C
5CM1
MRT4577_287993C


73
Amplicon1461872
151384
419
419
SNP
C
5CM1
G
b73:LH82
MRT4577_287993C


73
Amplicon1461872
151385
445
445
SNP
C
b73:LH82
G
5CM1
MRT4577_287993C


73
Amplicon1461872
151386
532
532
SNP
A
b73:LH82
T
5CM1
MRT4577_287993C


73
Amplicon1461872
151388
535
535
IND
*
b73
G
5CM1:LH82
MRT4577_287993C


73
Amplicon1461872
151389
535
537
IND
***
b73:LH82
GCG
5CM1
MRT4577_287993C


73
Amplicon1461872
151390
540
544
IND
*****
b73:LH82
TTGCC
5CM1
MRT4577_287993C


73
Amplicon1461872
151391
559
560
IND
**
LH82
*A

MRT4577_287993C


73
Amplicon1461872
151392
563
563
IND
*
b73
A
5CM1:LH82
MRT4577_287993C


73
Amplicon1461872
151393
569
569
SNP
C
5CM1
G
b73:LH82
MRT4577_287993C


73
Amplicon1461872
151396
639
641
IND
***
5CM1
GGC
b73:LH82
MRT4577_287993C


73
Amplicon1461872
151397
643
643
IND
*
5CM1
T
b73:LH82
MRT4577_287993C


















TABLE 2








SEQ NUM
Seq ID
Description






















74
MRT4577_407583C
gene encoding MRT4577_407583P


75
MRT4577_37957C
gene encoding MRT4577_37957P


76
MRT4577_306229C
gene encoding MRT4577_306229P


77
MRT4577_305583C
gene encoding MRT4577_305583P


78
MRT4577_189292C
gene encoding MRT4577_189292P


79
MRT4577_409052C
gene encoding MRT4577_409052P


80
MRT4577_371170C
gene encoding MRT4577_371170P


81
MRT4577_169297C
gene encoding MRT4577_169297P


82
MRT4577_273665C
gene encoding MRT4577_273665P


83
MRT4577_285101C
gene encoding MRT4577_285101P


84
MRT4577_284415C
gene encoding MRT4577_284415P


85
MRT4577_38704C
gene encoding MRT4577_38704P


86
MRT4577_47332C
gene encoding MRT4577_47332P


87
MRT4577_386264C
gene encoding MRT4577_386264P


88
MRT4577_25879C
gene encoding MRT4577_25879P


89
MRT4577_419574C
gene encoding MRT4577_419574P


90
MRT4577_414575C
gene encoding MRT4577_414575P


91
MRT4577_199838C
gene encoding MRT4577_199838P


92
MRT4577_409604C
gene encoding MRT4577_409604P


93
MRT4577_391398C
gene encoding MRT4577_391398P


94
MRT4577_234188C
gene encoding MRT4577_234188P


95
MRT4577_264682C
gene encoding MRT4577_264682P


96
MRT4577_287055C
gene encoding MRT4577_287055P


97
MRT4577_49099C
gene encoding MRT4577_49099P


98
MRT4577_346921C
gene encoding MRT4577_346921P


99
MRT4577_257780C
gene encoding MRT4577_257780P


100
MRT4577_410376C
gene encoding MRT4577_410376P


101
MRT4577_233403C
gene encoding MRT4577_233403P


102
MRT4577_294774C
gene encoding MRT4577_294774P


103
MRT4577_402771C
gene encoding MRT4577_402771P


104
MRT4577_397598C
gene encoding MRT4577_397598P


105
MRT4577_204611C
gene encoding MRT4577_204611P


106
MRT4577_404797C
gene encoding MRT4577_404797P


107
MRT4577_32764C
gene encoding MRT4577_32764P


108
MRT4577_284905C
gene encoding MRT4577_284905P


109
MRT4577_386764C
gene encoding MRT4577_386764P


110
MRT4577_417745C
gene encoding MRT4577_417745P


111
MRT4577_43098C
gene encoding MRT4577_43098P


112
MRT4577_222465C
gene encoding MRT4577_222465P


113
MRT4577_326681C
gene encoding MRT4577_326681P


114
MRT4577_361986C
gene encoding MRT4577_361986P


115
MRT4577_418799C
gene encoding MRT4577_418799P


116
MRT4577_300134C
gene encoding MRT4577_300134P


117
MRT4577_415225C
gene encoding MRT4577_415225P


118
MRT4577_392856C
gene encoding MRT4577_392856P


119
MRT4577_56004C
gene encoding MRT4577_56004P


120
MRT4577_403109C
gene encoding MRT4577_403109P


121
MRT4577_221761C
gene encoding MRT4577_221761P


122
MRT4577_405424C
gene encoding MRT4577_405424P


123
MRT4577_401949C
gene encoding MRT4577_401949P


124
MRT4577_417394C
gene encoding MRT4577_417394P


125
MRT4577_213040C
gene encoding MRT4577_213040P


126
MRT4577_394773C
gene encoding MRT4577_394773P


127
MRT4577_26957C
gene encoding MRT4577_26957P


128
MRT4577_399958C
gene encoding MRT4577_399958P


129
MRT4577_401698C
gene encoding MRT4577_401698P


130
MRT4577_289436C
gene encoding MRT4577_289436P


131
MRT4577_221609C
gene encoding MRT4577_221609P


132
MRT4577_28967C
gene encoding MRT4577_28967P


133
MRT4577_151195C
gene encoding MRT4577_151195P


134
MRT4577_412840C
gene encoding MRT4577_412840P


135
MRT4577_45217C
gene encoding MRT4577_45217P


136
MRT4577_420096C
gene encoding MRT4577_420096P


137
MRT4577_220452C
gene encoding MRT4577_220452P


138
MRT4577_416979C
gene encoding MRT4577_416979P


139
MRT4577_5002C
gene encoding MRT4577_5002P


140
MRT4577_400334C
gene encoding MRT4577_400334P


141
MRT4577_400556C
gene encoding MRT4577_400556P


142
MRT4577_389607C
gene encoding MRT4577_389607P


143
MRT4577_405388C
gene encoding MRT4577_405388P


144
MRT4577_388272C
gene encoding MRT4577_388272P


145
MRT4577_61311C
gene encoding MRT4577_61311P


146
MRT4577_287993C
gene encoding MRT4577_287993P


















TABLE 3








Seq Num
Seq ID
Description






















147
MRT4577_407583P
/method = simple longest ORF


148
MRT4577_37957P
gl|22758323|gb|AAN05527.1|putative glutamine synthetase




[Oryza sativa (japonica cultivar-group)]/method = extended homology


149
MRT4577_306229P
gl|18767126|gb|AAL79278.1|/method = extended homology


150
MRT4577_305583P
gl|28566182|gb|AAO43227.1|phosphoethanolamine




cytidylyltransferase




[Hordeum vulgare subsp. vulgare]/method = extended homology


151
MRT4577_189292P
gl|22094360|gb|AAM91887.1|putative cytokinin oxidase [Oryza sativa




(japonica cultivar-group)]/method = homology


152
MRT4577_409052P
gl|18568267|gb|AAL75999.1|AF466646_7 putative polyprotein




[Zea mays]/method = extended homology


153
MRT4577_371170P
gl|7339715|dbj|BAA92920.1|EST AU057816(S21817)




corresponds to a reglon




of the predicted gene. Similar to Arabidopsis




thaliana chromosome IV BAC T19F06;




unknown protein. (AC002343)




[Oryza sativa]/method = extended homology


154
MRT4577_169297P
gl|22325962|ref|NP_180419.2|putative vacuolar




proton-ATPase subunit; protein id: At2g28520.1,




supported by cDNA: gl_20259418 [Arabidopsis thaliana]/




method = extended homology


155
MRT4577_273665P
gl|25408357|pir||C84765 /




method = extended homology


156
MRT4577_285101P
gl|28971970|dbj|BAC65371.1|putative




cellulose synthase [Oryza sativa (japonica




cultivar-group)]/method = extended homology


157
MRT4577_284415P
gl|18416861|ref|NP_568276.1|/




method = extended homology


158
MRT4577_38704P
gl|15242264|ref|NP_200017.1|/




method = extended homology


159
MRT4577_47332P
gl|18404228|ref|NP_566752.1|




rubisco expression protein -related [Arabidopsis




thaliana]/method = extended homology


160
MRT4577_386264P
gl|6539568|dbj|BAA88185.1|/




method = extended homology


161
MRT4577_25879P
gl|15236196|ref|NP_194375.1|/




method = extended homology


162
MRT4577_419574P
/method = simple longest ORF


163
MRT4577_414575P
/method = longest ORF


164
MRT4577_199838P
gl|7487920|pir||T01025 /




method = extended homology


165
MRT4577_409604P
/method = simple longest ORF


166
MRT4577_391398P
gl|21740740|emb|CAD40549.1|OSJNBa0072K14.5




[Oryza sativa]/method = extended homology


167
MRT4577_234188P
gl|5679845|emb|CAB51838.1|/




method = extended homology


168
MRT4577_264682P
gl|28392860|gb|AA041867.1|/




method = extended homology


169
MRT4577_287055P
gl|20161246|dbj|BAB90173.1|




putative ATP-dependent Clp protease regulatory




subunit CLPX [Oryza sativa (japonica cultivar-




group)]/method = extended homology


170
MRT4577_49099P
gl|137460|sp|P09469|VATA_DAUCA




VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT A




(V-ATPASE A SUBUNIT) (VACUOLAR PROTON PUMP




ALPHA SUBUNIT) (V-ATPASE 69 KDA SUBUNIT). /




method = extended homology


171
MRT4577_346921P
gl|29372756|emb|CAD23413.1|




m23 [Zea mays]/method = extended homology


172
MRT4577_257780P
gl|15232453|ref|NP_188116.1|




PHD finger transcription factor, putative




[Arabidopsis thaliana]/method = extended




homology


173
MRT4577_410376P
/method = simple longest ORF


174
MRT4577_233403P
/method = longest ORF


175
MRT4577_294774P
gl|22265999|emb|CAC82980.1|




fatty acid hydroperoxide lyase [Hordeum vulgare]/




method = extended homology


176
MRT4577_402771P
/method = longest ORF


177
MRT4577_397598P
gl|13486777|dbj|BAB40010.1|




putative wall-associated kinase 2 [Oryza sativa




(japonica cultivar-group)]/method = homology


178
MRT4577_204611P
gl|15866696|emb|CAC84558.1|beta-amyrin




synthase [Avena strigosa]/method = extended homology


179
MRT4577_404797P
/method = simple longest ORF


180
MRT4577_32764P
gl|18396768|ref|NP_564307.1|




expressed protein [Arabidopsis thaliana]/




method = extended homology


181
MRT4577_284905P
gl|22748323|gb|AAN05325.1|/




method = extended homology


182
MRT4577_386764P
gl|22330199|ref|NP_683423.1|




somatic embryogenesis receptor-like kinase,




putative; protein id: At1g52540.2, supported




by cDNA: 21250. [Arabidopsis thaliana]/




method = extended homology


183
MRT4577_417745P
/method = longest ORF


184
MRT4577_43098P
gl|29893654|gb|AAP06908.1|/




method = extended homology


185
MRT4577_222465P
gl|14587221|db|BAB61155.1|/




method = extended homology


186
MRT4577_326681P
gl|28071332|db|BAC56020.1|




putative RNA helicase [Oryza sativa




(japonica cultivar-group)]/




method = extended homology


187
MRT4577_361986P
gl|15227441|ref|NP_181713.1|/




method = homology


188
MRT4577_418799P
/method = simple longest ORF


189
MRT4577_300134P
gl|7489733|pir||T01171G1/




S transition control protein Rb1 -




maize /method = extended homology


190
MRT4577_415225P
gl|15239966|ref|NP_196804.1|




callose synthase catalytic subunit -




like protein [Arabidopsis thaliana]/




method = extended homology


191
MRT4577_392856P
gl|22135459|gb|AAM93210.1|




AF527609_1 chromdomain-containing




protein CRD101 [Zea mays]/




method = extended homology


192
MRT4577_56004P
gl|18415638|ref|NP_567620.1|




zinc finger and C2 domain protein




(ZAC) [Arabidopsis thaliana]/




method = extended homology


193
MRT4577_403109P
/method = simple longest ORF


194
MRT4577_221761P
gl|22331664|ref|NP_190399.2|




DP-E2F-like protein 1; protein id:




At3g48160.1, supported by cDNA:




gl_20502507 [Arabidopsis thaliana]/




method = extended homology


195
MRT4577_405424P
/method = longest ORF


196
MRT4577_401949P
gl|15209148|gb|AAK91881.1|




AC091665_7 /method = homology


197
MRT4577_417394P
/method = longest ORF


198
MRT4577_213040P
/method = longest ORF


199
MRT4577_394773P
/method = longest ORF


200
MRT4577_26957P
gl|18407057|ref|NP_566071.1|/




method = extended homology


201
MRT4577_399958P
/method = simple longest ORF


202
MRT4577_401698P
/method = longest ORF


203
MRT4577_289436P
gl|24413957|db|BAC22209.1|/




method = extended homology


204
MRT4577_221609P
gl|20160716|db|BAB89658.1|/




method = extended homology


205
MRT4577_28967P
gl|9663979|db|BAB03620.1|/




method = homology


206
MRT4577_151195P
/method = simple longest ORF


207
MRT4577_412840P
/method = simple longest ORF


208
MRT4577_45217P
gl|19352035|db|BAB85911.1|




Arabidopsis ETTIN-like protein 2




[Oryza sativa]/method = homology


209
MRT4577_420096P
gl|20330751|gb|AAM19114.1|




AC104427_12 Putative bZIP




transcription factor [Oryza sativa




(japonica cultivar-group)]/




method = extended homology


210
MRT4577_220452P
gl|26449867|db|BAC42056.1|/




method = extended homology


211
MRT4577_416979P
/method = longest ORF


212
MRT4577_5002P
gl|7489518|pir||T02745 nucleic




acid binding protein -




rice /method = extended homology


213
MRT4577_400334P
/method = simple longest ORF


214
MRT4577_400556P
/method = simple longest ORF


215
MRT4577_389607P
gl|20161442|db|BAB90366.1|/




method = extended homology


216
MRT4577_405388P
gl|1703302|sp|P55005|AMYB_MAIZE




“BETA-AMYLASE (1,4-ALPHA-D-GLUCAN




MALTOHYDROLASE)./




method = extended homology”


217
MRT4577_388272P
gl|7488484|pir||T07980




probable choline-phosphate cytidylyltransferase




(EC 2.7.7.15) (clone CCT2) -




rape /method = extended homology


218
MRT4577_61311P
gl|7489748|pir||T03381 high




sulfurzein protein precursor -




maize /method = homology


219
MRT4577_287993P
gl|11993325|gb|AAG42687.1|AF271383_1 Zea




mays indole-3-glycerol phosphate lyase (Igl)




gene, complete cds; and putative tryptophan




synthase alpha (TSAlike) gene, partial cds./




method = homology


















TABLE 4








Seq_Num
Seq_ID
Homolog_ID






















148
MRT4577_37957P
gl_21220152


148
MRT4577_37957P
gl_21219634


148
MRT4577_37957P
gl_21220814


148
MRT4577_37957P
gl_17227784


148
MRT4577_37957P
gl_17232340


148
MRT4577_37957P
gl_22960297


148
MRT4577_37957P
gl_22957596


148
MRT4577_37957P
gl_22961512


148
MRT4577_37957P
gl_22961554


148
MRT4577_37957P
gl_22962442


148
MRT4577_37957P
gl_22966395


148
MRT4577_37957P
gl_16330288


148
MRT4577_37957P
gl_32476398


148
MRT4577_37957P
gl_22993136


148
MRT4577_37957P
gl_22991262


148
MRT4577_37957P
gl_22993311


148
MRT4577_37957P
gl_15673109


148
MRT4577_37957P
gl_15893448


148
MRT4577_37957P
gl_15893920


148
MRT4577_37957P
gl_26988777


148
MRT4577_37957P
gl_16801989


148
MRT4577_37957P
gl_2500204


148
MRT4577_37957P
gl_16804835


148
MRT4577_37957P
gl_27468813


148
MRT4577_37957P
gl_15827378


148
MRT4577_37957P
gl_15890531


148
MRT4577_37957P
gl_23006404


148
MRT4577_37957P
gl_23004108


148
MRT4577_37957P
gl_16126335


148
MRT4577_37957P
gl_16124956


148
MRT4577_37957P
gl_18309257


148
MRT4577_37957P
gl_19552720


148
MRT4577_37957P
gl_19553182


148
MRT4577_37957P
gl_23019853


148
MRT4577_37957P
gl_23019267


148
MRT4577_37957P
gl_23021869


148
MRT4577_37957P
gl_23021249


148
MRT4577_37957P
gl_23021813


148
MRT4577_37957P
gl_23028929


148
MRT4577_37957P
gl_23501390


148
MRT4577_37957P
gl_23336124


148
MRT4577_37957P
gl_23465101


148
MRT4577_37957P
gl_23465609


148
MRT4577_37957P
gl_23473416


148
MRT4577_37957P
gl_22536365


148
MRT4577_37957P
gl_15595759


148
MRT4577_37957P
gl_15597263


148
MRT4577_37957P
gl_15829106


148
MRT4577_37957P
gl_28209952


148
MRT4577_37957P
gl_28210965


148
MRT4577_37957P
gl_27367975


148
MRT4577_37957P
gl_28379494


148
MRT4577_37957P
gl_23099057


148
MRT4577_37957P
gl_28901282


148
MRT4577_37957P
gl_16077989


148
MRT4577_37957P
gl_17987729


148
MRT4577_37957P
gl_29375007


148
MRT4577_37957P
gl_29347953


148
MRT4577_37957P
gl_29828077


148
MRT4577_37957P
gl_29833210


148
MRT4577_37957P
gl_15897407


148
MRT4577_37957P
gl_27262322


148
MRT4577_37957P
gl_23102311


148
MRT4577_37957P
gl_23106149


148
MRT4577_37957P
gl_30102526


148
MRT4577_37957P
gl_15234470


148
MRT4577_37957P
gl_13474110


148
MRT4577_37957P
gl_15966192


148
MRT4577_37957P
MRT3847_53577P.3


148
MRT4577_37957P
MRT3847_267642P.1


148
MRT4577_37957P
gl_22758323


148
MRT4577_37957P
gl_19881629


148
MRT4577_37957P
gl_5881832


148
MRT4577_37957P
MRT4530_14454P.2


148
MRT4577_37957P
MRT4530_14452P.1


148
MRT4577_37957P
MRT4565_134443P.1


148
MRT4577_37957P
MRT4565_41750P.3


148
MRT4577_37957P
gl_19075895


148
MRT4577_37957P
gl_6320442


148
MRT4577_37957P
gl_23118917


148
MRT4577_37957P
gl_32405352


148
MRT4577_37957P
gl_23123201


148
MRT4577_37957P
gl_15600873


148
MRT4577_37957P
gl_23131072


148
MRT4577_37957P
gl_15609923


148
MRT4577_37957P
gl_15616426


148
MRT4577_37957P
gl_16761259


148
MRT4577_37957P
gl_23135856


148
MRT4577_37957P
gl_16765661


149
MRT4577_306229P
MRT3847_254592P.2


149
MRT4577_306229P
MRT3847_234305P.2


149
MRT4577_306229P
MRT3847_213371P.3


149
MRT4577_306229P
MRT3847_223708P.3


149
MRT4577_306229P
MRT4565_71415P.2


150
MRT4577_305583P
gl_28566182


150
MRT4577_305583P
gl_15224925


150
MRT4577_305583P
MRT3847_284135P.1


150
MRT4577_305583P
MRT3847_52222P.3


150
MRT4577_305583P
MRT4530_21638P.2


150
MRT4577_305583P
MRT4530_21634P.2


150
MRT4577_305583P
MRT4530_21629P.1


150
MRT4577_305583P
MRT4565_98294P.2


151
MRT4577_189292P
gl_17227820


151
MRT4577_189292P
gl_28192488


151
MRT4577_189292P
gl_1169648


151
MRT4577_189292P
gl_22094360


151
MRT4577_189292P
gl_32489847


151
MRT4577_189292P
MRT4530_25301P.1


151
MRT4577_189292P
MRT4565_4354P.3


152
MRT4577_409052P
gl_19881581


153
MRT4577_371170P
gl_15233656


153
MRT4577_371170P
gl_28973727


153
MRT4577_371170P
gl_6633813


153
MRT4577_371170P
gl_20259460


153
MRT4577_371170P
gl_15217662


153
MRT4577_371170P
MRT3847_24864P.2


153
MRT4577_371170P
MRT3847_99459P.3


153
MRT4577_371170P
gl_7339715


153
MRT4577_371170P
MRT4530_100337P.1


153
MRT4577_371170P
MRT4530_100340P.1


153
MRT4577_371170P
MRT4530_146073P.1


153
MRT4577_371170P
MRT4565_66175P.2


154
MRT4577_169297P
gl_15027611


154
MRT4577_169297P
gl_25956266


154
MRT4577_169297P
gl_27125515


154
MRT4577_169297P
MRT4530_37728P.2


154
MRT4577_169297P
MRT4530_37726P.2


154
MRT4577_169297P
gl_18657017


154
MRT4577_169297P
MRT4530_71260P.2


154
MRT4577_169297P
MRT4530_37730P.2


154
MRT4577_169297P
gl_19115131


154
MRT4577_169297P
gl_460160


154
MRT4577_169297P
gl_6323699


154
MRT4577_169297P
gl_264676


154
MRT4577_169297P
gl_6324844


154
MRT4577_169297P
gl_32404216


155
MRT4577_273665P
gl_21741785


155
MRT4577_273665P
MRT4565_57148P.3


156
MRT4577_285101P
gl_21954719


156
MRT4577_285101P
gl_21954721


156
MRT4577_285101P
gl_27372782


156
MRT4577_285101P
MRT3847_200246P.2


157
MRT4577_284415P
gl_14586373


157
MRT4577_284415P
gl_30684104


157
MRT4577_284415P
gl_15591909


157
MRT4577_284415P
gl_30688675


157
MRT4577_284415P
gl_17065024


157
MRT4577_284415P
gl_7487603


157
MRT4577_284415P
MRT3847_26155P.3


157
MRT4577_284415P
MRT3847_98076P.3


157
MRT4577_284415P
MRT3847_98062P.3


157
MRT4577_284415P
MRT3847_11589P.3


157
MRT4577_284415P
MRT4530_46211P.2


157
MRT4577_284415P
MRT4530_46208P.1


157
MRT4577_284415P
MRT4565_9346P.3


158
MRT4577_38704P
gl_30696140


158
MRT4577_38704P
gl_30696138


158
MRT4577_38704P
gl_1707370


158
MRT4577_38704P
gl_15235112


158
MRT4577_38704P
gl_25386572


158
MRT4577_38704P
gl_1667582


158
MRT4577_38704P
MRT3847_258276P.2


158
MRT4577_38704P
MRT3847_61998P.3


158
MRT4577_38704P
MRT3847_63803P.3


158
MRT4577_38704P
MRT3847_250868P.2


158
MRT4577_38704P
MRT4530_27655P.2


158
MRT4577_38704P
gl_6759507


159
MRT4577_47332P
gl_21219540


159
MRT4577_47332P
gl_21219937


159
MRT4577_47332P
gl_17231725


159
MRT4577_47332P
gl_22960295


159
MRT4577_47332P
gl_3913209


159
MRT4577_47332P
gl_22963535


159
MRT4577_47332P
gl_32475580


159
MRT4577_47332P
gl_20807813


159
MRT4577_47332P
gl_14194485


159
MRT4577_47332P
gl_22989508


159
MRT4577_47332P
gl_2462107


159
MRT4577_47332P
gl_2462109


159
MRT4577_47332P
gl_6016879


159
MRT4577_47332P
gl_6016881


159
MRT4577_47332P
gl_98485


159
MRT4577_47332P
gl_15828368


159
MRT4577_47332P
gl_15826905


159
MRT4577_47332P
gl_15827806


159
MRT4577_47332P
gl_21401687


159
MRT4577_47332P
gl_18310529


159
MRT4577_47332P
gl_30263713


159
MRT4577_47332P
gl_23017722


159
MRT4577_47332P
gl_23043296


159
MRT4577_47332P
gl_23099102


159
MRT4577_47332P
gl_16078805


159
MRT4577_47332P
gl_27377698


159
MRT4577_47332P
gl_29827972


159
MRT4577_47332P
gl_29828741


159
MRT4577_47332P
gl_29833453


159
MRT4577_47332P
gl_3913225


159
MRT4577_47332P
gl_11465473


159
MRT4577_47332P
gl_11465694


159
MRT4577_47332P
gl_116144


159
MRT4577_47332P
gl_11467528


159
MRT4577_47332P
gl_18404228


159
MRT4577_47332P
gl_21553510


159
MRT4577_47332P
gl_9294047


159
MRT4577_47332P
gl_24559828


159
MRT4577_47332P
gl_16263937


159
MRT4577_47332P
MRT3847_41566P.3


159
MRT4577_47332P
MRT3847_25290P.2


159
MRT4577_47332P
MRT3847_16287P.3


159
MRT4577_47332P
MRT3847_212021P.2


159
MRT4577_47332P
MRT3847_218049P.2


159
MRT4577_47332P
gl_8489192


159
MRT4577_47332P
gl_30468060


159
MRT4577_47332P
gl_2541885


159
MRT4577_47332P
MRT4530_15443P.1


159
MRT4577_47332P
MRT4530_104183P.1


159
MRT4577_47332P
MRT4530_143108P.1


159
MRT4577_47332P
MRT4530_111094P.1


159
MRT4577_47332P
MRT4565_130085P.1


159
MRT4577_47332P
MRT4565_8769P.3


159
MRT4577_47332P
gl_23112455


159
MRT4577_47332P
gl_23111662


159
MRT4577_47332P
gl_729237


159
MRT4577_47332P
gl_420929


159
MRT4577_47332P
gl_729238


159
MRT4577_47332P
gl_11467655


159
MRT4577_47332P
gl_13812343


159
MRT4577_47332P
gl_23131734


159
MRT4577_47332P
gl_15839668


159
MRT4577_47332P
gl_15843516


159
MRT4577_47332P
gl_15607423


159
MRT4577_47332P
gl_15611004


159
MRT4577_47332P
gl_15611020


159
MRT4577_47332P
gl_15608935


159
MRT4577_47332P
gl_23134144


159
MRT4577_47332P
gl_15614926


159
MRT4577_47332P
gl_15614852


160
MRT4577_386264P
gl_21223783


160
MRT4577_386264P
gl_21220496


160
MRT4577_386264P
gl_15616928


160
MRT4577_386264P
gl_22968361


160
MRT4577_386264P
gl_22970242


160
MRT4577_386264P
gl_15921917


160
MRT4577_386264P
gl_15618021


160
MRT4577_386264P
gl_32476350


160
MRT4577_386264P
gl_20808232


160
MRT4577_386264P
gl_22980706


160
MRT4577_386264P
gl_15676021


160
MRT4577_386264P
gl_15793205


160
MRT4577_386264P
gl_15807615


160
MRT4577_386264P
gl_6708108


160
MRT4577_386264P
gl_22988101


160
MRT4577_386264P
gl_22990852


160
MRT4577_386264P
gl_421428


160
MRT4577_386264P
gl_15673314


160
MRT4577_386264P
gl_1730064


160
MRT4577_386264P
gl_14289139


160
MRT4577_386264P
gl_585371


160
MRT4577_386264P
gl_282382


160
MRT4577_386264P
gl_3041863


160
MRT4577_386264P
gl_30724884


160
MRT4577_386264P
gl_1730065


160
MRT4577_386264P
gl_15894323


160
MRT4577_386264P
gl_15893809


160
MRT4577_386264P
gl_15802088


160
MRT4577_386264P
gl_23000680


160
MRT4577_386264P
gl_1346399


160
MRT4577_386264P
gl_15924687


160
MRT4577_386264P
gl_23002842


160
MRT4577_386264P
gl_15675235


160
MRT4577_386264P
gl_15837426


160
MRT4577_386264P
gl_125607


160
MRT4577_386264P
gl_16800673


160
MRT4577_386264P
gl_33240373


160
MRT4577_386264P
gl_16803610


160
MRT4577_386264P
gl_15900780


160
MRT4577_386264P
gl_27468291


160
MRT4577_386264P
gl_3122320


160
MRT4577_386264P
gl_15827659


160
MRT4577_386264P
gl_18312204


160
MRT4577_386264P
gl_15891188


160
MRT4577_386264P
gl_20092686


160
MRT4577_386264P
gl_19705084


160
MRT4577_386264P
gl_21232615


160
MRT4577_386264P
gl_21244070


160
MRT4577_386264P
gl_16126292


160
MRT4577_386264P
gl_21402641


160
MRT4577_386264P
gl_15791759


160
MRT4577_386264P
gl_21226817


160
MRT4577_386264P
gl_18311131


160
MRT4577_386264P
gl_18309344


160
MRT4577_386264P
gl_25028545


160
MRT4577_386264P
gl_23308892


160
MRT4577_386264P
gl_22299818


160
MRT4577_386264P
gl_22298059


160
MRT4577_386264P
gl_24113065


160
MRT4577_386264P
gl_30063190


160
MRT4577_386264P
gl_21910448


160
MRT4577_386264P
gl_21672587


160
MRT4577_386264P
gl_26247926


160
MRT4577_386264P
gl_23017104


160
MRT4577_386264P
gl_23023645


160
MRT4577_386264P
gl_23029594


160
MRT4577_386264P
gl_23037947


160
MRT4577_386264P
gl_28493257


160
MRT4577_386264P
gl_23502605


160
MRT4577_386264P
gl_23336674


160
MRT4577_386264P
gl_23466988


160
MRT4577_386264P
gl_23059426


160
MRT4577_386264P
gl_23063854


160
MRT4577_386264P
gl_23465557


160
MRT4577_386264P
gl_23475131


160
MRT4577_386264P
gl_22537102


160
MRT4577_386264P
gl_32039540


160
MRT4577_386264P
gl_15596695


160
MRT4577_386264P
gl_12045070


160
MRT4577_386264P
gl_407635


160
MRT4577_386264P
gl_27887626


160
MRT4577_386264P
gl_24379618


160
MRT4577_386264P
gl_13508042


160
MRT4577_386264P
gl_15828711


160
MRT4577_386264P
gl_25010985


160
MRT4577_386264P
gl_24374035


160
MRT4577_386264P
gl_28212071


160
MRT4577_386264P
gl_13357744


160
MRT4577_386264P
gl_16122616


160
MRT4577_386264P
gl_16122303


160
MRT4577_386264P
gl_27364101


160
MRT4577_386264P
gl_27366266


160
MRT4577_386264P
gl_28572631


160
MRT4577_386264P
gl_15668279


160
MRT4577_386264P
gl_28378548


160
MRT4577_386264P
gl_23052059


160
MRT4577_386264P
gl_23099626


160
MRT4577_386264P
gl_28897130


160
MRT4577_386264P
gl_28898813


160
MRT4577_386264P
gl_28900678


160
MRT4577_386264P
gl_16079970


160
MRT4577_386264P
gl_15594693


160
MRT4577_386264P
gl_17986575


160
MRT4577_386264P
gl_27904791


160
MRT4577_386264P
gl_29375625


160
MRT4577_386264P
gl_29348250


160
MRT4577_386264P
gl_30022674


160
MRT4577_386264P
gl_6318287


160
MRT4577_386264P
gl_29655069


160
MRT4577_386264P
gl_29832759


160
MRT4577_386264P
gl_29829367


160
MRT4577_386264P
gl_32034452


160
MRT4577_386264P
gl_32029324


160
MRT4577_386264P
gl_15897860


160
MRT4577_386264P
gl_16081945


160
MRT4577_386264P
gl_155435


160
MRT4577_386264P
gl_28564203


160
MRT4577_386264P
gl_28564205


160
MRT4577_386264P
gl_26553530


160
MRT4577_386264P
gl_23055438


160
MRT4577_386264P
gl_28565038


160
MRT4577_386264P
gl_25005270


160
MRT4577_386264P
gl_7861547


160
MRT4577_386264P
gl_4433778


160
MRT4577_386264P
gl_17549667


160
MRT4577_386264P
gl_17545291


160
MRT4577_386264P
gl_32490885


160
MRT4577_386264P
gl_15241190


160
MRT4577_386264P
gl_15236190


160
MRT4577_386264P
gl_4033432


160
MRT4577_386264P
gl_4033435


160
MRT4577_386264P
gl_13473275


160
MRT4577_386264P
gl_15966542


160
MRT4577_386264P
gl_4586602


160
MRT4577_386264P
gl_20465197


160
MRT4577_386264P
gl_2497540


160
MRT4577_386264P
gl_6539568


160
MRT4577_386264P
gl_3122311


160
MRT4577_386264P
gl_2497543


160
MRT4577_386264P
gl_25814821


160
MRT4577_386264P
gl_322787


160
MRT4577_386264P
gl_125606


160
MRT4577_386264P
MRT4530_57792P.1


160
MRT4577_386264P
MRT4530_27060P.2


160
MRT4577_386264P
MRT4530_27056P.1


160
MRT4577_386264P
MRT4565_39839P.3


160
MRT4577_386264P
MRT4565_140767P.1


160
MRT4577_386264P
gl_7271955


160
MRT4577_386264P
gl_23110381


160
MRT4577_386264P
gl_19115258


160
MRT4577_386264P
gl_11260405


160
MRT4577_386264P
gl_28563985


160
MRT4577_386264P
gl_28563989


160
MRT4577_386264P
gl_28563987


160
MRT4577_386264P
gl_6319279


160
MRT4577_386264P
gl_6324923


160
MRT4577_386264P
gl_4180


160
MRT4577_386264P
gl_23121268


160
MRT4577_386264P
gl_28564948


160
MRT4577_386264P
gl_101735


160
MRT4577_386264P
gl_1170699


160
MRT4577_386264P
gl_13541851


160
MRT4577_386264P
gl_2497537


160
MRT4577_386264P
gl_320885


160
MRT4577_386264P
gl_9955873


160
MRT4577_386264P
gl_32410899


160
MRT4577_386264P
gl_400142


160
MRT4577_386264P
gl_5911463


160
MRT4577_386264P
gl_12643655


160
MRT4577_386264P
gl_3377757


160
MRT4577_386264P
gl_147276


160
MRT4577_386264P
gl_1310978


160
MRT4577_386264P
gl_9955371


160
MRT4577_386264P
gl_9955367


160
MRT4577_386264P
gl_1805530


160
MRT4577_386264P
gl_1742753


160
MRT4577_386264P
gl_14600753


160
MRT4577_386264P
gl_23122758


160
MRT4577_386264P
gl_1526982


160
MRT4577_386264P
gl_4033428


160
MRT4577_386264P
gl_15640512


160
MRT4577_386264P
gl_15642010


160
MRT4577_386264P
gl_15601464


160
MRT4577_386264P
gl_16273468


160
MRT4577_386264P
gl_23131322


160
MRT4577_386264P
gl_15602518


160
MRT4577_386264P
gl_15605055


160
MRT4577_386264P
gl_1791247


160
MRT4577_386264P
gl_15608755


160
MRT4577_386264P
gl_16129807


160
MRT4577_386264P
gl_15831818


160
MRT4577_386264P
gl_15835226


160
MRT4577_386264P
gl_23133806


160
MRT4577_386264P
gl_15615725


160
MRT4577_386264P
gl_16760530


160
MRT4577_386264P
gl_6691650


160
MRT4577_386264P
gl_6729356


160
MRT4577_386264P
gl_23135446


160
MRT4577_386264P
gl_16764728


161
MRT4577_25879P
gl_15236196


161
MRT4577_25879P
MRT3847_13189P.3


161
MRT4577_25879P
MRT3847_42675P.2


161
MRT4577_25879P
gl_32488077


161
MRT4577_25879P
MRT4530_10024P.1


161
MRT4577_25879P
MRT4530_10021P.1


161
MRT4577_25879P
MRT4565_78273P.2


164
MRT4577_199838P
MRT3847_233523P.2


166
MRT4577_391398P
MRT3847_36848P.3


166
MRT4577_391398P
MRT3847_43842P.3


166
MRT4577_391398P
MRT3847_250748P.2


166
MRT4577_391398P
MRT3847_36849P.2


167
MRT4577_234188P
gl_25486627


167
MRT4577_234188P
gl_7716952


167
MRT4577_234188P
gl_6175246


167
MRT4577_234188P
MRT4530_91129P.1


167
MRT4577_234188P
MRT4565_77691P.2


167
MRT4577_234188P
MRT4565_21523P.3


167
MRT4577_234188P
gl_4218537


168
MRT4577_264682P
MRT3847_33136P.3


168
MRT4577_264682P
gl_32487515


168
MRT4577_264682P
gl_24430421


168
MRT4577_264682P
gl_7489168


168
MRT4577_264682P
gl_7489434


168
MRT4577_264682P
gl_7489412


168
MRT4577_264682P
MRT4530_101175P.1


168
MRT4577_264682P
MRT4565_26905P.2


169
MRT4577_287055P
gl_21221074


169
MRT4577_287055P
gl_17231176


169
MRT4577_287055P
gl_22959136


169
MRT4577_287055P
gl_22956679


169
MRT4577_287055P
gl_22964886


169
MRT4577_287055P
gl_22962301


169
MRT4577_287055P
gl_15617074


169
MRT4577_287055P
gl_22969349


169
MRT4577_287055P
gl_22967579


169
MRT4577_287055P
gl_22970179


169
MRT4577_287055P
gl_6225171


169
MRT4577_287055P
gl_16332067


169
MRT4577_287055P
gl_15618755


169
MRT4577_287055P
gl_32476155


169
MRT4577_287055P
gl_20807120


169
MRT4577_287055P
gl_20807894


169
MRT4577_287055P
gl_22976982


169
MRT4577_287055P
gl_15677237


169
MRT4577_287055P
gl_15794478


169
MRT4577_287055P
gl_6273581


169
MRT4577_287055P
gl_15806971


169
MRT4577_287055P
gl_22983077


169
MRT4577_287055P
gl_22991721


169
MRT4577_287055P
gl_7546983


169
MRT4577_287055P
gl_15673133


169
MRT4577_287055P
gl_3023975


169
MRT4577_287055P
gl_1196314


169
MRT4577_287055P
gl_1296452


169
MRT4577_287055P
gl_1142616


169
MRT4577_287055P
gl_15895897


169
MRT4577_287055P
gl_21328719


169
MRT4577_287055P
gl_15800168


169
MRT4577_287055P
gl_22994398


169
MRT4577_287055P
gl_22994632


169
MRT4577_287055P
gl_22996222


169
MRT4577_287055P
gl_22997796


169
MRT4577_287055P
gl_22998791


169
MRT4577_287055P
gl_23000020


169
MRT4577_287055P
gl_2105144


169
MRT4577_287055P
gl_15924664


169
MRT4577_287055P
gl_15924244


169
MRT4577_287055P
gl_23003622


169
MRT4577_287055P
gl_23002438


169
MRT4577_287055P
gl_15639499


169
MRT4577_287055P
gl_26989025


169
MRT4577_287055P
gl_15674910


169
MRT4577_287055P
gl_15837790


169
MRT4577_287055P
gl_15838086


169
MRT4577_287055P
gl_16800375


169
MRT4577_287055P
gl_16800386


169
MRT4577_287055P
gl_33241266


169
MRT4577_287055P
gl_16803308


169
MRT4577_287055P
gl_16803319


169
MRT4577_287055P
gl_15901412


169
MRT4577_287055P
gl_27468267


169
MRT4577_287055P
gl_27467848


169
MRT4577_287055P
gl_15827775


169
MRT4577_287055P
gl_15888589


169
MRT4577_287055P
gl_15887403


169
MRT4577_287055P
gl_28198387


169
MRT4577_287055P
gl_23014985


169
MRT4577_287055P
gl_23005242


169
MRT4577_287055P
gl_23014725


169
MRT4577_287055P
gl_24215258


169
MRT4577_287055P
gl_19705311


169
MRT4577_287055P
gl_21230440


169
MRT4577_287055P
gl_21241839


169
MRT4577_287055P
gl_16126204


169
MRT4577_287055P
gl_21402518


169
MRT4577_287055P
gl_21401812


169
MRT4577_287055P
gl_5002358


169
MRT4577_287055P
gl_6225163


169
MRT4577_287055P
gl_15791646


169
MRT4577_287055P
gl_15792017


169
MRT4577_287055P
gl_21673243


169
MRT4577_287055P
gl_21674017


169
MRT4577_287055P
gl_18310374


169
MRT4577_287055P
gl_25028847


169
MRT4577_287055P
gl_21283347


169
MRT4577_287055P
gl_21282866


169
MRT4577_287055P
gl_19553586


169
MRT4577_287055P
gl_22298053


169
MRT4577_287055P
gl_30263833


169
MRT4577_287055P
gl_21672725


169
MRT4577_287055P
gl_23019058


169
MRT4577_287055P
gl_23021744


169
MRT4577_287055P
gl_23023390


169
MRT4577_287055P
gl_23037705


169
MRT4577_287055P
gl_23041315


169
MRT4577_287055P
gl_28493446


169
MRT4577_287055P
gl_23501986


169
MRT4577_287055P
gl_23502927


169
MRT4577_287055P
gl_23336808


169
MRT4577_287055P
gl_23336272


169
MRT4577_287055P
gl_23467432


169
MRT4577_287055P
gl_23469166


169
MRT4577_287055P
gl_23058851


169
MRT4577_287055P
gl_23465516


169
MRT4577_287055P
gl_23474551


169
MRT4577_287055P
gl_23475994


169
MRT4577_287055P
gl_22537459


169
MRT4577_287055P
gl_15596999


169
MRT4577_287055P
gl_27887595


169
MRT4577_287055P
gl_24379392


169
MRT4577_287055P
gl_25011425


169
MRT4577_287055P
gl_24373361


169
MRT4577_287055P
gl_28211966


169
MRT4577_287055P
gl_16123318


169
MRT4577_287055P
gl_27363511


169
MRT4577_287055P
gl_28572441


169
MRT4577_287055P
gl_28378738


169
MRT4577_287055P
gl_28378504


169
MRT4577_287055P
gl_23099532


169
MRT4577_287055P
gl_23099005


169
MRT4577_287055P
gl_28870880


169
MRT4577_287055P
gl_28897692


169
MRT4577_287055P
gl_16079874


169
MRT4577_287055P
gl_16078679


169
MRT4577_287055P
gl_15606540


169
MRT4577_287055P
gl_15605757


169
MRT4577_287055P
gl_15594957


169
MRT4577_287055P
gl_15594640


169
MRT4577_287055P
gl_27380054


169
MRT4577_287055P
gl_27375757


169
MRT4577_287055P
gl_17987158


169
MRT4577_287055P
gl_17988331


169
MRT4577_287055P
gl_27904899


169
MRT4577_287055P
gl_29376445


169
MRT4577_287055P
gl_29376200


169
MRT4577_287055P
gl_29349251


169
MRT4577_287055P
gl_30022560


169
MRT4577_287055P
gl_30021917


169
MRT4577_287055P
gl_29654073


169
MRT4577_287055P
gl_29831992


169
MRT4577_287055P
gl_29840676


169
MRT4577_287055P
gl_32035049


169
MRT4577_287055P
gl_30248063


169
MRT4577_287055P
gl_15642920


169
MRT4577_287055P
gl_15643288


169
MRT4577_287055P
gl_6942107


169
MRT4577_287055P
gl_11133033


169
MRT4577_287055P
gl_27262354


169
MRT4577_287055P
gl_23056436


169
MRT4577_287055P
gl_17546431


169
MRT4577_287055P
gl_22532109


169
MRT4577_287055P
gl_8134368


169
MRT4577_287055P
gl_27804891


169
MRT4577_287055P
gl_23103564


169
MRT4577_287055P
gl_23104278


169
MRT4577_287055P
gl_142369


169
MRT4577_287055P
gl_28262700


169
MRT4577_287055P
gl_28262023


169
MRT4577_287055P
gl_32490903


169
MRT4577_287055P
gl_13476995


169
MRT4577_287055P
gl_13474176


169
MRT4577_287055P
gl_22653795


169
MRT4577_287055P
gl_15965009


169
MRT4577_287055P
MRT4565_98303P.2


169
MRT4577_287055P
MRT4565_43124P.2


169
MRT4577_287055P
gl_23108079


169
MRT4577_287055P
gl_6319704


169
MRT4577_287055P
gl_23119424


169
MRT4577_287055P
gl_23111737


169
MRT4577_287055P
gl_23111624


169
MRT4577_287055P
gl_32409603


169
MRT4577_287055P
gl_388977


169
MRT4577_287055P
gl_23123457


169
MRT4577_287055P
gl_7594817


169
MRT4577_287055P
gl_6225174


169
MRT4577_287055P
gl_23126009


169
MRT4577_287055P
gl_15641923


169
MRT4577_287055P
gl_1655938


169
MRT4577_287055P
gl_16272655


169
MRT4577_287055P
gl_23130789


169
MRT4577_287055P
gl_15603842


169
MRT4577_287055P
gl_15892991


169
MRT4577_287055P
gl_15892357


169
MRT4577_287055P
gl_15604535


169
MRT4577_287055P
gl_15604188


169
MRT4577_287055P
gl_15605438


169
MRT4577_287055P
gl_15841981


169
MRT4577_287055P
gl_15609594


169
MRT4577_287055P
gl_15834703


169
MRT4577_287055P
gl_23132758


169
MRT4577_287055P
gl_15645984


169
MRT4577_287055P
gl_15645143


169
MRT4577_287055P
gl_15612353


169
MRT4577_287055P
gl_15611532


169
MRT4577_287055P
gl_15615614


169
MRT4577_287055P
gl_15615026


169
MRT4577_287055P
gl_16759429


169
MRT4577_287055P
gl_23136411


169
MRT4577_287055P
gl_23137026


169
MRT4577_287055P
gl_16763830


170
MRT4577_49099P
gl_5758877


170
MRT4577_49099P
gl_5758896


170
MRT4577_49099P
gl_5758897


170
MRT4577_49099P
gl_5758903


170
MRT4577_49099P
gl_5758867


170
MRT4577_49099P
gl_5758886


170
MRT4577_49099P
gl_5758911


170
MRT4577_49099P
gl_6467949


170
MRT4577_49099P
gl_6467934


170
MRT4577_49099P
gl_14718030


170
MRT4577_49099P
gl_12004119


170
MRT4577_49099P
gl_12004145


170
MRT4577_49099P
gl_12004143


170
MRT4577_49099P
gl_12004127


170
MRT4577_49099P
gl_12004121


170
MRT4577_49099P
gl_12004115


170
MRT4577_49099P
gl_12004137


170
MRT4577_49099P
gl_12004139


170
MRT4577_49099P
gl_12004149


170
MRT4577_49099P
gl_12004151


170
MRT4577_49099P
gl_12004153


170
MRT4577_49099P
gl_12004159


170
MRT4577_49099P
gl_12004161


170
MRT4577_49099P
gl_12004133


170
MRT4577_49099P
gl_12004113


170
MRT4577_49099P
gl_15921725


170
MRT4577_49099P
gl_15425576


170
MRT4577_49099P
gl_21633411


170
MRT4577_49099P
gl_11527563


170
MRT4577_49099P
gl_14717924


170
MRT4577_49099P
gl_14718224


170
MRT4577_49099P
gl_14717935


170
MRT4577_49099P
gl_14717920


170
MRT4577_49099P
gl_14718095


170
MRT4577_49099P
gl_14718090


170
MRT4577_49099P
gl_14718060


170
MRT4577_49099P
gl_14718167


170
MRT4577_49099P
gl_14718242


170
MRT4577_49099P
gl_14718228


170
MRT4577_49099P
gl_24940166


170
MRT4577_49099P
gl_24940194


170
MRT4577_49099P
gl_17224755


170
MRT4577_49099P
gl_27528494


170
MRT4577_49099P
gl_27528472


170
MRT4577_49099P
gl_16330679


170
MRT4577_49099P
gl_15618012


170
MRT4577_49099P
gl_22094585


170
MRT4577_49099P
gl_14718165


170
MRT4577_49099P
gl_21684927


170
MRT4577_49099P
gl_18077603


170
MRT4577_49099P
gl_18077601


170
MRT4577_49099P
gl_20514385


170
MRT4577_49099P
gl_15805727


170
MRT4577_49099P
gl_584810


170
MRT4577_49099P
gl_14718042


170
MRT4577_49099P
gl_19033077


170
MRT4577_49099P
gl_14718232


170
MRT4577_49099P
gl_12005284


170
MRT4577_49099P
gl_7687960


170
MRT4577_49099P
gl_5001573


170
MRT4577_49099P
gl_7708171


170
MRT4577_49099P
gl_24940162


170
MRT4577_49099P
gl_14717984


170
MRT4577_49099P
gl_6687199


170
MRT4577_49099P
gl_14717990


170
MRT4577_49099P
gl_5001583


170
MRT4577_49099P
gl_8517408


170
MRT4577_49099P
gl_7708197


170
MRT4577_49099P
gl_4063542


170
MRT4577_49099P
gl_7687974


170
MRT4577_49099P
gl_7708284


170
MRT4577_49099P
gl_22992679


170
MRT4577_49099P
gl_7687976


170
MRT4577_49099P
gl_6687483


170
MRT4577_49099P
gl_14718056


170
MRT4577_49099P
gl_21684893


170
MRT4577_49099P
gl_1171780


170
MRT4577_49099P
gl_97924


170
MRT4577_49099P
gl_1072369


170
MRT4577_49099P
gl_6706178


170
MRT4577_49099P
gl_7708570


170
MRT4577_49099P
gl_7688039


170
MRT4577_49099P
gl_7688411


170
MRT4577_49099P
gl_19033051


170
MRT4577_49099P
gl_16416760


170
MRT4577_49099P
gl_30352098


170
MRT4577_49099P
gl_12585416


170
MRT4577_49099P
gl_21956014


170
MRT4577_49099P
gl_16416758


170
MRT4577_49099P
gl_27435896


170
MRT4577_49099P
gl_19033069


170
MRT4577_49099P
gl_32526541


170
MRT4577_49099P
gl_32526543


170
MRT4577_49099P
gl_15639519


170
MRT4577_49099P
gl_15639417


170
MRT4577_49099P
gl_15674362


170
MRT4577_49099P
gl_2493121


170
MRT4577_49099P
gl_1929027


170
MRT4577_49099P
gl_24528335


170
MRT4577_49099P
gl_16416730


170
MRT4577_49099P
gl_16416738


170
MRT4577_49099P
gl_7708329


170
MRT4577_49099P
gl_15901171


170
MRT4577_49099P
gl_15425574


170
MRT4577_49099P
gl_20384961


170
MRT4577_49099P
gl_28188331


170
MRT4577_49099P
gl_20467373


170
MRT4577_49099P
gl_20467387


170
MRT4577_49099P
gl_20467383


170
MRT4577_49099P
gl_16417186


170
MRT4577_49099P
gl_18312083


170
MRT4577_49099P
gl_21684909


170
MRT4577_49099P
gl_21684891


170
MRT4577_49099P
gl_21684869


170
MRT4577_49099P
gl_18075919


170
MRT4577_49099P
gl_18077607


170
MRT4577_49099P
gl_18075921


170
MRT4577_49099P
gl_24940196


170
MRT4577_49099P
gl_24940262


170
MRT4577_49099P
gl_19033091


170
MRT4577_49099P
gl_21667292


170
MRT4577_49099P
gl_19745323


170
MRT4577_49099P
gl_18976554


170
MRT4577_49099P
gl_19033067


170
MRT4577_49099P
gl_15678973


170
MRT4577_49099P
gl_20092951


170
MRT4577_49099P
gl_20094453


170
MRT4577_49099P
gl_28188341


170
MRT4577_49099P
gl_28188339


170
MRT4577_49099P
gl_19705056


170
MRT4577_49099P
gl_19705057


170
MRT4577_49099P
gl_28188329


170
MRT4577_49099P
gl_16127677


170
MRT4577_49099P
gl_20269434


170
MRT4577_49099P
gl_20269410


170
MRT4577_49099P
gl_20269418


170
MRT4577_49099P
gl_21226882


170
MRT4577_49099P
gl_23503627


170
MRT4577_49099P
gl_30316239


170
MRT4577_49099P
gl_28895034


170
MRT4577_49099P
gl_18310620


170
MRT4577_49099P
gl_30265987


170
MRT4577_49099P
gl_21633339


170
MRT4577_49099P
gl_21633397


170
MRT4577_49099P
gl_21633375


170
MRT4577_49099P
gl_21633369


170
MRT4577_49099P
gl_21633323


170
MRT4577_49099P
gl_21633359


170
MRT4577_49099P
gl_21633435


170
MRT4577_49099P
gl_21633371


170
MRT4577_49099P
gl_21633423


170
MRT4577_49099P
gl_21633419


170
MRT4577_49099P
gl_21633441


170
MRT4577_49099P
gl_21633405


170
MRT4577_49099P
gl_21633433


170
MRT4577_49099P
gl_21633431


170
MRT4577_49099P
gl_21633365


170
MRT4577_49099P
gl_21633355


170
MRT4577_49099P
gl_21633349


170
MRT4577_49099P
gl_21633343


170
MRT4577_49099P
gl_21633399


170
MRT4577_49099P
gl_21633415


170
MRT4577_49099P
gl_21633417


170
MRT4577_49099P
gl_21633425


170
MRT4577_49099P
gl_21633427


170
MRT4577_49099P
gl_21633301


170
MRT4577_49099P
gl_21633437


170
MRT4577_49099P
gl_21633361


170
MRT4577_49099P
gl_21633379


170
MRT4577_49099P
gl_21633383


170
MRT4577_49099P
gl_21633381


170
MRT4577_49099P
gl_21909656


170
MRT4577_49099P
gl_23021511


170
MRT4577_49099P
gl_24940164


170
MRT4577_49099P
gl_24940168


170
MRT4577_49099P
gl_24940174


170
MRT4577_49099P
gl_24940176


170
MRT4577_49099P
gl_24940246


170
MRT4577_49099P
gl_24940248


170
MRT4577_49099P
gl_24940256


170
MRT4577_49099P
gl_24940266


170
MRT4577_49099P
gl_24940204


170
MRT4577_49099P
gl_24940264


170
MRT4577_49099P
gl_30351915


170
MRT4577_49099P
gl_30351917


170
MRT4577_49099P
gl_15596894


170
MRT4577_49099P
gl_27886806


170
MRT4577_49099P
gl_15828737


170
MRT4577_49099P
gl_15828707


170
MRT4577_49099P
gl_28210705


170
MRT4577_49099P
gl_28211923


170
MRT4577_49099P
gl_80953


170
MRT4577_49099P
gl_15668390


170
MRT4577_49099P
gl_12585563


170
MRT4577_49099P
gl_114520


170
MRT4577_49099P
gl_23051710


170
MRT4577_49099P
gl_11267101


170
MRT4577_49099P
gl_7708468


170
MRT4577_49099P
gl_114516


170
MRT4577_49099P
gl_11498766


170
MRT4577_49099P
gl_15594440


170
MRT4577_49099P
gl_2493099


170
MRT4577_49099P
gl_27904521


170
MRT4577_49099P
gl_29376065


170
MRT4577_49099P
gl_29346709


170
MRT4577_49099P
gl_7436320


170
MRT4577_49099P
gl_29840442


170
MRT4577_49099P
gl_32034348


170
MRT4577_49099P
gl_114528


170
MRT4577_49099P
gl_15897484


170
MRT4577_49099P
gl_14718003


170
MRT4577_49099P
gl_16081190


170
MRT4577_49099P
gl_9229839


170
MRT4577_49099P
gl_18075929


170
MRT4577_49099P
gl_6688706


170
MRT4577_49099P
gl_21633463


170
MRT4577_49099P
gl_6689006


170
MRT4577_49099P
gl_7708189


170
MRT4577_49099P
gl_6689008


170
MRT4577_49099P
gl_14718107


170
MRT4577_49099P
gl_24298775


170
MRT4577_49099P
gl_4063526


170
MRT4577_49099P
gl_1072952


170
MRT4577_49099P
gl_29420857


170
MRT4577_49099P
gl_27528482


170
MRT4577_49099P
gl_29420859


170
MRT4577_49099P
gl_27528474


170
MRT4577_49099P
gl_29420871


170
MRT4577_49099P
gl_29420867


170
MRT4577_49099P
gl_29420869


170
MRT4577_49099P
gl_27528492


170
MRT4577_49099P
gl_27528498


170
MRT4577_49099P
gl_29420865


170
MRT4577_49099P
gl_27528480


170
MRT4577_49099P
gl_32172455


170
MRT4577_49099P
gl_1352828


170
MRT4577_49099P
gl_23054147


170
MRT4577_49099P
gl_11467561


170
MRT4577_49099P
gl_15425588


170
MRT4577_49099P
gl_7706848


170
MRT4577_49099P
gl_6688492


170
MRT4577_49099P
gl_6687737


170
MRT4577_49099P
gl_4731151


170
MRT4577_49099P
gl_14718009


170
MRT4577_49099P
gl_14718099


170
MRT4577_49099P
gl_14718230


170
MRT4577_49099P
gl_7708662


170
MRT4577_49099P
gl_2459981


170
MRT4577_49099P
gl_7688337


170
MRT4577_49099P
gl_4063558


170
MRT4577_49099P
gl_7706839


170
MRT4577_49099P
gl_29420855


170
MRT4577_49099P
gl_14521960


170
MRT4577_49099P
gl_27550061


170
MRT4577_49099P
gl_21264381


170
MRT4577_49099P
gl_7708538


170
MRT4577_49099P
gl_7688031


170
MRT4577_49099P
gl_17548614


170
MRT4577_49099P
gl_19033063


170
MRT4577_49099P
gl_28188335


170
MRT4577_49099P
gl_28188325


170
MRT4577_49099P
gl_19033097


170
MRT4577_49099P
gl_19033089


170
MRT4577_49099P
gl_5869971


170
MRT4577_49099P
gl_11466709


170
MRT4577_49099P
gl_24460025


170
MRT4577_49099P
gl_14718147


170
MRT4577_49099P
gl_4995759


170
MRT4577_49099P
gl_4063560


170
MRT4577_49099P
gl_3023341


170
MRT4577_49099P
gl_12585499


170
MRT4577_49099P
gl_27435914


170
MRT4577_49099P
gl_11034791


170
MRT4577_49099P
gl_14718151


170
MRT4577_49099P
gl_5758854


170
MRT4577_49099P
gl_18075917


170
MRT4577_49099P
gl_24940180


170
MRT4577_49099P
gl_24940198


170
MRT4577_49099P
gl_6687481


170
MRT4577_49099P
gl_29420863


170
MRT4577_49099P
gl_29420861


170
MRT4577_49099P
gl_27528478


170
MRT4577_49099P
gl_7708335


170
MRT4577_49099P
gl_14718076


170
MRT4577_49099P
gl_7708181


170
MRT4577_49099P
gl_7578495


170
MRT4577_49099P
gl_1430917


170
MRT4577_49099P
gl_6017822


170
MRT4577_49099P
gl_7708173


170
MRT4577_49099P
gl_13235340


170
MRT4577_49099P
gl_1336803


170
MRT4577_49099P
gl_11497535


170
MRT4577_49099P
gl_67842


170
MRT4577_49099P
gl_27529083


170
MRT4577_49099P
gl_21684925


170
MRT4577_49099P
gl_2493120


170
MRT4577_49099P
gl_3334408


170
MRT4577_49099P
gl_5758914


170
MRT4577_49099P
gl_14718136


170
MRT4577_49099P
gl_7708574


170
MRT4577_49099P
gl_401322


170
MRT4577_49099P
gl_3169287


170
MRT4577_49099P
gl_4995846


170
MRT4577_49099P
gl_4063538


170
MRT4577_49099P
gl_32490757


170
MRT4577_49099P
gl_14718222


170
MRT4577_49099P
gl_14718189


170
MRT4577_49099P
gl_15219234


170
MRT4577_49099P
gl_2493122


170
MRT4577_49099P
gl_14718140


170
MRT4577_49099P
gl_19033053


170
MRT4577_49099P
gl_16416736


170
MRT4577_49099P
gl_4063562


170
MRT4577_49099P
gl_15982954


170
MRT4577_49099P
gl_6634078


170
MRT4577_49099P
gl_6634488


170
MRT4577_49099P
gl_1934688


170
MRT4577_49099P
gl_14718046


170
MRT4577_49099P
MRT3847_257212P.1


170
MRT4577_49099P
MRT3847_70323P.2


170
MRT4577_49099P
MRT3847_257209P.2


170
MRT4577_49099P
gl_6687375


170
MRT4577_49099P
gl_8452718


170
MRT4577_49099P
gl_14585885


170
MRT4577_49099P
gl_2506211


170
MRT4577_49099P
gl_7708139


170
MRT4577_49099P
gl_7708327


170
MRT4577_49099P
gl_5001589


170
MRT4577_49099P
gl_6688704


170
MRT4577_49099P
gl_6689056


170
MRT4577_49099P
gl_29726150


170
MRT4577_49099P
gl_14718007


170
MRT4577_49099P
gl_6689562


170
MRT4577_49099P
gl_7708177


170
MRT4577_49099P
gl_16943664


170
MRT4577_49099P
gl_16943662


170
MRT4577_49099P
gl_5758894


170
MRT4577_49099P
gl_7708568


170
MRT4577_49099P
gl_11466794


170
MRT4577_49099P
gl_19920171


170
MRT4577_49099P
gl_14718072


170
MRT4577_49099P
gl_7708333


170
MRT4577_49099P
gl_4063522


170
MRT4577_49099P
gl_1041768


170
MRT4577_49099P
gl_137460


170
MRT4577_49099P
gl_553048


170
MRT4577_49099P
gl_5001569


170
MRT4577_49099P
gl_6706180


170
MRT4577_49099P
gl_27884018


170
MRT4577_49099P
gl_27883932


170
MRT4577_49099P
gl_19033057


170
MRT4577_49099P
gl_19033055


170
MRT4577_49099P
gl_231596


170
MRT4577_49099P
gl_6688901


170
MRT4577_49099P
gl_7708153


170
MRT4577_49099P
gl_6689307


170
MRT4577_49099P
gl_6686963


170
MRT4577_49099P
gl_7708634


170
MRT4577_49099P
gl_8517661


170
MRT4577_49099P
gl_7708308


170
MRT4577_49099P
gl_7708444


170
MRT4577_49099P
gl_7708215


170
MRT4577_49099P
gl_6687550


170
MRT4577_49099P
gl_7708464


170
MRT4577_49099P
gl_7708630


170
MRT4577_49099P
gl_6017838


170
MRT4577_49099P
gl_12004131


170
MRT4577_49099P
gl_6687278


170
MRT4577_49099P
gl_6687548


170
MRT4577_49099P
gl_6687660


170
MRT4577_49099P
gl_6689113


170
MRT4577_49099P
gl_14718013


170
MRT4577_49099P
gl_4206564


170
MRT4577_49099P
gl_8452749


170
MRT4577_49099P
gl_4063566


170
MRT4577_49099P
gl_22651734


170
MRT4577_49099P
gl_7592738


170
MRT4577_49099P
gl_4063564


170
MRT4577_49099P
gl_4063524


170
MRT4577_49099P
gl_8452756


170
MRT4577_49099P
gl_11908164


170
MRT4577_49099P
gl_4206610


170
MRT4577_49099P
gl_19033085


170
MRT4577_49099P
gl_5031147


170
MRT4577_49099P
gl_14718153


170
MRT4577_49099P
gl_7688029


170
MRT4577_49099P
gl_7687964


170
MRT4577_49099P
gl_11034787


170
MRT4577_49099P
gl_6017814


170
MRT4577_49099P
gl_7706835


170
MRT4577_49099P
gl_17224761


170
MRT4577_49099P
gl_5758895


170
MRT4577_49099P
gl_2493123


170
MRT4577_49099P
gl_29539348


170
MRT4577_49099P
gl_4995717


170
MRT4577_49099P
gl_4063552


170
MRT4577_49099P
gl_6017792


170
MRT4577_49099P
gl_7708321


170
MRT4577_49099P
MRT4530_8337P.2


170
MRT4577_49099P
MRT4530_87661P.1


170
MRT4577_49099P
MRT4530_72752P.2


170
MRT4577_49099P
MRT4530_87659P.1


170
MRT4577_49099P
MRT4530_87660P.1


170
MRT4577_49099P
MRT4530_60814P.1


170
MRT4577_49099P
MRT4530_27618P.1


170
MRT4577_49099P
gl_227786


170
MRT4577_49099P
MRT4565_101762P.1


170
MRT4577_49099P
MRT4565_24817P.3


170
MRT4577_49099P
MRT4565_59504P.2


170
MRT4577_49099P
gl_6689231


170
MRT4577_49099P
gl_6017824


170
MRT4577_49099P
gl_14717997


170
MRT4577_49099P
gl_5758866


170
MRT4577_49099P
gl_5758898


170
MRT4577_49099P
gl_5758878


170
MRT4577_49099P
gl_5758899


170
MRT4577_49099P
gl_6688636


170
MRT4577_49099P
gl_6689309


170
MRT4577_49099P
gl_5758884


170
MRT4577_49099P
gl_5758908


170
MRT4577_49099P
gl_5758921


170
MRT4577_49099P
gl_5758888


170
MRT4577_49099P
gl_6692624


170
MRT4577_49099P
gl_6601482


170
MRT4577_49099P
gl_7708157


170
MRT4577_49099P
gl_14718111


170
MRT4577_49099P
gl_27528476


170
MRT4577_49099P
gl_28202179


170
MRT4577_49099P
gl_14717950


170
MRT4577_49099P
gl_24940182


170
MRT4577_49099P
gl_14717931


170
MRT4577_49099P
gl_6687201


170
MRT4577_49099P
gl_6689111


170
MRT4577_49099P
gl_19114337


170
MRT4577_49099P
gl_6689408


170
MRT4577_49099P
gl_27526581


170
MRT4577_49099P
gl_27528490


170
MRT4577_49099P
gl_3417405


170
MRT4577_49099P
gl_29420851


170
MRT4577_49099P
gl_6320016


170
MRT4577_49099P
gl_172907


170
MRT4577_49099P
gl_29420847


170
MRT4577_49099P
gl_29420835


170
MRT4577_49099P
gl_29420833


170
MRT4577_49099P
gl_29420837


170
MRT4577_49099P
gl_29420849


170
MRT4577_49099P
gl_29420843


170
MRT4577_49099P
gl_27528502


170
MRT4577_49099P
gl_27528500


170
MRT4577_49099P
gl_27529077


170
MRT4577_49099P
gl_27529081


170
MRT4577_49099P
gl_27529079


170
MRT4577_49099P
gl_15422204


170
MRT4577_49099P
gl_15422208


170
MRT4577_49099P
gl_15425560


170
MRT4577_49099P
gl_15425564


170
MRT4577_49099P
gl_15425590


170
MRT4577_49099P
gl_18077605


170
MRT4577_49099P
gl_8452620


170
MRT4577_49099P
gl_16943741


170
MRT4577_49099P
gl_16943745


170
MRT4577_49099P
gl_7708256


170
MRT4577_49099P
gl_20467381


170
MRT4577_49099P
gl_13540883


170
MRT4577_49099P
gl_6017840


170
MRT4577_49099P
gl_7708658


170
MRT4577_49099P
gl_16444949


170
MRT4577_49099P
gl_23503623


170
MRT4577_49099P
gl_32412440


170
MRT4577_49099P
gl_27526583


170
MRT4577_49099P
gl_16416748


170
MRT4577_49099P
gl_14591712


170
MRT4577_49099P
gl_9799472


170
MRT4577_49099P
gl_29420853


170
MRT4577_49099P
gl_586209


170
MRT4577_49099P
gl_3850934


170
MRT4577_49099P
gl_3850978


170
MRT4577_49099P
gl_6467950


170
MRT4577_49099P
gl_12585490


170
MRT4577_49099P
gl_7708260


170
MRT4577_49099P
gl_14717946


170
MRT4577_49099P
gl_6467935


170
MRT4577_49099P
gl_6599365


170
MRT4577_49099P
gl_11467696


170
MRT4577_49099P
gl_14600685


170
MRT4577_49099P
gl_18075915


170
MRT4577_49099P
gl_6724287


170
MRT4577_49099P
gl_14718201


170
MRT4577_49099P
gl_7708448


170
MRT4577_49099P
gl_16943658


170
MRT4577_49099P
gl_5758910


170
MRT4577_49099P
gl_8452704


170
MRT4577_49099P
gl_16943668


170
MRT4577_49099P
gl_7708642


170
MRT4577_49099P
gl_7708668


170
MRT4577_49099P
gl_12585391


170
MRT4577_49099P
gl_12004165


170
MRT4577_49099P
gl_12004135


170
MRT4577_49099P
gl_12004123


170
MRT4577_49099P
gl_12004117


170
MRT4577_49099P
gl_12004111


170
MRT4577_49099P
gl_12004157


170
MRT4577_49099P
gl_12004167


170
MRT4577_49099P
gl_11558464


170
MRT4577_49099P
gl_7688339


170
MRT4577_49099P
gl_7708187


170
MRT4577_49099P
gl_7708442


170
MRT4577_49099P
gl_10955560


170
MRT4577_49099P
gl_14717933


170
MRT4577_49099P
gl_7708304


170
MRT4577_49099P
gl_7708572


170
MRT4577_49099P
gl_14718240


170
MRT4577_49099P
gl_732262


170
MRT4577_49099P
gl_7687980


170
MRT4577_49099P
gl_12229704


170
MRT4577_49099P
gl_15790973


170
MRT4577_49099P
gl_4063536


170
MRT4577_49099P
gl_7688421


170
MRT4577_49099P
gl_14718038


170
MRT4577_49099P
gl_4995097


170
MRT4577_49099P
gl_4063556


170
MRT4577_49099P
gl_4063530


170
MRT4577_49099P
gl_4206576


170
MRT4577_49099P
gl_4206592


170
MRT4577_49099P
gl_4995053


170
MRT4577_49099P
gl_4995757


170
MRT4577_49099P
gl_23503621


170
MRT4577_49099P
gl_4063540


170
MRT4577_49099P
gl_4063550


170
MRT4577_49099P
gl_4995854


170
MRT4577_49099P
gl_4063528


170
MRT4577_49099P
gl_4063570


170
MRT4577_49099P
gl_4063568


170
MRT4577_49099P
gl_7708339


170
MRT4577_49099P
gl_15425580


170
MRT4577_49099P
gl_19033087


170
MRT4577_49099P
gl_21684907


170
MRT4577_49099P
gl_21684923


170
MRT4577_49099P
gl_21684881


170
MRT4577_49099P
gl_21684885


170
MRT4577_49099P
gl_4206588


170
MRT4577_49099P
gl_4206584


170
MRT4577_49099P
gl_4206602


170
MRT4577_49099P
gl_8388947


170
MRT4577_49099P
gl_4206606


170
MRT4577_49099P
gl_4206598


170
MRT4577_49099P
gl_4206578


170
MRT4577_49099P
gl_4206604


170
MRT4577_49099P
gl_4206608


170
MRT4577_49099P
gl_14718085


170
MRT4577_49099P
gl_28188337


170
MRT4577_49099P
gl_24940184


170
MRT4577_49099P
gl_24940260


170
MRT4577_49099P
gl_24940270


170
MRT4577_49099P
gl_7708163


170
MRT4577_49099P
gl_7708514


170
MRT4577_49099P
gl_15605029


170
MRT4577_49099P
gl_5758891


170
MRT4577_49099P
gl_30351931


170
MRT4577_49099P
gl_21633457


170
MRT4577_49099P
gl_14717948


170
MRT4577_49099P
gl_4995095


170
MRT4577_49099P
gl_4995715


170
MRT4577_49099P
gl_4995221


170
MRT4577_49099P
gl_4995153


170
MRT4577_49099P
gl_4995063


170
MRT4577_49099P
gl_4995111


170
MRT4577_49099P
gl_4995177


170
MRT4577_49099P
gl_4995705


170
MRT4577_49099P
gl_4995798


170
MRT4577_49099P
gl_4995856


170
MRT4577_49099P
gl_4995858


170
MRT4577_49099P
gl_4995107


170
MRT4577_49099P
gl_4995181


170
MRT4577_49099P
gl_4995183


170
MRT4577_49099P
gl_4995649


170
MRT4577_49099P
gl_4995761


170
MRT4577_49099P
gl_4995790


170
MRT4577_49099P
gl_4995792


170
MRT4577_49099P
gl_4995796


170
MRT4577_49099P
gl_4995848


170
MRT4577_49099P
gl_4995850


170
MRT4577_49099P
gl_4995852


170
MRT4577_49099P
gl_4995767


170
MRT4577_49099P
gl_4995057


170
MRT4577_49099P
gl_4995059


170
MRT4577_49099P
gl_4995103


170
MRT4577_49099P
gl_4995105


170
MRT4577_49099P
gl_4995794


170
MRT4577_49099P
gl_4995788


170
MRT4577_49099P
gl_4995844


170
MRT4577_49099P
gl_15608450


170
MRT4577_49099P
gl_15835199


170
MRT4577_49099P
gl_3850906


170
MRT4577_49099P
gl_3850948


170
MRT4577_49099P
gl_3850900


170
MRT4577_49099P
gl_3850964


170
MRT4577_49099P
gl_3850966


170
MRT4577_49099P
gl_3850988


170
MRT4577_49099P
gl_3850980


170
MRT4577_49099P
gl_3850958


170
MRT4577_49099P
gl_3850950


170
MRT4577_49099P
gl_3850942


170
MRT4577_49099P
gl_3850984


170
MRT4577_49099P
gl_3850944


170
MRT4577_49099P
gl_3850922


170
MRT4577_49099P
gl_3850936


170
MRT4577_49099P
gl_3850914


170
MRT4577_49099P
gl_4731153


170
MRT4577_49099P
gl_3850926


170
MRT4577_49099P
gl_3850908


170
MRT4577_49099P
gl_3850976


170
MRT4577_49099P
gl_5001597


170
MRT4577_49099P
gl_7708315


170
MRT4577_49099P
gl_7708143


170
MRT4577_49099P
gl_7708145


170
MRT4577_49099P
gl_7708147


170
MRT4577_49099P
gl_7708512


170
MRT4577_49099P
gl_7708191


170
MRT4577_49099P
gl_7708254


170
MRT4577_49099P
gl_7708268


170
MRT4577_49099P
gl_7708272


170
MRT4577_49099P
gl_7708296


170
MRT4577_49099P
gl_7708300


170
MRT4577_49099P
gl_7708286


170
MRT4577_49099P
gl_7708311


170
MRT4577_49099P
gl_7708306


170
MRT4577_49099P
gl_7708313


170
MRT4577_49099P
gl_24940188


170
MRT4577_49099P
gl_7708452


170
MRT4577_49099P
gl_7708454


170
MRT4577_49099P
gl_7708460


170
MRT4577_49099P
gl_7708466


170
MRT4577_49099P
gl_7708474


170
MRT4577_49099P
gl_8517628


170
MRT4577_49099P
gl_7708491


170
MRT4577_49099P
gl_7708497


170
MRT4577_49099P
gl_7708499


170
MRT4577_49099P
gl_7708542


170
MRT4577_49099P
gl_7708552


170
MRT4577_49099P
gl_7708556


170
MRT4577_49099P
gl_7708558


170
MRT4577_49099P
gl_7708560


170
MRT4577_49099P
gl_7708616


170
MRT4577_49099P
gl_7708578


170
MRT4577_49099P
gl_7708622


170
MRT4577_49099P
gl_7708628


170
MRT4577_49099P
gl_7708646


170
MRT4577_49099P
gl_7708652


170
MRT4577_49099P
gl_8452779


170
MRT4577_49099P
gl_7708674


170
MRT4577_49099P
gl_7688335


170
MRT4577_49099P
gl_7708684


170
MRT4577_49099P
gl_7708676


170
MRT4577_49099P
gl_7688417


170
MRT4577_49099P
gl_13518304


170
MRT4577_49099P
gl_20269416


170
MRT4577_49099P
gl_6687627


170
MRT4577_49099P
gl_6706286


170
MRT4577_49099P
gl_6687379


170
MRT4577_49099P
gl_6688708


170
MRT4577_49099P
gl_6687120


170
MRT4577_49099P
gl_14717980


170
MRT4577_49099P
gl_6687485


170
MRT4577_49099P
gl_6687447


170
MRT4577_49099P
gl_6688494


170
MRT4577_49099P
gl_6689410


170
MRT4577_49099P
gl_5001603


170
MRT4577_49099P
gl_14587183


170
MRT4577_49099P
gl_5001601


170
MRT4577_49099P
gl_5758889


170
MRT4577_49099P
gl_6017806


170
MRT4577_49099P
gl_22406531


170
MRT4577_49099P
gl_20384955


170
MRT4577_49099P
gl_19033059


170
MRT4577_49099P
gl_20384957


170
MRT4577_49099P
gl_19033061


170
MRT4577_49099P
gl_6689000


170
MRT4577_49099P
gl_6017810


170
MRT4577_49099P
gl_21684883


170
MRT4577_49099P
gl_14718265


171
MRT4577_346921P
gl_15810897


171
MRT4577_346921P
gl_15810901


171
MRT4577_346921P
gl_19698536


171
MRT4577_346921P
gl_4096982


171
MRT4577_346921P
gl_4103757


171
MRT4577_346921P
gl_21667496


171
MRT4577_346921P
gl_848999


171
MRT4577_346921P
gl_4218162


171
MRT4577_346921P
gl_4218160


171
MRT4577_346921P
gl_14279306


171
MRT4577_346921P
gl_20385590


171
MRT4577_346921P
gl_30171291


171
MRT4577_346921P
gl_30230270


171
MRT4577_346921P
gl_25307920


171
MRT4577_346921P
gl_4033721


171
MRT4577_346921P
gl_4033725


171
MRT4577_346921P
gl_4033710


171
MRT4577_346921P
gl_4103486


171
MRT4577_346921P
gl_5019431


171
MRT4577_346921P
gl_8745072


171
MRT4577_346921P
gl_19743774


171
MRT4577_346921P
gl_23194453


171
MRT4577_346921P
gl_4103346


171
MRT4577_346921P
gl_7446520


171
MRT4577_346921P
gl_2981131


171
MRT4577_346921P
gl_2981133


171
MRT4577_346921P
CGPG25.pep


171
MRT4577_346921P
gl_1345505


171
MRT4577_346921P
gl_7446527


171
MRT4577_346921P
gl_22328782


171
MRT4577_346921P
gl_3915597


171
MRT4577_346921P
gl_15231135


171
MRT4577_346921P
gl_25307910


171
MRT4577_346921P
gl_18406070


171
MRT4577_346921P
gl_30689162


171
MRT4577_346921P
gl_399096


171
MRT4577_346921P
gl_12655901


171
MRT4577_346921P
gl_5305232


171
MRT4577_346921P
gl_5305242


171
MRT4577_346921P
gl_5305260


171
MRT4577_346921P
gl_5305244


171
MRT4577_346921P
gl_5616513


171
MRT4577_346921P
gl_16973298


171
MRT4577_346921P
gl_16973296


171
MRT4577_346921P
gl_602900


171
MRT4577_346921P
MRT3847_56279P.2


171
MRT4577_346921P
MRT3847_64872P.3


171
MRT4577_346921P
MRT3847_233420P.2


171
MRT4577_346921P
MRT3847_64874P.3


171
MRT4577_346921P
MRT3847_218209P.1


171
MRT4577_346921P
MRT3847_29836P.3


171
MRT4577_346921P
MRT3847_225429P.3


171
MRT4577_346921P
gl_13161415


171
MRT4577_346921P
gl_3913005


171
MRT4577_346921P
gl_24967135


171
MRT4577_346921P
gl_3913004


171
MRT4577_346921P
gl_23428880


171
MRT4577_346921P
gl_24967137


171
MRT4577_346921P
gl_4097515


171
MRT4577_346921P
gl_3913007


171
MRT4577_346921P
gl_17827467


171
MRT4577_346921P
gl_3913006


171
MRT4577_346921P
gl_2129972


171
MRT4577_346921P
gl_1067169


171
MRT4577_346921P
gl_1568513


171
MRT4577_346921P
gl_1364102


171
MRT4577_346921P
gl_322801


171
MRT4577_346921P
gl_4837612


171
MRT4577_346921P
gl_27804365


171
MRT4577_346921P
gl_27657747


171
MRT4577_346921P
gl_24414622


171
MRT4577_346921P
gl_27657745


171
MRT4577_346921P
gl_5031217


171
MRT4577_346921P
MRT4530_57276P.1


171
MRT4577_346921P
gl_2130078


171
MRT4577_346921P
MRT4565_47460P.3


171
MRT4577_346921P
gl_14041687


171
MRT4577_346921P
gl_26517024


171
MRT4577_346921P
gl_4101710


171
MRT4577_346921P
gl_6970411


171
MRT4577_346921P
gl_6970415


171
MRT4577_346921P
gl_6970413


171
MRT4577_346921P
gl_6970417


171
MRT4577_346921P
gl_18650789


171
MRT4577_346921P
gl_22091479


171
MRT4577_346921P
gl_16549060


171
MRT4577_346921P
gl_16549078


171
MRT4577_346921P
gl_4887235


172
MRT4577_257780P
gl_14626277


172
MRT4577_257780P
MRT4530_28144P.1


172
MRT4577_257780P
MRT4565_27586P.3


172
MRT4577_257780P
MRT4565_9771P.3


172
MRT4577_257780P
MRT4565_64073P.2


172
MRT4577_257780P
MRT4565_91331P.2


175
MRT4577_294774P
gl_7452981


175
MRT4577_294774P
gl_7452979


175
MRT4577_294774P
gl_13183137


175
MRT4577_294774P
gl_29373125


175
MRT4577_294774P
gl_25089839


175
MRT4577_294774P
gl_21616113


175
MRT4577_294774P
gl_11357336


175
MRT4577_294774P
gl_25308880


175
MRT4577_294774P
gl_15233810


175
MRT4577_294774P
MRT3847_39339P.3


175
MRT4577_294774P
gl_5830467


175
MRT4577_294774P
gl_5830465


175
MRT4577_294774P
gl_5830469


175
MRT4577_294774P
gl_7446714


175
MRT4577_294774P
gl_1272340


175
MRT4577_294774P
gl_11278993


175
MRT4577_294774P
gl_13506709


175
MRT4577_294774P
gl_7677378


175
MRT4577_294774P
gl_4850214


175
MRT4577_294774P
gl_17646111


175
MRT4577_294774P
gl_14627128


175
MRT4577_294774P
gl_22265999


175
MRT4577_294774P
MRT4530_57126P.1


175
MRT4577_294774P
MRT4565_107456P.1


175
MRT4577_294774P
gl_15982240


177
MRT4577_397598P
MRT3847_29671P.3


177
MRT4577_397598P
MRT3847_36085P.3


177
MRT4577_397598P
MRT3847_37502P.1


177
MRT4577_397598P
gl_10241425


177
MRT4577_397598P
MRT4530_77791P.2


177
MRT4577_397598P
MRT4530_81676P.1


177
MRT4577_397598P
MRT4565_118744P.1


178
MRT4577_204611P
gl_28194506


178
MRT4577_204611P
gl_28194508


178
MRT4577_204611P
gl_15866696


178
MRT4577_204611P
gl_27475608


178
MRT4577_204611P
gl_28194504


178
MRT4577_204611P
gl_7447118


178
MRT4577_204611P
gl_8918271


178
MRT4577_204611P
gl_8918273


178
MRT4577_204611P
gl_30060377


178
MRT4577_204611P
MRT4530_76824P.2


178
MRT4577_204611P
MRT4530_76823P.2


178
MRT4577_204611P
MRT4530_109505P.2


178
MRT4577_204611P
MRT4565_29431P.3


178
MRT4577_204611P
gl_6456469


178
MRT4577_204611P
gl_6456467


178
MRT4577_204611P
gl_5922599


181
MRT4577_284905P
gl_6822147


181
MRT4577_284905P
gl_3702409


181
MRT4577_284905P
gl_5834521


181
MRT4577_284905P
gl_5834523


181
MRT4577_284905P
gl_4584556


181
MRT4577_284905P
gl_8980813


181
MRT4577_284905P
gl_8980815


181
MRT4577_284905P
gl_16225426


181
MRT4577_284905P
gl_14329816


181
MRT4577_284905P
gl_1469934


181
MRT4577_284905P
gl_7447961


181
MRT4577_284905P
gl_18087505


181
MRT4577_284905P
gl_7447977


181
MRT4577_284905P
gl_18379267


181
MRT4577_284905P
gl_25410916


181
MRT4577_284905P
gl_15219603


181
MRT4577_284905P
gl_25402689


181
MRT4577_284905P
gl_15220923


181
MRT4577_284905P
gl_1352326


181
MRT4577_284905P
gl_12655961


181
MRT4577_284905P
gl_20149296


181
MRT4577_284905P
gl_20149298


181
MRT4577_284905P
gl_13548679


181
MRT4577_284905P
gl_3900936


181
MRT4577_284905P
gl_4883425


181
MRT4577_284905P
MRT3847_161472P.3


181
MRT4577_284905P
MRT3847_36311P.3


181
MRT4577_284905P
gl_7447979


181
MRT4577_284905P
gl_119006


181
MRT4577_284905P
gl_99998


181
MRT4577_284905P
gl_11279328


181
MRT4577_284905P
gl_1169445


181
MRT4577_284905P
gl_261212


181
MRT4577_284905P
gl_20269069


181
MRT4577_284905P
gl_32765543


181
MRT4577_284905P
gl_1706547


181
MRT4577_284905P
gl_4469175


181
MRT4577_284905P
gl_10946499


181
MRT4577_284905P
gl_29150650


181
MRT4577_284905P
gl_22748323


181
MRT4577_284905P
gl_6984122


181
MRT4577_284905P
gl_11321164


181
MRT4577_284905P
gl_461978


181
MRT4577_284905P
gl_461979


181
MRT4577_284905P
gl_1084399


181
MRT4577_284905P
gl_1084400


181
MRT4577_284905P
gl_11558184


181
MRT4577_284905P
gl_100285


181
MRT4577_284905P
gl_100287


181
MRT4577_284905P
gl_27529826


181
MRT4577_284905P
gl_11071974


181
MRT4577_284905P
gl_16903129


181
MRT4577_284905P
gl_15150341


181
MRT4577_284905P
MRT4530_84009P.2


181
MRT4577_284905P
gl_15529115


181
MRT4577_284905P
MRT4565_60761P.2


181
MRT4577_284905P
gl_14330338


181
MRT4577_284905P
gl_20218805


181
MRT4577_284905P
gl_688420


181
MRT4577_284905P
gl_11279332


182
MRT4577_386764P
gl_7573596


182
MRT4577_386764P
gl_7573598


182
MRT4577_386764P
gl_25287618


182
MRT4577_386764P
gl_30695267


182
MRT4577_386764P
gl_18400939


182
MRT4577_386764P
gl_21593950


182
MRT4577_386764P
gl_13447449


182
MRT4577_386764P
gl_3668069


182
MRT4577_386764P
gl_29427825


182
MRT4577_386764P
gl_30421168


182
MRT4577_386764P
MRT4530_135930P.1


182
MRT4577_386764P
MRT4530_120903P.1


182
MRT4577_386764P
gl_21326117


182
MRT4577_386764P
MRT4565_103551P.1


182
MRT4577_386764P
MRT4565_52855P.3


182
MRT4577_386764P
MRT4565_88207P.2


182
MRT4577_386764P
gl_28140043


182
MRT4577_386764P
gl_28804505


184
MRT4577_43098P
gl_27542603


184
MRT4577_43098P
gl_22328179


184
MRT4577_43098P
MRT3847_52308P.3


184
MRT4577_43098P
gl_29893654


184
MRT4577_43098P
MRT4530_35848P.1


184
MRT4577_43098P
MRT4530_35849P.2


184
MRT4577_43098P
MRT4530_121232P.2


184
MRT4577_43098P
MRT4530_113489P.2


184
MRT4577_43098P
MRT4565_49252P.2


185
MRT4577_222465P
MRT3847_10488P.3


185
MRT4577_222465P
MRT4530_104720P.2


185
MRT4577_222465P
MRT4565_89954P.2


185
MRT4577_222465P
MRT4565_71673P.1


186
MRT4577_326681P
gl_15240418


186
MRT4577_326681P
gl_28071332


187
MRT4577_361986P
gl_30385250


187
MRT4577_361986P
gl_14495542


187
MRT4577_361986P
gl_15227441


187
MRT4577_361986P
gl_31540632


187
MRT4577_361986P
gl_25004882


187
MRT4577_361986P
gl_24935324


187
MRT4577_361986P
gl_24940244


187
MRT4577_361986P
gl_7488932


187
MRT4577_361986P
gl_30421165


187
MRT4577_361986P
gl_7434424


187
MRT4577_361986P
MRT4530_85948P.1


187
MRT4577_361986P
gl_5596996


187
MRT4577_361986P
gl_13620169


189
MRT4577_300134P
gl_23429044


189
MRT4577_300134P
gl_14573437


189
MRT4577_300134P
gl_26190149


189
MRT4577_300134P
gl_11357139


189
MRT4577_300134P
gl_30682129


189
MRT4577_300134P
gl_12322049


189
MRT4577_300134P
gl_15795149


189
MRT4577_300134P
gl_15810509


189
MRT4577_300134P
MRT3847_48429P.3


189
MRT4577_300134P
gl_6681366


189
MRT4577_300134P
gl_6984231


189
MRT4577_300134P
gl_4586799


189
MRT4577_300134P
MRT4530_81439P.1


189
MRT4577_300134P
MRT4530_81446P.2


189
MRT4577_300134P
MRT4565_30002P.3


189
MRT4577_300134P
gl_7381060


190
MRT4577_415225P
gl_32441499


190
MRT4577_415225P
gl_4206759


190
MRT4577_415225P
gl_28564230


190
MRT4577_415225P
gl_28564264


190
MRT4577_415225P
gl_32441494


190
MRT4577_415225P
MRT3847_52223P.3


190
MRT4577_415225P
MRT3847_30045P.3


190
MRT4577_415225P
gl_32483423


190
MRT4577_415225P
gl_20330757


190
MRT4577_415225P
gl_20146358


190
MRT4577_415225P
gl_22775591


190
MRT4577_415225P
MRT4530_110805P.1


190
MRT4577_415225P
MRT4530_87778P.1


190
MRT4577_415225P
MRT4530_100513P.2


190
MRT4577_415225P
gl_21070389


190
MRT4577_415225P
MRT4565_36882P.3


190
MRT4577_415225P
MRT4565_110825P.1


190
MRT4577_415225P
MRT4565_127690P.1


190
MRT4577_415225P
MRT4565_86330P.2


190
MRT4577_415225P
MRT4565_40318P.2


190
MRT4577_415225P
gl_28564015


190
MRT4577_415225P
gl_28564960


190
MRT4577_415225P
gl_32441506


190
MRT4577_415225P
gl_32441496


190
MRT4577_415225P
gl_32441504


190
MRT4577_415225P
gl_2274776


192
MRT4577_56004P
MRT3847_215323P.2


192
MRT4577_56004P
MRT3847_44128P.3


192
MRT4577_56004P
MRT4565_57540P.2


192
MRT4577_56004P
gl_19112800


192
MRT4577_56004P
gl_1808694


194
MRT4577_221761P
gl_22331664


194
MRT4577_221761P
gl_30692988


194
MRT4577_221761P
gl_22330789


194
MRT4577_221761P
gl_15242176


194
MRT4577_221761P
gl_6094551


194
MRT4577_221761P
gl_7487385


194
MRT4577_221761P
gl_19578317


194
MRT4577_221761P
MRT3847_265345P.2


194
MRT4577_221761P
MRT3847_53989P.3


194
MRT4577_221761P
MRT3847_6971P.3


194
MRT4577_221761P
MRT3847_162726P.3


194
MRT4577_221761P
MRT3847_239538P.2


194
MRT4577_221761P
MRT3847_253605P.2


194
MRT4577_221761P
MRT3847_53988P.3


194
MRT4577_221761P
MRT3847_227267P.3


194
MRT4577_221761P
MRT3847_30433P.3


194
MRT4577_221761P
MRT3847_269768P.1


194
MRT4577_221761P
MRT3847_224215P.2


194
MRT4577_221761P
MRT3847_272006P.1


194
MRT4577_221761P
MRT4530_103360P.1


194
MRT4577_221761P
MRT4530_103357P.1


194
MRT4577_221761P
MRT4530_103362P.1


194
MRT4577_221761P
MRT4530_98210P.1


194
MRT4577_221761P
MRT4565_20121P.3


194
MRT4577_221761P
MRT4565_90833P.2


194
MRT4577_221761P
MRT4565_61922P.2


194
MRT4577_221761P
MRT4565_76776P.2


196
MRT4577_401949P
MRT3847_241638P.2


196
MRT4577_401949P
MRT3847_286535P.1


196
MRT4577_401949P
MRT3847_52567P.3


196
MRT4577_401949P
MRT3847_255937P.2


196
MRT4577_401949P
gl_6782440


196
MRT4577_401949P
MRT4530_140459P.1


196
MRT4577_401949P
gl_15209148


196
MRT4577_401949P
MRT4530_18787P.2


196
MRT4577_401949P
MRT4565_19576P.3


200
MRT4577_26957P
gl_32477628


200
MRT4577_26957P
gl_15896652


200
MRT4577_26957P
gl_33113492


200
MRT4577_26957P
gl_16610205


200
MRT4577_26957P
gl_18407057


200
MRT4577_26957P
gl_25345298


200
MRT4577_26957P
gl_15292855


200
MRT4577_26957P
gl_15236304


200
MRT4577_26957P
MRT3847_58239P.2


200
MRT4577_26957P
MRT3847_61026P.3


200
MRT4577_26957P
MRT3847_249176P.2


200
MRT4577_26957P
MRT3847_32267P.3


200
MRT4577_26957P
MRT3847_249177P.2


200
MRT4577_26957P
gl_8096650


200
MRT4577_26957P
MRT4530_97319P.2


200
MRT4577_26957P
MRT4530_111084P.2


200
MRT4577_26957P
MRT4565_42533P.3


203
MRT4577_289436P
gl_7484643


203
MRT4577_289436P
gl_7488272


203
MRT4577_289436P
MRT4565_141501P.1


203
MRT4577_289436P
MRT4565_58034P.2


204
MRT4577_221609P
gl_30688566


204
MRT4577_221609P
gl_30693084


204
MRT4577_221609P
gl_11358184


204
MRT4577_221609P
gl_15237549


204
MRT4577_221609P
gl_3860313


204
MRT4577_221609P
MRT3847_233522P.2


204
MRT4577_221609P
MRT3847_286526P.1


204
MRT4577_221609P
MRT3847_28679P.3


204
MRT4577_221609P
MRT3847_47036P.3


204
MRT4577_221609P
MRT4530_7968P.2


204
MRT4577_221609P
MRT4565_16821P.3


204
MRT4577_221609P
gl_19112558


204
MRT4577_221609P
gl_6323275


204
MRT4577_221609P
gl_32400328


204
MRT4577_221609P
gl_32417454


204
MRT4577_221609P
gl_13812075


204
MRT4577_221609P
gl_5921507


205
MRT4577_28967P
gl_15232517


205
MRT4577_28967P
MRT3847_253859P.2


205
MRT4577_28967P
MRT3847_198776P.3


205
MRT4577_28967P
gl_9663979


205
MRT4577_28967P
gl_7489198


205
MRT4577_28967P
gl_22128589


205
MRT4577_28967P
gl_22128591


205
MRT4577_28967P
gl_22128587


205
MRT4577_28967P
MRT4530_8279P.1


205
MRT4577_28967P
gl_32418640


208
MRT4577_45217P
gl_7484972


208
MRT4577_45217P
gl_15226178


208
MRT4577_45217P
gl_2245390


208
MRT4577_45217P
MRT3847_208509P.3


208
MRT4577_45217P
gl_20805068


208
MRT4577_45217P
gl_19352035


208
MRT4577_45217P
MRT4565_34024P.3


209
MRT4577_420096P
gl_20330751


209
MRT4577_420096P
MRT4530_54698P.1


209
MRT4577_420096P
MRT4530_54700P.1


210
MRT4577_220452P
MRT3847_2805P.3


210
MRT4577_220452P
MRT4530_91499P.1


212
MRT4577_5002P
gl_30687843


212
MRT4577_5002P
gl_15223786


212
MRT4577_5002P
gl_15239624


212
MRT4577_5002P
gl_15226967


212
MRT4577_5002P
gl_15229157


212
MRT4577_5002P
gl_21593407


212
MRT4577_5002P
gl_25346630


212
MRT4577_5002P
gl_7486722


212
MRT4577_5002P
gl_7488751


212
MRT4577_5002P
gl_21742732


212
MRT4577_5002P
MRT4530_122939P.2


212
MRT4577_5002P
MRT4565_43218P.3


215
MRT4577_389607P
gl_15223930


215
MRT4577_389607P
gl_21553710


215
MRT4577_389607P
gl_21536895


215
MRT4577_389607P
gl_15242347


215
MRT4577_389607P
gl_15237539


215
MRT4577_389607P
gl_608671


215
MRT4577_389607P
gl_20260650


215
MRT4577_389607P
gl_21536979


215
MRT4577_389607P
gl_30693784


215
MRT4577_389607P
gl_608673


215
MRT4577_389607P
gl_25297689


215
MRT4577_389607P
MRT3847_30014P.3


215
MRT4577_389607P
MRT3847_268909P.1


215
MRT4577_389607P
MRT3847_55865P.2


215
MRT4577_389607P
MRT3847_35167P.2


215
MRT4577_389607P
gl_13676299


215
MRT4577_389607P
MRT3847_271867P.1


215
MRT4577_389607P
MRT3847_50682P.1


215
MRT4577_389607P
MRT3847_85245P.2


215
MRT4577_389607P
MRT3847_37580P.3


215
MRT4577_389607P
MRT3847_90337P.3


215
MRT4577_389607P
gl_6539602


215
MRT4577_389607P
gl_4138679


215
MRT4577_389607P
gl_15216030


215
MRT4577_389607P
gl_15216026


215
MRT4577_389607P
gl_15216028


215
MRT4577_389607P
gl_7442734


215
MRT4577_389607P
gl_7442735


215
MRT4577_389607P
gl_4164408


215
MRT4577_389607P
gl_20161442


215
MRT4577_389607P
gl_27447657


215
MRT4577_389607P
gl_27447653


215
MRT4577_389607P
gl_7489096


215
MRT4577_389607P
gl_7442732


215
MRT4577_389607P
gl_4322323


215
MRT4577_389607P
gl_4322325


215
MRT4577_389607P
MRT4530_114765P.2


215
MRT4577_389607P
MRT4565_14138P.3


216
MRT4577_405388P
gl_3777497


216
MRT4577_405388P
gl_464145


216
MRT4577_405388P
gl_13366140


216
MRT4577_405388P
gl_10953877


216
MRT4577_405388P
gl_29134857


216
MRT4577_405388P
gl_10953875


216
MRT4577_405388P
gl_3779258


216
MRT4577_405388P
gl_30267054


216
MRT4577_405388P
gl_30267062


216
MRT4577_405388P
gl_30267056


216
MRT4577_405388P
gl_30265620


216
MRT4577_405388P
gl_30267058


216
MRT4577_405388P
gl_25289327


216
MRT4577_405388P
gl_30685252


216
MRT4577_405388P
gl_7428175


216
MRT4577_405388P
gl_18414404


216
MRT4577_405388P
gl_602764


216
MRT4577_405388P
gl_30683170


216
MRT4577_405388P
gl_17224922


216
MRT4577_405388P
MRT3847_12543P.1


216
MRT4577_405388P
gl_902938


216
MRT4577_405388P
gl_231541


216
MRT4577_405388P
gl_3913031


216
MRT4577_405388P
gl_3913035


216
MRT4577_405388P
gl_3913034


216
MRT4577_405388P
gl_13489165


216
MRT4577_405388P
gl_15082058


216
MRT4577_405388P
gl_217936


216
MRT4577_405388P
gl_416619


216
MRT4577_405388P
gl_10120912


216
MRT4577_405388P
gl_217940


216
MRT4577_405388P
gl_20530741


216
MRT4577_405388P
gl_11322499


216
MRT4577_405388P
gl_113786


216
MRT4577_405388P
gl_6729696


216
MRT4577_405388P
MRT4530_147074P.1


216
MRT4577_405388P
gl_169777


216
MRT4577_405388P
MRT4530_118075P.1


216
MRT4577_405388P
gl_169779


216
MRT4577_405388P
gl_478405


216
MRT4577_405388P
gl_231540


216
MRT4577_405388P
MRT4565_14604P.1


216
MRT4577_405388P
gl_3334120


216
MRT4577_405388P
MRT4565_106072P.1


216
MRT4577_405388P
MRT4565_14599P.3


216
MRT4577_405388P
MRT4565_118733P.1


216
MRT4577_405388P
MRT4565_58256P.2


216
MRT4577_405388P
MRT4565_14593P.3


216
MRT4577_405388P
MRT4565_104372P.1


216
MRT4577_405388P
MRT4565_118736P.1


216
MRT4577_405388P
gl_12006484


216
MRT4577_405388P
gl_30267060


216
MRT4577_405388P
gl_30267072


217
MRT4577_388272P
gl_15225218


217
MRT4577_388272P
gl_7488484


217
MRT4577_388272P
gl_7488446


217
MRT4577_388272P
gl_7488485


217
MRT4577_388272P
gl_7488483


217
MRT4577_388272P
MRT3847_284959P.1


217
MRT4577_388272P
MRT3847_40554P.3


217
MRT4577_388272P
MRT3847_7845P.3


217
MRT4577_388272P
MRT3847_7846P.2


217
MRT4577_388272P
MRT3847_33513P.3


217
MRT4577_388272P
MRT3847_249579P.2


217
MRT4577_388272P
MRT3847_33514P.2


217
MRT4577_388272P
MRT3847_272723P.1


217
MRT4577_388272P
gl_7488791


217
MRT4577_388272P
gl_12039387


217
MRT4577_388272P
MRT4530_114918P.2


217
MRT4577_388272P
MRT4565_11213P.3


218
MRT4577_61311P
MRT3847_239034P.2


218
MRT4577_61311P
MRT3847_199862P.2


218
MRT4577_61311P
gl_14906664


219
MRT4577_287993P
gl_21220517


219
MRT4577_287993P
gl_17227907


219
MRT4577_287993P
gl_17232303


219
MRT4577_287993P
gl_22959339


219
MRT4577_287993P
gl_22962067


219
MRT4577_287993P
gl_15616888


219
MRT4577_287993P
gl_22965894


219
MRT4577_287993P
gl_22972296


219
MRT4577_287993P
gl_15921495


219
MRT4577_287993P
gl_16329464


219
MRT4577_287993P
gl_32473774


219
MRT4577_287993P
gl_7674377


219
MRT4577_287993P
gl_28380215


219
MRT4577_287993P
gl_7674382


219
MRT4577_287993P
gl_20808006


219
MRT4577_287993P
gl_22977198


219
MRT4577_287993P
gl_5764615


219
MRT4577_287993P
gl_15676576


219
MRT4577_287993P
gl_15793848


219
MRT4577_287993P
gl_79917


219
MRT4577_287993P
gl_15805966


219
MRT4577_287993P
gl_8272441


219
MRT4577_287993P
gl_5231208


219
MRT4577_287993P
gl_5231187


219
MRT4577_287993P
gl_5231184


219
MRT4577_287993P
gl_5231202


219
MRT4577_287993P
gl_5231181


219
MRT4577_287993P
gl_5231193


219
MRT4577_287993P
gl_5231190


219
MRT4577_287993P
gl_5231205


219
MRT4577_287993P
gl_5231196


219
MRT4577_287993P
gl_5231199


219
MRT4577_287993P
gl_22986693


219
MRT4577_287993P
gl_15673444


219
MRT4577_287993P
gl_136253


219
MRT4577_287993P
gl_18390357


219
MRT4577_287993P
gl_7676165


219
MRT4577_287993P
gl_15896405


219
MRT4577_287993P
gl_15801918


219
MRT4577_287993P
gl_22994339


219
MRT4577_287993P
gl_22997030


219
MRT4577_287993P
gl_22999862


219
MRT4577_287993P
gl_136260


219
MRT4577_287993P
gl_15924363


219
MRT4577_287993P
gl_26986827


219
MRT4577_287993P
gl_15837977


219
MRT4577_287993P
gl_16800736


219
MRT4577_287993P
gl_33240025


219
MRT4577_287993P
gl_16803667


219
MRT4577_287993P
gl_15901640


219
MRT4577_287993P
gl_15903673


219
MRT4577_287993P
gl_80601


219
MRT4577_287993P
gl_27467972


219
MRT4577_287993P
gl_28380195


219
MRT4577_287993P
gl_6226270


219
MRT4577_287993P
gl_15827655


219
MRT4577_287993P
gl_17933944


219
MRT4577_287993P
gl_15887378


219
MRT4577_287993P
gl_18978077


219
MRT4577_287993P
gl_22125938


219
MRT4577_287993P
gl_15679655


219
MRT4577_287993P
gl_23016131


219
MRT4577_287993P
gl_23006623


219
MRT4577_287993P
gl_23010914


219
MRT4577_287993P
gl_23004962


219
MRT4577_287993P
gl_20091808


219
MRT4577_287993P
gl_24215987


219
MRT4577_287993P
gl_20093841


219
MRT4577_287993P
gl_21231972


219
MRT4577_287993P
gl_21243443


219
MRT4577_287993P
gl_16127773


219
MRT4577_287993P
gl_21399162


219
MRT4577_287993P
gl_28380210


219
MRT4577_287993P
gl_15791717


219
MRT4577_287993P
gl_21228923


219
MRT4577_287993P
gl_21673370


219
MRT4577_287993P
gl_25029429


219
MRT4577_287993P
gl_21282989


219
MRT4577_287993P
gl_19554226


219
MRT4577_287993P
gl_22297982


219
MRT4577_287993P
gl_21672546


219
MRT4577_287993P
gl_26247590


219
MRT4577_287993P
gl_23017117


219
MRT4577_287993P
gl_23021827


219
MRT4577_287993P
gl_23023764


219
MRT4577_287993P
gl_23026706


219
MRT4577_287993P
gl_23040075


219
MRT4577_287993P
gl_23502956


219
MRT4577_287993P
gl_23335097


219
MRT4577_287993P
gl_23469383


219
MRT4577_287993P
gl_23061852


219
MRT4577_287993P
gl_23465333


219
MRT4577_287993P
gl_23473439


219
MRT4577_287993P
gl_15595233


219
MRT4577_287993P
gl_24379020


219
MRT4577_287993P
gl_24374549


219
MRT4577_287993P
gl_16122431


219
MRT4577_287993P
gl_27366338


219
MRT4577_287993P
gl_136262


219
MRT4577_287993P
gl_15669227


219
MRT4577_287993P
gl_7676173


219
MRT4577_287993P
gl_28378350


219
MRT4577_287993P
gl_23050672


219
MRT4577_287993P
gl_23097976


219
MRT4577_287993P
gl_28867399


219
MRT4577_287993P
gl_28898735


219
MRT4577_287993P
gl_16079320


219
MRT4577_287993P
gl_15606687


219
MRT4577_287993P
gl_11499192


219
MRT4577_287993P
gl_136258


219
MRT4577_287993P
gl_27375857


219
MRT4577_287993P
gl_17988302


219
MRT4577_287993P
gl_27904753


219
MRT4577_287993P
gl_29345937


219
MRT4577_287993P
gl_30019391


219
MRT4577_287993P
gl_29654461


219
MRT4577_287993P
gl_29832720


219
MRT4577_287993P
gl_29840325


219
MRT4577_287993P
gl_32034755


219
MRT4577_287993P
gl_32029713


219
MRT4577_287993P
gl_30248703


219
MRT4577_287993P
gl_15897777


219
MRT4577_287993P
gl_1004320


219
MRT4577_287993P
gl_15642911


219
MRT4577_287993P
gl_2120372


219
MRT4577_287993P
gl_94733


219
MRT4577_287993P
gl_136266


219
MRT4577_287993P
gl_401211


219
MRT4577_287993P
gl_541528


219
MRT4577_287993P
gl_409778


219
MRT4577_287993P
gl_3915890


219
MRT4577_287993P
gl_11465459


219
MRT4577_287993P
gl_11465848


219
MRT4577_287993P
gl_27262488


219
MRT4577_287993P
gl_28380214


219
MRT4577_287993P
gl_23053574


219
MRT4577_287993P
gl_136259


219
MRT4577_287993P
gl_151617


219
MRT4577_287993P
gl_68332


219
MRT4577_287993P
gl_14520674


219
MRT4577_287993P
gl_5834682


219
MRT4577_287993P
gl_28380199


219
MRT4577_287993P
gl_136264


219
MRT4577_287993P
gl_17546700


219
MRT4577_287993P
gl_28380179


219
MRT4577_287993P
gl_464911


219
MRT4577_287993P
gl_23103063


219
MRT4577_287993P
gl_15235430


219
MRT4577_287993P
gl_21593559


219
MRT4577_287993P
gl_18410104


219
MRT4577_287993P
gl_32441888


219
MRT4577_287993P
gl_13474231


219
MRT4577_287993P
gl_15963782


219
MRT4577_287993P
MRT3847_51771P.3


219
MRT4577_287993P
MRT3847_243747P.2


219
MRT4577_287993P
MRT3847_242965P.2


219
MRT4577_287993P
gl_31126752


219
MRT4577_287993P
gl_31126747


219
MRT4577_287993P
gl_31126749


219
MRT4577_287993P
gl_2541878


219
MRT4577_287993P
gl_30468052


219
MRT4577_287993P
MRT4530_41051P.1


219
MRT4577_287993P
MRT4530_19284P.1


219
MRT4577_287993P
MRT4530_19282P.1


219
MRT4577_287993P
MRT4565_24270P.3


219
MRT4577_287993P
MRT4565_3598P.3


219
MRT4577_287993P
MRT4565_51329P.3


219
MRT4577_287993P
MRT4565_9194P.2


219
MRT4577_287993P
MRT4565_6744P.2


219
MRT4577_287993P
MRT4565_25946P.3


219
MRT4577_287993P
MRT4565_131929P.1


219
MRT4577_287993P
MRT4565_28703P.3


219
MRT4577_287993P
MRT4565_38061P.3


219
MRT4577_287993P
MRT4565_123153P.1


219
MRT4577_287993P
MRT4565_118038P.1


219
MRT4577_287993P
MRT4565_26535P.2


219
MRT4577_287993P
MRT4565_52146P.2


219
MRT4577_287993P
MRT4565_115300P.1


219
MRT4577_287993P
MRT4565_53782P.2


219
MRT4577_287993P
MRT4565_16589P.2


219
MRT4577_287993P
MRT4565_113424P.1


219
MRT4577_287993P
MRT4565_104502P.1


219
MRT4577_287993P
MRT4565_23334P.2


219
MRT4577_287993P
gl_23108488


219
MRT4577_287993P
gl_23113700


219
MRT4577_287993P
gl_23115534


219
MRT4577_287993P
gl_775193


219
MRT4577_287993P
gl_775168


219
MRT4577_287993P
gl_775181


219
MRT4577_287993P
gl_775198


219
MRT4577_287993P
gl_775174


219
MRT4577_287993P
gl_775154


219
MRT4577_287993P
gl_20136097


219
MRT4577_287993P
gl_20136089


219
MRT4577_287993P
gl_20136099


219
MRT4577_287993P
gl_20136095


219
MRT4577_287993P
gl_20136093


219
MRT4577_287993P
gl_20136103


219
MRT4577_287993P
gl_14602140


219
MRT4577_287993P
gl_68331


219
MRT4577_287993P
gl_23122427


219
MRT4577_287993P
gl_11513797


219
MRT4577_287993P
gl_3212365


219
MRT4577_287993P
gl_28373459


219
MRT4577_287993P
gl_28373461


219
MRT4577_287993P
gl_2098385


219
MRT4577_287993P
gl_20135991


219
MRT4577_287993P
gl_20135995


219
MRT4577_287993P
gl_20135989


219
MRT4577_287993P
gl_20136101


219
MRT4577_287993P
gl_20136015


219
MRT4577_287993P
gl_20136003


219
MRT4577_287993P
gl_20135993


219
MRT4577_287993P
gl_20136013


219
MRT4577_287993P
gl_20136059


219
MRT4577_287993P
gl_20136051


219
MRT4577_287993P
gl_20136053


219
MRT4577_287993P
gl_20136047


219
MRT4577_287993P
gl_20136057


219
MRT4577_287993P
gl_20136045


219
MRT4577_287993P
gl_20136041


219
MRT4577_287993P
gl_20136043


219
MRT4577_287993P
gl_20136049


219
MRT4577_287993P
gl_20136035


219
MRT4577_287993P
gl_20136019


219
MRT4577_287993P
gl_20136029


219
MRT4577_287993P
gl_20136033


219
MRT4577_287993P
gl_20136039


219
MRT4577_287993P
gl_20136075


219
MRT4577_287993P
gl_20136067


219
MRT4577_287993P
gl_20136063


219
MRT4577_287993P
gl_20136065


219
MRT4577_287993P
gl_20136073


219
MRT4577_287993P
gl_20136069


219
MRT4577_287993P
gl_23128273


219
MRT4577_287993P
gl_23124896


219
MRT4577_287993P
gl_14574707


219
MRT4577_287993P
gl_16554463


219
MRT4577_287993P
gl_25409314


219
MRT4577_287993P
gl_15641182


219
MRT4577_287993P
gl_48491


219
MRT4577_287993P
gl_7674396


219
MRT4577_287993P
gl_16273337


219
MRT4577_287993P
gl_23131139


219
MRT4577_287993P
gl_15602442


219
MRT4577_287993P
gl_136261


219
MRT4577_287993P
gl_20805995


219
MRT4577_287993P
gl_15604890


219
MRT4577_287993P
gl_20805967


219
MRT4577_287993P
gl_20805971


219
MRT4577_287993P
gl_20805999


219
MRT4577_287993P
gl_20805979


219
MRT4577_287993P
gl_6599049


219
MRT4577_287993P
gl_6599047


219
MRT4577_287993P
gl_15608751


219
MRT4577_287993P
gl_16129221


219
MRT4577_287993P
gl_23133994


219
MRT4577_287993P
gl_15645891


219
MRT4577_287993P
gl_15612263


219
MRT4577_287993P
gl_32130302


219
MRT4577_287993P
gl_15614227


219
MRT4577_287993P
gl_28971666


219
MRT4577_287993P
gl_16760154


219
MRT4577_287993P
gl_32423711


219
MRT4577_287993P
gl_23137115


219
MRT4577_287993P
gl_16765071


















TABLE 5








Seq_Num
Seq_ID
Organism_Name






















220
gl_27366338
Vibrio vulnificus CMCP6


221
gl_22991721
Enterococcus faecium


222
gl_15425588
Pentaphragma ellipticum


223
gl_15897860
Sulfolobus solfataricus


224
gl_23037705
Oenococcus oeni MCW


225
gl_16081190
Thermoplasma acidophilum


226
gl_15888589
Agrobacterium tumefaciens str. C58 (Cereon)


227
gl_14718201
Quiina pteridophylla


228
MRT4530_27655P.2
Oryza sativa


229
gl_4063556
Ochroma pyramidale


230
gl_32473774
Pirellula sp.


231
gl_15603842
Pasteurella multocida


232
gl_5596996
Sorghum bicolor


233
gl_14718165
Pedicularis coronata


234
gl_23055438
Geobacter metallireducens


235
gl_23006404
Magnetospirillum magnetotacticum


236
gl_4995103
Cola nitida


237
gl_5231187
Streptococcus pneumoniae


238
gl_20807813
Thermoanaerobacter tengcongensis


239
gl_30230270
Ginkgo biloba


240
gl_3850934
Carnarvonia araliifolia


241
gl_26517024
Brassica rapa subsp. pekinensis


242
gl_15422208
Argophyllum sp. Telford 5462


243
gl_22994339
Xylella fastidiosa Dixon


244
MRT3847_12543P.1
Glycine max


245
gl_29420859
Saccharomyces dairenensis


246
gl_7594817
Salmonella typhimurium


247
gl_23099057
Oceanobacillus iheyensis HTE831


248
gl_19553586
Corynebacterium glutamicum ATCC 13032


249
gl_4731151
Berzelia lanuglnosa


250
gl_28380179
Synechococcus sp. PCC 7002


251
gl_22961512
Rhodopseudomonas palustris


252
gl_11071974
Nicotiana tabacum


253
gl_775174
Escherichia coli


254
gl_15890531
Agrobacterium tumefaciens str. C58 (Cereon)


255
gl_23021869
Clostridium thermocellum ATCC 27405


256
gl_12004151
Primula gaubaeana


257
gl_28378548
Lactobacillus plantarum WCFS1


258
gl_10120912
Ipomoea batatas


259
gl_11358184
Arabidopsis thaliana


260
gl_7339715
Oryza sativa (japonica cultivar-group)


261
gl_7676173
Methanocaldococcus jannaschii


262
gl_20136063
Shigella sonnei


263
gl_7488791
Pisum sativum


264
gl_28564960
Saccharomyces kluyveri


265
gl_16330679
Synechocystis sp. PCC 6803


266
gl_30263833
Bacillus anthracis str. Ames


267
gl_5758908
Riedelia aff. wrayii SBG 83-203


268
gl_18390357
Bacillus subtilis


269
gl_1929027
Beta vulgaris


270
MRT4530_111084P.2
Oryza sativa


271
gl_416619
Ipomoea batatas


272
gl_4101710
Pinus resinosa


273
gl_4063522
Acer saccharum


274
gl_21910448
Streptococcus pyogenes MGAS315


275
gl_28380195
Agrobacterium tumefaciens str. C58


276
gl_17227907
Nostoc sp. PCC 7120


277
gl_15793205
Neisseria meningltidis Z2491


278
gl_25386572
Arabidopsis thaliana


279
gl_7708499
Morus nigra


280
gl_28564948
Saccharomyces kluyveri


281
gl_586209
Candida tropicalis


282
gl_23017722
Thermobifida fusca


283
gl_22537459
Streptococcus agalactiae 2603V/R


284
gl_8918271
Pisum sativum


285
gl_27262322
Heliobacillus mobilis


286
gl_21536979
Arabidopsis thaliana


287
gl_15837426
Xylella fastidiosa 9a5c


288
gl_28572441
Tropheryma whipplei TW08/27


289
gl_8452749
Simarouba glauca


290
gl_1352828
Cyanidium caldarium


291
gl_15810901
Antirrhinum majus subsp. cirrhigerum


292
gl_14718111
Lilium superbum


293
gl_14627128
Solanum tuberosum


294
gl_14717933
Ancistrocladus korupensis


295
gl_28373461
Salmonella typhimurium


296
gl_1742753
Escherichia coli


297
MRT4530_15443P.1
Oryza sativa


298
gl_6689056
Paulownia tomentosa


299
gl_27435914
Welwitschia mirabilis


300
MRT4530_81676P.1
Oryza sativa


301
gl_608673
Arabidopsis thaliana


302
gl_28493257
Tropheryma whipplei str. Twist


303
gl_23026706
Microbulbifer degradans 2-40


304
gl_22994632
Xylella fastidiosa Dixon


305
gl_1067169
Petunia x hybrida


306
gl_3850936
Sphalmium racemosum


307
gl_7447977
Cucumis sativus


308
gl_136262
Methanococcus voltae


309
gl_21954721
Mesotaenium caldariorum


310
gl_6782440
Nicotiana glauca


311
gl_22128587
Petunia x hybrida


312
gl_15805966
Deinococcus radiodurans


313
gl_21402518
Bacillus anthracis str. A2012


314
gl_6634078
Citrus x paradisi


315
gl_19033089
Klebsormidium flaccidum


316
gl_2462107
Bacillus cereus


317
gl_20136101
Shigella boydii


318
MRT3847_85245P.2
Glycine max


319
gl_401211
Antithamnion sp.


320
gl_21220496
Streptomyces coelicolor A3(2)


321
MRT4530_41051P.1
Oryza sativa


322
gl_21633361
Seddera hirsuta


323
gl_23005242
Magnetospirillum magnetotacticum


324
MRT3847_36311P.3
Glycine max


325
gl_12585416
Borrelia burgdorferi


326
gl_7708272
Dichapetalum brownii


327
gl_29373125
Citrus sinensis


328
gl_322801
Antirrhinum majus


329
gl_23099532
Oceanobacillus iheyensis HTE831


330
MRT4565_77691P.2
Triticum aestivum


331
gl_2493123
Hordeum vulgare


332
gl_7489168
Nicotiana tabacum


333
gl_15903673
Streptococcus pneumoniae R6


334
gl_16416730
Equisetum x ferrissii


335
gl_16126204
Caulobacter crescentus CB15


336
gl_23108079
Novosphingobium aromaticivorans


337
gl_22968361
Rhodospirillum rubrum


338
gl_20135995
Shigella boydii


339
gl_15828368
Mycobacterium leprae


340
gl_4995221
Hibiscus punaluuensis


341
gl_4063524
Aesculus pavia


342
gl_14718265
Xanthoceras sorbifolium


343
gl_19114337
Schizosaccharomyces pombe


344
gl_21633433
Erycibe glomerata


345
gl_7708284
Erythroxylum confusum


346
gl_25308880
Arabidopsis thaliana


347
gl_31540632
Brassica napus


348
gl_22994398
Xylella fastidiosa Dixon


349
gl_21633349
Hildebrandtia valo


350
gl_15150341
Camellia sinensis


351
gl_20259460
Arabidopsis thaliana


352
gl_4995053
Adansonia rubrostipa


353
MRT3847_13189P.3
Glycine max


354
gl_15237549
Arabidopsis thaliana


355
gl_3850966
Euplassa inaequalis


356
gl_7708189
Carpenteria californica


357
gl_22651734
Drosophyllum lusitanicum


358
gl_4995097
Durio zibethinus


359
gl_16943668
Caesia contorta


360
MRT3847_41566P.3
Glycine max


361
gl_15887403
Agrobacterium tumefaciens str. C58 (Cereon)


362
gl_28378738
Lactobacillus plantarum WCFS1


363
gl_4586602
Cicer arietinum


364
MRT3847_253605P.2
Glycine max


365
gl_6970417
Rosa rugosa


366
MRT4530_81446P.2
Oryza sativa


367
gl_14718232
Stellaria media


368
gl_24940162
Borago officinalis


369
MRT4565_29431P.3
Triticum aestivum


370
MRT4530_97319P.2
Oryza sativa


371
gl_16417186
Saccharomyces sp. DH1-1A


372
gl_20136095
Escherichia coli


373
gl_14717935
Androstachys johnsonii


374
gl_23503621
Carteria cerasiformis


375
gl_21741785
Oryza sativa (japonica cultivar-group)


376
gl_13506709
Lycopersicon esculentum


377
gl_27526583
Kluyveromyces dobzhanskii


378
gl_21672587
Buchnera aphidicola str. Sg (Schizaphis graminum)


379
MRT3847_63803P.3
Glycine max


380
gl_14573437
Chlamydomonas reinhardtii


381
gl_6822147
Hieracium piloselloides


382
gl_22128589
Petunia x hybrida


383
gl_15615026
Bacillus halodurans


384
gl_3900936
Cicer arietinum


385
gl_31126752
Oryza sativa (japonica cultivar-group)


386
gl_7708568
Quisqualis indica


387
gl_1084399
Lycopersicon esculentum


388
MRT4565_98294P.2
Triticum aestivum


389
gl_4850214
Lycopersicon esculentum


390
gl_19033059
Nitella opaca


391
gl_15841981
Mycobacterium tuberculosis CDC1551


392
MRT3847_265345P.2
Glycine max


393
gl_15223930
Arabidopsis thaliana


394
MRT3847_35167P.2
Glycine max


395
gl_23111624
Desulfitobacterium hafniense


396
gl_15893920
Clostridium acetobutylicum


397
gl_20384961
Coleochaete sp. 18a1


398
gl_22959136
Rhodobacter sphaeroides


399
gl_1171780
Enterococcus hirae


400
gl_28572631
Tropheryma whipplei TW08/27


401
gl_24940184
Emmenanthe penduliflora


402
gl_23063854
Pseudomonas fluorescens PfO-1


403
gl_4995794
Rulingla sp. Chase 2196


404
gl_4033721
Picea mariana


405
gl_18312204
Pyrobaculum aerophilum str. IM2


406
gl_21684869
Anarthria scabra


407
gl_15831818
Escherichia coli O157:H7


408
gl_388977
Escherichia coli


409
gl_6984231
Euphorbia esula


410
MRT3847_255937P.2
Glycine max


411
MRT3847_284959P.1
Glycine max


412
MRT4565_51329P.3
Triticum aestivum


413
gl_7488484
Brassica napus


414
gl_21231972
Xanthomonas campestris pv. campestris str.




ATCC 33913


415
gl_23021511
Clostridium thermocellum ATCC 27405


416
MRT4565_24817P.3
Triticum aestivum


417
gl_14717997
Celosia argentea


418
gl_28188341
Coleochaete sp. 528a3


419
gl_29420865
Saccharomyces unisporus


420
gl_22961554
Rhodopseudomonas palustris


421
MRT3847_64874P.3
Glycine max


422
gl_32475580
Pirellula sp.


423
MRT3847_286535P.1
Glycine max


424
gl_16800375
Listeria innocua


425
gl_217936
Ipomoea batatas


426
gl_4731153
Dillenia retusa


427
gl_15612353
Helicobacter pylori J99


428
gl_16803610
Listeria monocytogenes EGD-e


429
gl_29347953
Bacteroides thetaiotaomicron VPI-5482


430
gl_25004882
Cicer arietinum


431
gl_48491
Vibrio parahaemolyticus


432
MRT3847_239034P.2
Glycine max


433
gl_22406531
Ferroplasma acidarmanus


434
MRT4565_107456P.1
Triticum aestivum


435
gl_12004153
Primula palinuri


436
gl_15810509
Arabidopsis thaliana


437
gl_19920171
Oryza sativa (japonica cultivar-group)


438
gl_14718042
Epilobium angustifolium


439
gl_19115258
Schizosaccharomyces pombe


440
gl_7708512
Planchonella pohlmaniana


441
gl_23021249
Clostridium thermocellum ATCC 27405


442
MRT3847_26155P.3
Glycine max


443
gl_19033091
Klebsormidium subtilissimum


444
gl_28188329
Coleochaete sp. 327d3


445
gl_4469175
Hevea brasiliensis


446
gl_13548679
Pyrus pyrifolia


447
gl_4995788
Rhopalocarpus sp. Chase 906


448
gl_15605757
Aquifex aeolicus VF5


449
gl_17545291
Ralstonia solanacearum


450
gl_16803667
Listeria monocytogenes EGD-e


451
gl_15216026
Vicia faba var. minor


452
MRT3847_200246P.2
Glycine max


453
gl_18077607
Valdivia gayana


454
gl_15615614
Bacillus halodurans


455
gl_23000020
Magnetococcus sp. MC-1


456
gl_14717931
Allium altaicum


457
MRT4530_135930P.1
Oryza sativa


458
gl_6689562
Verbascum thapsus


459
gl_775154
Escherichia coli


460
gl_27528500
Torulaspora delbrueckii


461
gl_23099102
Oceanobacillus iheyensis HTE831


462
gl_172907
Saccharomyces cerevisiae


463
MRT3847_70323P.2
Glycine max


464
gl_9955367
Escherichia coli


465
gl_7442734
Ricinus communis


466
gl_22993136
Enterococcus faecium


467
gl_21243443
Xanthomonas axonopodis pv. citri str. 306


468
gl_21221074
Streptomyces coelicolor A3(2)


469
gl_15611004
Mycobacterium tuberculosis H37Rv


470
gl_6320016
Saccharomyces cerevisiae


471
MRT3847_44128P.3
Glycine max


472
gl_5869971
Scherffelia dubia


473
gl_14718072
Heteropyxis natalensis


474
gl_32034755
Actinobacillus pleuropneumoniae serovar 1 str. 4074


475
gl_4033435
Agrobacterium vitis


476
gl_9229839
Thermoplasma acidophilum


477
gl_21616113
Cucumis melo


478
gl_2459981
Pseudomonas aeruglnosa


479
gl_15826905
Mycobacterium leprae


480
gl_15242176
Arabidopsis thaliana


481
MRT3847_267642P.1
Glycine max


482
gl_8517408
Clavija eggersiana


483
gl_15829106
Mycoplasma pulmonis


484
gl_20135993
Shigella boydii


485
gl_2497537
Asperglllus niger


486
gl_25010985
Streptococcus agalactiae NEM316


487
gl_100287
Nicotiana sp.


488
gl_21633431
Erycibe hellwigli


489
gl_15614852
Bacillus halodurans


490
MRT3847_30045P.3
Glycine max


491
MRT4530_8279P.1
Oryza sativa


492
gl_6323275
Saccharomyces cerevisiae


493
gl_116144
Xanthobacter flavus


494
gl_23043296
Trichodesmium erythraeum IMS101


495
gl_3850964
Cardwellia sublimis


496
gl_16765661
Salmonella typhimurium LT2


497
gl_3850900
Bellendena montana


498
gl_23137026
Cytophaga hutchinsonii


499
gl_23103564
Azotobacter vinelandii


500
gl_22964886
Rhodopseudomonas palustris


501
gl_15924244
Staphylococcus aureus subsp. aureus Mu50


502
gl_14718230
Spigelia marilandica


503
gl_7592738
Nepenthes alata


504
MRT4530_109505P.2
Oryza sativa


505
gl_27447653
Lycopersicon esculentum


506
gl_7484972
Arabidopsis thaliana


507
gl_32490903
Wigglesworthia glossinidia endosymbiont




of Glossina brevipalpis


508
gl_10241425
Oryza sativa (indica cultivar-group)


509
gl_21633419
Dicranostyles villosus


510
gl_5758884
Hedychium flavum


511
gl_15594640
Borrelia burgdorferi B31


512
gl_24940204
Hydrolea sp. Chase 3245


513
gl_20136093
Escherichia coli


514
gl_12585563
Methanocaldococcus jannaschii


515
gl_23336124
Bifidobacterium longum DJO10A


516
gl_6017814
Nelumbo lutea


517
gl_7708308
Garrya elliptica


518
gl_15866696
Avena strigosa


519
gl_7708339
Hymenanthera alpina


520
gl_26553530
Mycoplasma penetrans


521
gl_12585391
Desulfurococcus sp. SY


522
gl_584810
Galdieria sulphuraria


523
gl_15642920
Thermotoga maritima


524
gl_23465101
Bifidobacterium longum NCC2705


525
MRT4565_52855P.3
Triticum aestivum


526
gl_23058851
Pseudomonas fluorescens PfO-1


527
gl_21223783
Streptomyces coelicolor A3(2)


528
gl_4063552
Muntingla calabura


529
gl_15924687
Staphylococcus aureus subsp. aureus Mu50


530
gl_136259
Klebsiella aerogenes


531
MRT4565_39839P.3
Triticum aestivum


532
gl_21672546
Buchnera aphidicola str. Sg (Schizaphis graminum)


533
gl_7708181
Betula pendula


534
gl_23136411
Cytophaga hutchinsonii


535
gl_2541878
Cyanidioschyzon merolae


536
gl_7708177
Brexia madagascariensis


537
gl_7436320
Desulfurococcus mobilis


538
gl_15921725
Sulfolobus tokodaii


539
gl_23019853
Thermobifida fusca


540
gl_21232615
Xanthomonas campestris pv. campestris




str. ATCC 33913


541
gl_16127773
Caulobacter crescentus CB15


542
gl_21684925
Leersia oryzoides


543
gl_12004121
Cortusa turkestanica


544
gl_19705311
Fusobacterium nucleatum subsp.




nucleatum ATCC 25586


545
gl_7708634
Sambucus nigra


546
gl_15425590
Phyllachne uliglnosa


547
gl_27375857
Bradyrhizobium japonicum USDA 110


548
gl_17232340
Nostoc sp. PCC 7120


549
gl_22989508
Burkholderia fungorum


550
gl_12004143
Jacquinia keyensis


551
gl_24940244
Pisum sativum


552
gl_27467972
Staphylococcus epidermidis ATCC 12228


553
gl_30351915
Periboea paucifolia


554
gl_68332
Pseudomonas aeruglnosa


555
gl_8452704
Nomocharis pardanthina


556
gl_15892357
Rickettsia conorii


557
gl_15609923
Mycobacterium tuberculosis H37Rv


558
gl_28897130
Vibrio parahaemolyticus RIMD 2210633


559
gl_4033428
Photobacterium leiognathi


560
gl_1730064
Bacillus licheniformis


561
gl_7674377
Buchnera aphidicola (Diuraphis noxia)


562
gl_15827378
Mycobacterium leprae


563
MRT3847_227267P.3
Glycine max


564
MRT4530_84009P.2
Oryza sativa


565
gl_23023645
Leuconostoc mesenteroides subsp.




mesenteroides ATCC 8293


566
gl_6688704
Myoporum mauritianum


567
MRT4565_91331P.2
Triticum aestivum


568
gl_16081945
Thermoplasma acidophilum


569
gl_20136047
Shigella dysenteriae


570
gl_29420871
Saccharomyces pastorianus


571
gl_20091808
Methanosarcina acetivorans C2A


572
gl_7708514
Napoleonaea vogelii


573
gl_4206588
Atalantia ceylanica


574
gl_32488077
Oryza sativa (japonica cultivar-group)


575
gl_15837977
Xylella fastidiosa 9a5c


576
gl_22330789
Arabidopsis thaliana


577
gl_2274776
Candida albicans


578
gl_22957596
Rhodobacter sphaeroides


579
gl_3122311
Methylobacterium extorquens


580
gl_30692988
Arabidopsis thaliana


581
gl_12039387
Oryza sativa (japonica cultivar-group)


582
gl_24940176
Echiochilon collenettei


583
MRT3847_250868P.2
Glycine max


584
gl_24414622
Helianthus annuus


585
gl_231540
Secale cereale


586
gl_21633379
Stylisma patens


587
gl_23017104
Thermobifida fusca


588
gl_6017810
Limeum sp. Hoot 983


589
gl_22998791
Magnetococcus sp. MC-1


590
gl_264676
Saccharomyces cerevisiae


591
gl_1352326
Brassica rapa


592
MRT3847_48429P.3
Glycine max


593
gl_16416758
Polytrichum pallidisetum


594
gl_22298059
Thermosynechococcus elongatus BP-1


595
gl_5231208
Streptococcus pneumoniae


596
gl_20807120
Thermoanaerobacter tengcongensis


597
gl_23131139
Prochlorococcus marinus str. MIT 9313


598
MRT3847_234305P.2
Glycine max


599
MRT4565_115300P.1
Triticum aestivum


600
gl_5758889
Heliconia rostrata


601
gl_23131322
Prochlorococcus marinus str. MIT 9313


602
gl_23097976
Oceanobacillus iheyensis HTE831


603
gl_7688031
Peltoboykinia tellimoides


604
gl_6319279
Saccharomyces cerevisiae


605
gl_32418640
Neurospora crassa


606
gl_23111737
Desulfitobacterium hafniense


607
gl_32490757
Wigglesworthia glossinidia endosymbiont of




Glossina brevipalpis


608
gl_7687974
Degeneria vitiensis


609
gl_15676576
Neisseria meningltidis MC58


610
gl_6634488
Poncirus trifoliata


611
gl_7452979
Hordeum vulgare subsp. vulgare


612
gl_29420851
Saccharomyces cerevisiae


613
gl_17827467
Petunia x hybrida


614
gl_32476398
Pirellula sp.


615
gl_6633813
Arabidopsis thaliana


616
gl_26988777
Pseudomonas putida KT2440


617
gl_28209952
Clostridium tetani E88


618
gl_21667496
Cycas edentata


619
gl_23014985
Magnetospirillum magnetotacticum


620
MRT4530_143108P.1
Oryza sativa


621
gl_16903129
Sambucus nigra


622
gl_20135991
Shigella boydii


623
MRT4530_35848P.1
Oryza sativa


624
gl_5758888
Heliconia paka


625
gl_15828737
Mycoplasma pulmonis


626
gl_16803319
Listeria monocytogenes EGD-e


627
gl_15801918
Escherichia coli O157:H7 EDL933


628
gl_15793848
Neisseria meningltidis Z2491


629
gl_29655069
Coxiella burnetii RSA 493


630
gl_20149296
Malus x domestica


631
MRT4565_104372P.1
Triticum aestivum


632
gl_15233810
Arabidopsis thaliana


633
gl_5758854
Aloe vera


634
gl_15677237
Neisseria meningltidis MC58


635
gl_20136049
Shigella dysenteriae


636
gl_5231190
Streptococcus pneumoniae


637
gl_22094360
Oryza sativa (japonica cultivar-group)


638
gl_32029324
Haemophilus somnus 2336


639
gl_7488485
Brassica napus


640
gl_15675235
Streptococcus pyogenes M1 GAS


641
gl_23335097
Bifidobacterium longum DJO10A


642
gl_28140043
Elaeis guineensis


643
gl_6539602
Vicia faba


644
gl_775198
Escherichia coli


645
gl_20092686
Methanosarcina acetivorans C2A


646
gl_21633417
Jacquemontia reclinata


647
gl_15805727
Deinococcus radiodurans


648
gl_30468060
Cyanidioschyzon merolae


649
gl_18310529
Clostridium perfringens str. 13


650
gl_6681366
Pisum sativum


651
gl_28202179
Anthoceros formosae


652
gl_29832759
Streptomyces avermitilis MA-4680


653
gl_15640512
Vibrio cholerae


654
gl_3377757
Zymomonas mobilis


655
gl_15887378
Agrobacterium tumefaciens str. C58 (Cereon)


656
MRT3847_37580P.3
Glycine max


657
gl_1430917
Ochrosphaera neapolitana


658
gl_15606687
Aquifex aeolicus VF5


659
gl_1084400
Lycopersicon esculentum


660
gl_2497540
Ricinus communis


661
gl_27884018
Lycopersicon esculentum


662
gl_8980815
Castanea sativa


663
gl_23502605
Brucella suis 1330


664
gl_4063550
Helianthemum grandiflorum


665
gl_22977198
Ralstonia metallidurans


666
gl_15645891
Helicobacter pylori 26695


667
gl_7688421
Viscainoa geniculata


668
gl_15614926
Bacillus halodurans


669
gl_1196314
Borrelia burgdorferi


670
gl_29654461
Coxiella burnetii RSA 493


671
gl_8918273
Pisum sativum


672
gl_19075895
Schizosaccharomyces pombe


673
gl_11357139
Chenopodium rubrum


674
gl_5758886
Heliconia irrasa


675
gl_15673444
Lactococcus lactis subsp. lactis


676
gl_6686963
Barleria prionitis


677
gl_6016879
Bacillus sp.


678
gl_5231199
Streptococcus pneumoniae


679
gl_14602140
Aeropyrum pernix


680
gl_21220517
Streptomyces coelicolor A3(2)


681
gl_29376065
Enterococcus faecalis V583


682
MRT4565_11213P.3
Triticum aestivum


683
gl_15642911
Thermotoga maritima


684
gl_17546700
Ralstonia solanacearum


685
gl_28900678
Vibrio parahaemolyticus RIMD 2210633


686
MRT4565_43124P.2
Triticum aestivum


687
gl_24940270
Wigandia caracasana


688
gl_14585885
Pisum sativum


689
gl_15674910
Streptococcus pyogenes M1 GAS


690
gl_4063538
Carica papaya


691
gl_7708574
Rhamnus cathartica


692
gl_15892991
Rickettsia conorii


693
gl_4995854
Thymelaea hirsuta


694
gl_11558184
Lycopersicon esculentum


695
gl_14718147
Neurada procumbens


696
gl_28566182
Hordeum vulgare subsp. vulgare


697
gl_23061852
Pseudomonas fluorescens PfO-1


698
MRT3847_47036P.3
Glycine max


699
gl_8452756
Swietenia macrophylla


700
gl_7708464
Koelreuteria paniculata


701
gl_20514385
Strasburgeria robusta


702
MRT3847_56279P.2
Glycine max


703
gl_28379494
Lactobacillus plantarum WCFS1


704
gl_4995057
Abroma augustum


705
gl_19554226
Corynebacterium glutamicum ATCC 13032


706
gl_7708147
Androsace spinulifera


707
gl_12004145
Maesa tenera


708
gl_23056436
Geobacter metallireducens


709
gl_5764615
Zymomonas mobilis subsp. pomaceae


710
gl_33240025
Prochlorococcus marinus subsp. marinus




str. CCMP1375


711
gl_20467387
Ephedra equisetina


712
gl_6467934
Potamogeton berchtoldii


713
gl_20136045
Shigella dysenteriae


714
gl_24967137
Lycopersicon esculentum


715
gl_21684881
Coleochloa abyssinica


716
gl_80953
Methanothermococcus thermolithotrophicus


717
gl_29829367
Streptomyces avermitilis MA-4680


718
gl_28188325
Coleochaete scutata


719
gl_23123457
Prochlorococcus marinus subsp. pastoris




str. CCMP1378


720
gl_3915890
Cyanidium caldarium


721
gl_5231184
Streptococcus pneumoniae


722
gl_15611532
Helicobacter pylori J99


723
gl_14041687
Juglans regla


724
MRT4530_35849P.2
Oryza sativa


725
gl_19881629
Oryza sativa (japonica cultivar-group)


726
MRT4565_14599P.3
Triticum aestivum


727
gl_7447118
Pisum sativum


728
MRT4565_14138P.3
Triticum aestivum


729
gl_24379618
Streptococcus mutans UA159


730
gl_30689162
Arabidopsis thaliana


731
gl_19033067
Coleochaete irregularis


732
gl_3334120
Triticum aestivum


733
gl_12045070
Mycoplasma genitalium


734
gl_14717948
Balanops vieillardi


735
MRT3847_52567P.3
Glycine max


736
gl_13183137
Psidium guajava


737
gl_7708444
Ilex crenata


738
gl_5830465
Medicago sativa


739
gl_6688901
Olea europaea


740
gl_15235430
Arabidopsis thaliana


741
gl_4995850
Triplochiton zambesiacus


742
gl_30352098
Adiantum capillus-veneris


743
gl_23503623
Carteria radiosa


744
MRT4565_59504P.2
Triticum aestivum


745
gl_28211966
Clostridium tetani E88


746
gl_17231725
Nostoc sp. PCC 7120


747
MRT3847_55865P.2
Glycine max


748
gl_12004157
Primula sieboldii


749
gl_27364101
Vibrio vulnificus CMCP6


750
gl_14717990
Carya glabra


751
gl_6094551
Arabidopsis thaliana


752
gl_7447979
Medicago sativa


753
gl_14330338
Schedonorus pratensis


754
gl_27528492
Saccharomyces pastorianus


755
gl_30683170
Arabidopsis thaliana


756
gl_7708145
Anagallis tenella


757
gl_32035049
Actinobacillus pleuropneumoniae serovar 1 str. 4074


758
gl_19705084
Fusobacterium nucleatum subsp. nucleatum




ATCC 25586


759
gl_20260650
Arabidopsis thaliana


760
gl_688420
Nicotiana glauca x Nicotiana langsdorffii


761
gl_4995153
Fremontodendron californicum x Fremontodendron




mexicanum


762
gl_22532109
Pseudomonas syringae


763
MRT4565_131929P.1
Triticum aestivum


764
gl_14718056
Flagellaria indica


765
gl_21633343
Iseia luxurians


766
gl_7708300
Escallonia sp. ‘Chase 2499 K’


767
gl_113786
Hordeum vulgare


768
gl_23059426
Pseudomonas fluorescens PfO-1


769
gl_17548614
Ralstonia solanacearum


770
gl_11499192
Archaeoglobus fulgldus DSM 4304


771
gl_729237
Ralstonia eutropha


772
gl_21070389
Pennisetum glaucum


773
gl_6984122
Capsicum annuum


774
gl_7688417
Verbena scabrido-glandulosa


775
gl_28895034
Streptococcus pyogenes SSI-1


776
gl_7708538
Phytolacca dioica


777
gl_23194453
Gossypium hirsutum


778
MRT3847_258276P.2
Glycine max


779
gl_29420867
Saccharomyces pastorianus


780
gl_21633415
Jacquemontia blanchetii


781
gl_28262023
Rickettsia sibirica


782
gl_22969349
Rhodospirillum rubrum


783
gl_32034452
Actinobacillus pleuropneumoniae serovar




1 str. 4074


784
gl_20149298
Malus x domestica


785
gl_8489192
Lactococcus lactis subsp. lactis bv.




diacetylactis


786
gl_6687481
Euthystachys abbreviata


787
gl_3850948
Austromuellera trinervia


788
gl_114528
Sulfolobus acidocaldarius


789
gl_8980813
Castanea sativa


790
gl_16079874
Bacillus subtilis subsp. subtilis str. 168


791
gl_28194508
Lotus japonicus


792
gl_28210705
Clostridium tetani E88


793
gl_6706178
Gerbera jamesonii


794
gl_16943658
Anemarrhena asphodeloides


795
gl_21326117
Sorghum bicolor


796
gl_15216028
Vicia faba var. minor


797
MRT4565_89954P.2
Triticum aestivum


798
gl_5758921
Zinglber gramineum


799
MRT4565_118733P.1
Triticum aestivum


800
gl_27886806
Fusobacterium nucleatum subsp.




vincentii ATCC 49256


801
gl_3913031
Medicago sativa


802
gl_18414404
Arabidopsis thaliana


803
MRT4565_134443P.1
Triticum aestivum


804
gl_4103757
Corylus avellana


805
gl_21228923
Methanosarcina mazei Goe1


806
gl_30688675
Arabidopsis thaliana


807
gl_32765543
Hevea brasiliensis


808
gl_4063536
Capparis spinosa


809
gl_7708313
Geum sp. ‘Chase 2507 K’


810
gl_29420847
Saccharomyces cerevisiae


811
gl_1072369
Enterococcus hirae


812
gl_23131072
Prochlorococcus marinus str. MIT 9313


813
gl_7708630
Salacia pallescens


814
gl_5002358
Azospirillum brasilense


815
gl_6017840
Schisandra chinensis


816
gl_7861547
Hydrogenophilus thermoluteolus


817
gl_23336808
Bifidobacterium longum DJ010A


818
gl_1805530
Escherichia coli


819
gl_3850914
Stirlingla latifolia


820
gl_17231176
Nostoc sp. PCC 7120


821
gl_6687550
Eremosyne pectinata


822
gl_21220814
Streptomyces coelicolor A3(2)


823
gl_19112800
Schizosaccharomyces pombe


824
gl_24374549
Shewanella oneidensis MR-1


825
gl_27467848
Staphylococcus epidermidis ATCC 12228


826
MRT4530_46208P.1
Oryza sativa


827
gl_3913034
Vigna unguiculata


828
gl_16943741
Kniphofia uvaria


829
gl_6687627
Gustavia superba


830
MRT4530_21634P.2
Oryza sativa


831
gl_19578317
Arabidopsis thaliana


832
gl_11034787
Cabomba caroliniana


833
gl_18312083
Pyrobaculum aerophilum str. IM2


834
gl_6942107
Brucella melitensis biovar Abortus


835
MRT3847_233420P.2
Glycine max


836
gl_20136043
Shigella dysenteriae


837
gl_24967135
Lycopersicon esculentum


838
gl_17224761
Tacca plantaglnea


839
gl_16273337
Haemophilus influenzae Rd


840
gl_4995181
Helicteres baruensis


841
gl_1526982
Salmonella typhimurium


842
gl_26247926
Escherichia coli CFT073


843
gl_14906664
Sorghum bicolor


844
MRT4565_64073P.2
Triticum aestivum


845
gl_4206584
Chorilaena quercifolia


846
gl_23099626
Oceanobacillus iheyensis HTE831


847
gl_6691650
Moritella marina


848
gl_15791646
Campylobacter jejuni subsp. jejuni NCTC 11168


849
gl_24940246
Nemophila insignis


850
gl_11908164
Swietenia macrophylla


851
gl_29150650
Oryza sativa (indica cultivar-group)


852
gl_22758323
Oryza sativa (japonica cultivar-group)


853
MRT4565_42533P.3
Triticum aestivum


854
gl_7708321
Guaiacum sanctum


855
gl_7708676
Thunbergla coccinea


856
gl_7708466
Krameria ixine


857
MRT4565_103551P.1
Triticum aestivum


858
gl_27377698
Bradyrhizobium japonicum USDA 110


859
gl_30267062
Ipomoea tabascana


860
gl_19743774
Gossypium hirsutum


861
gl_27657747
Helianthus annuus


862
gl_7687980
Gyrocarpus americanus


863
gl_7578495
Quercus rubra


864
gl_6599047
Chlamydia trachomatis


865
gl_732262
Yersinia pseudotuberculosis


866
gl_19115131
Schizosaccharomyces pombe


867
gl_21633375
Bonamia spectabilis


868
gl_7446520
Cucumis sativus


869
gl_14717946
Asteropeia micraster


870
gl_4206759
Cryptococcus neoformans var. grubii


871
gl_17232303
Nostoc sp. PCC 7120


872
gl_21328719
uncultured proteobacterium


873
gl_15618755
Chlamydophila pneumoniae CWL029


874
gl_282382
Geobacillus stearothermophilus


875
gl_2129972
Petunia x hybrida


876
gl_6225171
Synechococcus sp. PCC 7942


877
gl_7688029
Nymphaea odorata


878
gl_16943662
Aspidistra elatior


879
gl_461978
Lycopersicon esculentum


880
MRT4565_40318P.2
Triticum aestivum


881
gl_6319704
Saccharomyces cerevisiae


882
MRT4565_9194P.2
Triticum aestivum


883
MRT3847_90337P.3
Glycine max


884
gl_2493122
Brassica napus


885
gl_27468291
Staphylococcus epidermidis ATCC 12228


886
gl_19033069
Coleochaete sieminskiana


887
MRT4530_91499P.1
Oryza sativa


888
gl_7708335
Humulus lupulus


889
gl_21402641
Bacillus anthracis str. A2012


890
gl_28563989
Saccharomyces bayanus


891
gl_27904791
Buchnera aphidicola str. Bp (Baizongla pistaciae)


892
gl_24935324
Medicago truncatula


893
gl_5921507
Mortierella alpina


894
gl_7708315
Globularia salicina


895
gl_114520
Methanosarcina barkeri


896
gl_15226178
Arabidopsis thaliana


897
gl_1707370
Arabidopsis thaliana


898
gl_22997796
Xylella fastidiosa Ann-1


899
gl_16273468
Haemophilus influenzae Rd


900
gl_151617
Pseudomonas aeruglnosa


901
gl_21219634
Streptomyces coelicolor A3(2)


902
MRT4565_76776P.2
Triticum aestivum


903
gl_23118917
Desulfitobacterium hafniense


904
gl_32130302
Bacillus subtilis var. natto


905
MRT3847_52222P.3
Glycine max


906
gl_12004159
Primula veitchiana


907
gl_6688708
Mentzelia lindleyi


908
gl_23021744
Clostridium thermocellum ATCC 27405


909
gl_136258
Haloferax volcanii


910
gl_7687960
Austrobaileya scandens


911
MRT3847_39339P.3
Glycine max


912
gl_32489847
Oryza sativa (japonica cultivar-group)


913
gl_30693784
Arabidopsis thaliana


914
gl_7381060
Populus tremula x Populus tremuloides


915
gl_19033097
Chlorokybus atmophyticus


916
gl_27528502
Saccharomyces kluyveri


917
MRT4530_27056P.1
Oryza sativa


918
MRT3847_30014P.3
Glycine max


919
gl_4063568
Pavonia multiflora


920
gl_30724884
Microbispora rosea subsp. aerata


921
gl_23099005
Oceanobacillus iheyensis HTE831


922
gl_19705056
Fusobacterium nucleatum subsp.




nucleatum ATCC 25586


923
MRT4565_101762P.1
Triticum aestivum


924
MRT3847_225429P.3
Glycine max


925
gl_7708542
Pittosporum fairchildii


926
gl_7708329
Helwingla japonica


927
gl_79917
Staphylococcus aureus


928
gl_23016131
Magnetospirillum magnetotacticum


929
gl_19352035
Oryza sativa


930
MRT4530_60814P.1
Oryza sativa


931
gl_4995844
Sarcolaena sp. Chase 903


932
gl_30685252
Arabidopsis thaliana


933
gl_7434424
Oryza longlstaminata


934
gl_13161415
Oryza sativa (japonica cultivar-group)


935
MRT4530_77791P.2
Oryza sativa


936
gl_32039540
Pseudomonas aeruglnosa UCBPP-PA14


937
gl_22094585
Populus tomentosa


938
gl_6601482
Allium cepa


939
gl_136264
Pseudomonas putida


940
MRT4565_66175P.2
Triticum aestivum


941
gl_27528480
Saccharomyces unisporus


942
gl_15669227
Methanocaldococcus jannaschii


943
gl_15225218
Arabidopsis thaliana


944
gl_18406070
Arabidopsis thaliana


945
gl_4837612
Antirrhinum majus


946
gl_4995063
Apeiba tibourbou


947
gl_16123318
Yersinia pestis CO92


948
gl_31126749
Oryza sativa (japonica cultivar-group)


949
gl_7708556
Polygonum sachalinense


950
gl_27529081
Zygosaccharomyces rouxii


951
gl_20136075
Shigella sonnei


952
gl_23124896
Nostoc punctiforme


953
gl_29828741
Streptomyces avermitilis MA-4680


954
gl_6688494
Irvingbaileya sp. Plunkett 1510


955
gl_11466709
Marchantia polymorpha


956
gl_33113492
Pringlea antiscorbutica


957
gl_27529077
Zygosaccharomyces bailii


958
gl_15224925
Arabidopsis thaliana


959
gl_553048
Daucus carota


960
gl_29375007
Enterococcus faecalis V583


961
gl_27887626
Fusobacterium nucleatum subsp.




vincentii ATCC 49256


962
gl_30421165
Hordeum vulgare


963
gl_17546431
Ralstonia solanacearum


964
gl_15810897
Antirrhinum majus subsp. cirrhigerum


965
gl_15223786
Arabidopsis thaliana


966
gl_23465333
Bifidobacterium longum NCC2705


967
MRT4565_26905P.2
Triticum aestivum


968
MRT4565_47460P.3
Triticum aestivum


969
gl_3779258
Hordeum vulgare subsp. vulgare


970
gl_23474551
Desulfovibrio desulfuricans G20


971
gl_7687976
Eupomatia bennettii


972
gl_15237539
Arabidopsis thaliana


973
gl_16272655
Haemophilus influenzae Rd


974
gl_29832720
Streptomyces avermitilis MA-4680


975
gl_15425564
Crispiloba disperma


976
gl_11267101
Methanosarcina mazei


977
gl_23469383
Pseudomonas syringae pv. syringae B728a


978
gl_23104278
Azotobacter vinelandii


979
gl_29420853
Candida glabrata


980
gl_15828711
Mycoplasma pulmonis


981
gl_14718242
Tapiscia sinensis


982
gl_7708578
Rinorea bengalensis


983
gl_4995757
Pachira aquatica


984
gl_14329816
Atropa belladonna


985
gl_6688492
Justicia americana


986
gl_4995705
Microcos latistipulata


987
MRT4565_21523P.3
Triticum aestivum


988
gl_23336272
Bifidobacterium longum DJO10A


989
gl_20467383
Ephedra sp. CR08


990
gl_7708215
Corynocarpus laevigatus


991
gl_23119424
Desulfitobacterium hafniense


992
gl_20136041
Shigella dysenteriae


993
MRT4565_123153P.1
Triticum aestivum


994
MRT3847_243747P.2
Glycine max


995
gl_6706286
Phlox longlfolia


996
gl_16804835
Listeria monocytogenes EGD-e


997
MRT4530_100513P.2
Oryza sativa


998
gl_31126747
Oryza sativa (japonica cultivar-group)


999
gl_24215258
Leptospira interrogans serovar lai str. 56601


1000
gl_4180
Saccharomyces cerevisiae


1001
gl_30385250
x Citrofortunella mitis


1002
gl_21226817
Methanosarcina mazei Goe1


1003
MRT4530_54698P.1
Oryza sativa


1004
MRT3847_25290P.2
Glycine max


1005
MRT4565_104502P.1
Triticum aestivum


1006
gl_24940166
Cerinthe major


1007
gl_15226967
Arabidopsis thaliana


1008
gl_23475994
Desulfovibrio desulfuricans G20


1009
gl_12585490
Citrus unshiu


1010
gl_30267060
Ipomoea setosa


1011
MRT4530_57126P.1
Oryza sativa


1012
MRT3847_52223P.3
Glycine max


1013
gl_27657745
Helianthus annuus


1014
gl_32400328
Asperglllus oryzae


1015
gl_20161442
Oryza sativa (japonica cultivar-group)


1016
gl_8388947
Eriostemon brevifolius


1017
gl_15897407
Sulfolobus solfataricus


1018
gl_30022560
Bacillus cereus ATCC 14579


1019
gl_7708286
Eucryphia milliganii


1020
gl_27262488
Heliobacillus mobilis


1021
gl_9955371
Escherichia coli


1022
gl_6692624
Allium cepa


1023
MRT4530_101175P.1
Oryza sativa


1024
gl_12004161
Samolus repens


1025
gl_94733
Thermus aquaticus


1026
gl_3913005
Panax glnseng


1027
gl_1169445
Pisum sativum


1028
MRT3847_253859P.2
Glycine max


1029
gl_18657017
Oryza sativa


1030
gl_6320442
Saccharomyces cerevisiae


1031
gl_15236190
Arabidopsis thaliana


1032
gl_15618012
Chlamydophila pneumoniae CWL029


1033
gl_29420833
Saccharomyces cerevisiae


1034
MRT4565_6744P.2
Triticum aestivum


1035
gl_14718140
Moringa oleifera


1036
gl_15604188
Rickettsia prowazekii


1037
gl_12004149
Omphalogramma delavayi


1038
gl_775181
Escherichia coli


1039
gl_217940
Ipomoea batatas


1040
gl_14718085
Idesia polycarpa


1041
MRT4530_103357P.1
Oryza sativa


1042
gl_27125515
Mesembryanthemum crystallinum


1043
gl_25011425
Streptococcus agalactiae NEM316


1044
gl_6456467
Taraxacum officinale


1045
gl_7573596
Populus nigra


1046
MRT4530_57276P.1
Oryza sativa


1047
gl_12004131
Anagallis arvensis


1048
gl_15897777
Sulfolobus solfataricus


1049
gl_3850978
Embothrium coccineum


1050
gl_28563987
Saccharomyces bayanus


1051
gl_15901412
Streptococcus pneumoniae TIGR4


1052
gl_21633463
Montinia caryophyllacea


1053
gl_20805979
Chlamydia trachomatis


1054
gl_7688411
Utricularia biflora


1055
gl_27468267
Staphylococcus epidermidis ATCC 12228


1056
gl_25345298
Arabidopsis thaliana


1057
gl_16763830
Salmonella typhimurium LT2


1058
gl_28211923
Clostridium tetani E88


1059
gl_17065024
Arabidopsis thaliana


1060
gl_22959339
Rhodobacter sphaeroides


1061
gl_6759507
Elaeis guineensis


1062
gl_28188339
Coleochaete divergens


1063
gl_13476995
Mesorhizobium loti


1064
gl_7708652
Spathiphyllum wallisii


1065
gl_15642010
Vibrio cholerae


1066
gl_30695267
Arabidopsis thaliana


1067
MRT3847_29671P.3
Glycine max


1068
gl_4995796
Sterculia apetala


1069
gl_27366266
Vibrio vulnificus CMCP6


1070
gl_1169648
Rhodococcus fascians


1071
gl_16122431
Yersinia pestis CO92


1072
gl_25289327
Arabidopsis thaliana


1073
gl_4995759
Neurada procumbens


1074
gl_30696140
Arabidopsis thaliana


1075
gl_7708327
Heisteria parvifolia


1076
gl_14289139
Bacillus sphaericus


1077
gl_15966192
Sinorhizobium meliloti


1078
MRT3847_268909P.1
Glycine max


1079
gl_4063566
Simarouba glauca


1080
MRT3847_162726P.3
Glycine max


1081
gl_28973727
Arabidopsis thaliana


1082
gl_16126292
Caulobacter crescentus CB15


1083
gl_602900
Silene latifolia


1084
gl_21633411
Jacquemontia tamnifolia


1085
gl_5019431
Gnetum gnemon


1086
gl_25307920
Picea abies


1087
MRT4530_7968P.2
Oryza sativa


1088
gl_4206608
Pleiospermium alatum


1089
gl_25486627
Picea mariana


1090
gl_23122427
Prochlorococcus marinus subsp. pastoris




str. CCMP1378


1091
MRT4530_85948P.1
Oryza sativa


1092
gl_16078679
Bacillus subtilis subsp. subtilis str. 168


1093
gl_15602442
Pasteurella multocida


1094
gl_3850944
Orites lancifolia


1095
gl_16126335
Caulobacter crescentus CB15


1096
gl_21684883
Ecdeiocolea monostachya


1097
gl_23132758
Synechococcus sp. WH 8102


1098
gl_80601
Corynebacterium glutamicum


1099
gl_21954719
Mesotaenium caldariorum


1100
gl_21536895
Arabidopsis thaliana


1101
gl_7442735
Ricinus communis


1102
gl_29539348
Cyanidioschyzon merolae


1103
gl_2497543
Nicotiana tabacum


1104
gl_16800673
Listeria innocua


1105
MRT3847_224215P.2
Glycine max


1106
gl_23106149
Azotobacter vinelandii


1107
gl_125606
Solanum tuberosum


1108
gl_15605029
Chlamydia trachomatis


1109
gl_7676165
Methanothermobacter thermautotrophicus


1110
gl_20136073
Shigella sonnei


1111
gl_23135856
Cytophaga hutchinsonii


1112
gl_22986693
Burkholderia fungorum


1113
gl_11279328
Pisum sativum


1114
gl_4586799
Nicotiana tabacum


1115
gl_32476350
Pirellula sp.


1116
gl_21742732
Oryza sativa (japonica cultivar-group)


1117
MRT4565_78273P.2
Triticum aestivum


1118
gl_29348250
Bacteroides thetaiotaomicron VPI-5482


1119
gl_30421168
Hordeum vulgare


1120
gl_2506211
Vigna radiata var. radiata


1121
gl_5830467
Medicago sativa


1122
MRT4565_118736P.1
Triticum aestivum


1123
gl_8517661
Silene nutans


1124
gl_1310978
Escherichia coli


1125
gl_21633441
Dinetus truncatus


1126
gl_21684927
Streptochaeta spicata


1127
gl_15963782
Sinorhizobium meliloti


1128
gl_15982240
Nicotiana attenuata


1129
MRT4530_98210P.1
Oryza sativa


1130
gl_23123201
Prochlorococcus marinus subsp. pastoris




str. CCMP1378


1131
gl_15617074
Buchnera aphidicola str. APS




(Acyrthosiphon pisum)


1132
gl_15609594
Mycobacterium tuberculosis H37Rv


1133
gl_15806971
Deinococcus radiodurans


1134
gl_18404228
Arabidopsis thaliana


1135
gl_17224755
Tacca leontopetaloides


1136
gl_23134144
Synechococcus sp. WH 8102


1137
gl_27528494
Saccharomyces kudriavzevii


1138
gl_14718240
Tamarix pentandra


1139
gl_22536365
Streptococcus agalactiae 2603V/R


1140
gl_17988302
Brucella melitensis 16M


1141
gl_20805995
Chlamydia trachomatis


1142
gl_21673243
Chlorobium tepidum TLS


1143
gl_28897692
Vibrio parahaemolyticus RIMD 2210633


1144
gl_24940188
Hydrophyllum canadense


1145
gl_20467381
Ephedra fragllis


1146
gl_22970242
Chloroflexus aurantiacus


1147
MRT3847_257209P.2
Glycine max


1148
gl_7488272
Arabidopsis thaliana


1149
gl_22993311
Enterococcus faecium


1150
gl_6017824
Rheum rhaponticum


1151
gl_13676299
Glycine max


1152
gl_15595759
Pseudomonas aeruglnosa PAO1


1153
gl_4033710
Picea mariana


1154
gl_7708254
Celastrus orbiculatus


1155
gl_15597263
Pseudomonas aeruglnosa PAO1


1156
gl_21672725
Buchnera aphidicola str. Sg (Schizaphis graminum)


1157
gl_4063562
Ruta graveolens


1158
gl_15802088
Escherichia coli 0157:H7 EDL933


1159
gl_7674396
Thermococcus kodakaraensis


1160
gl_32476155
Pirellula sp.


1161
MRT3847_32267P.3
Glycine max


1162
gl_137460
Daucus carota


1163
gl_23029594
Microbulbifer degradans 2-40


1164
gl_23126009
Nostoc punctiforme


1165
gl_16078805
Bacillus subtilis subsp. subtilis str. 168


1166
gl_29420869
Saccharomyces pastorianus


1167
gl_14718009
Cleome hassleriana


1168
gl_21684907
Mayaca fluviatilis


1169
gl_16803308
Listeria monocytogenes EGD-e


1170
MRT3847_50682P.1
Glycine max


1171
gl_21593559
Arabidopsis thaliana


1172
gl_21633371
Cressa truxillensis


1173
gl_22967579
Rhodospirillum rubrum


1174
MRT4565_57148P.3
Triticum aestivum


1175
gl_7488446
Brassica napus


1176
gl_23002842
Lactobacillus gasseri


1177
gl_27528476
Torulaspora globosa


1178
gl_15641923
Vibrio cholerae


1179
gl_17986575
Brucella melitensis 16M


1180
gl_15600873
Vibrio cholerae


1181
gl_15606540
Aquifex aeolicus VF5


1182
gl_6687483
Exacum affine


1183
gl_32404216
Neurospora crassa


1184
gl_15893809
Clostridium acetobutylicum


1185
gl_18077601
Paracryphia alticola


1186
gl_24298775
Thermotoga neapolitana


1187
MRT3847_33136P.3
Glycine max


1188
gl_11465694
Porphyra purpurea


1189
gl_1346399
Lactobacillus delbrueckii subsp. bulgaricus


1190
gl_28870880
Pseudomonas syringae pv. tomato str. DC3000


1191
gl_23130789
Prochlorococcus marinus str. MIT 9313


1192
gl_15837790
Xylella fastidiosa 9a5c


1193
gl_32410899
Neurospora crassa


1194
gl_21283347
Staphylococcus aureus subsp. aureus MW2


1195
gl_21553710
Arabidopsis thaliana


1196
gl_5001601
Schumacheria sp. SH1999


1197
gl_30693084
Arabidopsis thaliana


1198
gl_4096982
Rosa hybrid cultivar


1199
gl_21633359
Cladostigma hildebrandtioides


1200
MRT3847_198776P.3
Glycine max


1201
gl_1364102
Rumex acetosa


1202
MRT3847_249579P.2
Glycine max


1203
gl_15596999
Pseudomonas aeruglnosa PAO1


1204
MRT4565_141501P.1
Triticum aestivum


1205
gl_3850976
Alloxylon wickhamii


1206
gl_28563985
Saccharomyces bayanus


1207
gl_23028929
Microbulbifer degradans 2-40


1208
gl_33240373
Prochlorococcus marinus subsp.




marinus str. CCMP1375


1209
MRT4530_110805P.1
Oryza sativa


1210
gl_22537102
Streptococcus agalactiae 2603V/R


1211
gl_3913006
Petunia x hybrida


1212
gl_2120372
Thermotoga maritima


1213
gl_16079970
Bacillus subtilis subsp. subtilis str. 168


1214
gl_15679655
Methanothermobacter thermautotrophicus




str. Delta H


1215
MRT3847_40554P.3
Glycine max


1216
gl_29420849
Saccharomyces cerevisiae


1217
gl_28188337
Coleochaete nitellarum


1218
MRT4565_86330P.2
Triticum aestivum


1219
MRT4565_49252P.2
Triticum aestivum


1220
gl_4322325
Nepenthes alata


1221
gl_7428175
Arabidopsis thaliana


1222
MRT3847_218209P.1
Glycine max


1223
gl_7706848
Amaranthus hypochondriacus


1224
gl_12004133
Androsace sp. Anderberg s.n.


1225
gl_1808694
Sporobolus stapfianus


1226
gl_13447449
Brassica napus


1227
gl_18410104
Arabidopsis thaliana


1228
MRT4530_71260P.2
Oryza sativa


1229
gl_30022674
Bacillus cereus ATCC 14579


1230
gl_15827775
Mycobacterium leprae


1231
gl_19033085
Zygnema peliosporum


1232
gl_4063564
Schinus molle


1233
gl_464911
Pseudomonas syringae pv. syringae


1234
MRT4565_58034P.2
Triticum aestivum


1235
gl_5001597
Didymeles perrieri


1236
gl_8096650
Oryza sativa (japonica cultivar-group)


1237
gl_20805068
Oryza sativa (japonica cultivar-group)


1238
gl_7708143
Alanglum sp. Chase 2541


1239
MRT3847_271867P.1
Glycine max


1240
gl_20094453
Methanopyrus kandleri AV19


1241
gl_3023341
Equisetum arvense


1242
gl_4206606
Glycosmis pentaphylla


1243
gl_7446714
Capsicum annuum


1244
gl_22125938
Yersinia pestis KIM


1245
gl_18310620
Clostridium perfringens str. 13


1246
gl_1336803
Mesembryanthemum crystallinum


1247
gl_7708668
Symplocos costata


1248
gl_20136029
Shigella flexneri


1249
gl_3850942
Neorites kevediana


1250
gl_4995848
Thomasia solanacea


1251
gl_1667582
Arabidopsis thaliana


1252
gl_11527563
Hordeum vulgare subsp. vulgare


1253
gl_68331
Klebsiella pneumoniae


1254
MRT4530_121232P.2
Oryza sativa


1255
gl_22748323
Oryza sativa (japonica cultivar-group)


1256
gl_21956014
Vitreochlamys aulata


1257
MRT4565_27586P.3
Triticum aestivum


1258
MRT4530_100337P.1
Oryza sativa


1259
gl_15240418
Arabidopsis thaliana


1260
MRT4530_114765P.2
Oryza sativa


1261
gl_16760530
Salmonella enterica subsp. enterica serovar Typhi


1262
gl_15645143
Helicobacter pylori 26695


1263
gl_29833210
Streptomyces avermitilis MA-4680


1264
gl_15529115
Sorghum bicolor


1265
gl_4995095
Chorisia speciosa


1266
MRT4565_71673P.1
Triticum aestivum


1267
gl_6729696
Hordeum vulgare


1268
gl_15896405
Clostridium acetobutylicum


1269
gl_15082058
Solanum tuberosum


1270
gl_4995649
Keraudrenia hermanniifolia


1271
MRT4530_21638P.2
Oryza sativa


1272
gl_3417405
Saccharomyces cerevisiae


1273
MRT4565_3598P.3
Triticum aestivum


1274
gl_33241266
Prochlorococcus marinus subsp.




marinus str. CCMP1375


1275
gl_97924
Enterococcus hirae


1276
gl_23004108
Magnetospirillum magnetotacticum


1277
gl_30316239
Streptococcus pyogenes SSI-1


1278
MRT4565_16589P.2
Triticum aestivum


1279
gl_6599049
Chlamydia trachomatis


1280
gl_11279332
Populus x canescens


1281
gl_29840676
Chlamydophila caviae GPIC


1282
gl_32417454
Neurospora crassa


1283
gl_5305232
Brassica napus


1284
gl_4063530
Bixa orellana


1285
gl_26986827
Pseudomonas putida KT2440


1286
gl_32441888
Brassica oleracea var. capitata


1287
gl_4218537
Triticum sp.


1288
gl_21909656
Streptococcus pyogenes MGAS315


1289
gl_20330757
Oryza sativa (japonica cultivar-group)


1290
gl_13474176
Mesorhizobium loti


1291
gl_5616513
Fragaria x ananassa


1292
gl_16943664
Calibanus hookeri


1293
gl_5231202
Streptococcus pneumoniae


1294
MRT4530_72752P.2
Oryza sativa


1295
gl_15292855
Arabidopsis thaliana


1296
gl_20136059
Shigella dysenteriae


1297
gl_15209148
Oryza sativa


1298
gl_7708452
Irvingla malayana


1299
gl_30687843
Arabidopsis thaliana


1300
gl_20269434
Pouteria obovata


1301
gl_136253
Geobacillus stearothermophilus


1302
gl_18976554
Pyrococcus furiosus DSM 3638


1303
gl_14495542
Ipomoea nil


1304
gl_16330288
Synechocystis sp. PCC 6803


1305
gl_16800386
Listeria innocua


1306
gl_21633427
Maripa repens


1307
gl_28380199
Brucella melitensis


1308
gl_3913004
Lycopersicon esculentum


1309
gl_155435
unidentified bacterium


1310
gl_23017117
Thermobifida fusca


1311
gl_14718099
Koeberlinia spinosa


1312
gl_15674362
Streptococcus pyogenes M1 GAS


1313
gl_6017822
Phytolacca americana


1314
gl_15807615
Deinococcus radiodurans


1315
gl_14521960
Pyrococcus abyssi


1316
gl_23111662
Desulfitobacterium hafniense


1317
gl_15643288
Thermotoga maritima


1318
MRT3847_269768P.1
Glycine max


1319
gl_23308892
Corynebacterium glutamicum ATCC 13032


1320
gl_4063560
Rhus copallina


1321
gl_7708311
Hydnocarpus heterophylla


1322
MRT4565_24270P.3
Triticum aestivum


1323
MRT3847_233522P.2
Glycine max


1324
MRT4530_87659P.1
Oryza sativa


1325
gl_15596894
Pseudomonas aeruglnosa PAO1


1326
gl_25028847
Corynebacterium efficiens YS-314


1327
gl_24379392
Streptococcus mutans UA159


1328
gl_11133033
Lactobacillus leichmannii


1329
MRT4565_19576P.3
Triticum aestivum


1330
gl_24940194
Lithodora diffusa


1331
gl_16610205
Physcomitrella patens


1332
MRT3847_212021P.2
Glycine max


1333
gl_6970411
Rosa rugosa


1334
gl_8745072
Betula pendula


1335
gl_16122616
Yersinia pestis CO92


1336
gl_7708684
Thesium humile


1337
gl_14718007
Clarkia xantiana


1338
gl_7708474
Lavandula bipinnata


1339
gl_14718107
Lepuropetalon spathulatum


1340
gl_16444949
Asperglllus oryzae


1341
gl_27363511
Vibrio vulnificus CMCP6


1342
gl_24559828
Bradyrhizobium japonicum


1343
gl_848999
Petunia integrifolia subsp. inflata


1344
gl_13489165
Oryza sativa (japonica cultivar-group)


1345
gl_6273581
Oenococcus oeni


1346
gl_6467949
Persoonia katerae


1347
gl_1730065
Sporosarcina psychrophila


1348
gl_23102311
Azotobacter vinelandii


1349
gl_15639417
Treponema pallidum


1350
gl_15235112
Arabidopsis thaliana


1351
gl_16077989
Bacillus subtilis subsp. subtilis str. 168


1352
gl_7674382
Buchnera aphidicola (Schlechtendalia chinensis)


1353
gl_10946499
Hevea brasiliensis


1354
gl_30468052
Cyanidioschyzon merolae


1355
gl_23002438
Lactobacillus gasseri


1356
gl_29831992
Streptomyces avermitilis MA-4680


1357
gl_21401687
Bacillus anthracis str. A2012


1358
MRT4565_53782P.2
Triticum aestivum


1359
gl_21282866
Staphylococcus aureus subsp. aureus MW2


1360
gl_27528482
Saccharomyces castellii


1361
gl_21264381
Vandenboschia davallioides


1362
gl_12004123
Coris monspeliensis


1363
gl_7447961
Gossypium hirsutum


1364
gl_22963535
Rhodopseudomonas palustris


1365
gl_28804505
Aster tripolium


1366
gl_3860313
Cicer arietinum


1367
gl_27529083
Torulaspora pretoriensis


1368
gl_4995111
Colona floribunda


1369
gl_17987158
Brucella melitensis 16M


1370
gl_25410916
Arabidopsis thaliana


1371
gl_15219234
Arabidopsis thaliana


1372
gl_5231193
Streptococcus pneumoniae


1373
gl_7487385
Arabidopsis thaliana


1374
gl_3913007
Nicotiana tabacum


1375
gl_407635
Mycoplasma genitalium


1376
gl_27529079
Zygosaccharomyces bisporus


1377
gl_27380054
Bradyrhizobium japonicum USDA 110


1378
gl_15219603
Arabidopsis thaliana


1379
gl_5001603
Eucryphia cordifolia


1380
gl_15839668
Mycobacterium tuberculosis CDC1551


1381
gl_1142616
Bacillus subtilis


1382
gl_28188335
Coleochaete scutata


1383
gl_21674017
Chlorobium tepidum TLS


1384
gl_27375757
Bradyrhizobium japonicum USDA 110


1385
MRT4565_57540P.2
Triticum aestivum


1386
gl_4322323
Nepenthes alata


1387
MRT4530_46211P.2
Oryza sativa


1388
gl_27542603
Xerophyta humilis


1389
gl_6687375
Digltalis grandiflora


1390
gl_5758878
Ensete ventricosum


1391
gl_23041315
Trichodesmium erythraeum IMS101


1392
gl_5001573
Austrobaileya scandens


1393
gl_32526541
Pennantia corymbosa


1394
gl_14718228
Sparganium americanum


1395
gl_29420855
Kluyveromyces lactis


1396
gl_15596695
Pseudomonas aeruglnosa PAO1


1397
gl_15616888
Buchnera aphidicola str. APS




(Acyrthosiphon pisum)


1398
MRT4565_140767P.1
Triticum aestivum


1399
gl_13812075
Guillardia theta


1400
gl_21633323
Calystegla macrostegla


1401
gl_23003622
Lactobacillus gasseri


1402
gl_4206604
Ptaeroxylon obliquum


1403
gl_29346709
Bacteroides thetaiotaomicron VPI-5482


1404
gl_15607423
Mycobacterium tuberculosis H37Rv


1405
gl_32487515
Oryza sativa (japonica cultivar-group)


1406
gl_20136003
Shigella boydii


1407
gl_12004135
Aeglceras corniculatum


1408
gl_2493121
Beta vulgaris


1409
gl_12229704
Halobacterium sp. NRC-1


1410
gl_15425580
Forstera bellidifolia


1411
MRT3847_218049P.2
Glycine max


1412
gl_22980706
Ralstonia metallidurans


1413
gl_2462109
Bacillus cereus


1414
gl_5758877
Dimerocostus strobilaceus


1415
gl_21667292
Adenophorus abietinus


1416
gl_24940168
Cordia macrostachya


1417
gl_18087505
Cucumis melo


1418
MRT3847_286526P.1
Glycine max


1419
gl_25287618
Arabidopsis thaliana


1420
gl_23014725
Magnetospirillum magnetotacticum


1421
gl_7708448
Ipheion dialystemon


1422
MRT3847_98076P.3
Glycine max


1423
MRT4565_130085P.1
Triticum aestivum


1424
gl_14600685
Aeropyrum pernix


1425
gl_20384957
Nitella praelonga


1426
MRT3847_29836P.3
Glycine max


1427
gl_461979
Lycopersicon esculentum


1428
gl_8517628
Maesa myrsinoides


1429
MRT3847_233523P.2
Glycine max


1430
gl_6687199
Callitriche heterophylla


1431
gl_32172455
Thermus thermophilus


1432
MRT4530_113489P.2
Oryza sativa


1433
gl_4138679
Vicia faba


1434
gl_14586373
Arabidopsis thaliana


1435
MRT4530_122939P.2
Oryza sativa


1436
gl_7488751
Medicago sativa


1437
gl_6687379
Decumaria barbara


1438
gl_12585499
Eremothecium gossypii


1439
gl_7708260
Cobaea scandens


1440
gl_13474110
Mesorhizobium loti


1441
gl_29420835
Saccharomyces cerevisiae


1442
gl_30171291
Vitis vinifera


1443
gl_7688335
Tetramerista sp. Coode 7925


1444
gl_20136057
Shigella dysenteriae


1445
gl_23133994
Synechococcus sp. WH 8102


1446
gl_4206598
Sarcomelicope simplicifolia


1447
gl_29726150
Pteridophyllum racemosum


1448
gl_18075915
Columellia oblonga


1449
gl_18400939
Arabidopsis thaliana


1450
gl_29840325
Chlamydophila caviae GPIC


1451
gl_12004111
Myrsine africana


1452
gl_4097515
Nicotiana tabacum


1453
gl_15614227
Bacillus halodurans


1454
gl_18309344
Clostridium perfringens str. 13


1455
gl_24460025
Synechococcus sp. PCC 7002


1456
gl_6689000
Proboscidea louisianica


1457
gl_6456469
Taraxacum officinale


1458
gl_27475608
Medicago truncatula


1459
gl_4584556
Beta vulgaris


1460
gl_30696138
Arabidopsis thaliana


1461
gl_21633425
Maripa glabra


1462
gl_20805971
Chlamydia trachomatis


1463
gl_2541885
Cyanidioschyzon merolae


1464
gl_14718189
Populus tremuloides


1465
MRT3847_52308P.3
Glycine max


1466
gl_22299818
Thermosynechococcus elongatus BP-1


1467
gl_6724287
Ophioglossum reticulatum


1468
gl_14718038
Durio zibethinus


1469
gl_7708191
Catalpa bignonioides


1470
gl_1706547
Hevea brasiliensis


1471
gl_400142
Hypocrea jecorina


1472
gl_30248703
Nitrosomonas europaea ATCC 19718


1473
gl_4995856
Sparrmannia ricinocarpa


1474
gl_6687737
Hydrolea ovata


1475
gl_7708491
Megacarpaea polyandra


1476
gl_7706839
Averrhoa carambola


1477
gl_22972296
Chloroflexus aurantiacus


1478
gl_13541851
Thermoplasma volcanium


1479
gl_19705057
Fusobacterium nucleatum subsp. nucleatum ATCC 25586


1480
gl_19553182
Corynebacterium glutamicum ATCC 13032


1481
gl_4103346
Cucumis sativus


1482
gl_1568513
Petunia x hybrida


1483
gl_11465848
Porphyra purpurea


1484
MRT3847_61026P.3
Glycine max


1485
gl_29827972
Streptomyces avermitilis MA-4680


1486
gl_15234470
Arabidopsis thaliana


1487
gl_7708173
Bougainvillea glabra


1488
gl_4206564
Cneorum pulverulentum


1489
MRT4530_76823P.2
Oryza sativa


1490
MRT4565_110825P.1
Triticum aestivum


1491
MRT4565_23334P.2
Triticum aestivum


1492
gl_11467528
Odontella sinensis


1493
gl_26989025
Pseudomonas putida KT2440


1494
gl_409778
Cyanidium caldarium


1495
gl_99998
Phaseolus vulgaris


1496
gl_11513797
Salmonella typhimurium


1497
gl_10953877
Hordeum vulgare subsp. vulgare


1498
gl_14587183
Hanguana malayana


1499
gl_23502927
Brucella suis 1330


1500
gl_27904521
Buchnera aphidicola str. Bp (Baizongla pistaciae)


1501
gl_21684885
Lachnocaulon anceps


1502
gl_4033432
Agrobacterium vitis


1503
gl_27447657
Lycopersicon esculentum


1504
MRT4530_147074P.1
Oryza sativa


1505
gl_15891188
Agrobacterium tumefaciens str. C58 (Cereon)


1506
gl_23108488
Novosphingobium aromaticivorans


1507
MRT4530_111094P.1
Oryza sativa


1508
gl_21593407
Arabidopsis thaliana


1509
gl_21633355
Hildebrandtia africana


1510
gl_902938
Glycine max


1511
gl_6467950
Acorus gramineus


1512
gl_7708552
Plumeria obtusa


1513
gl_24373361
Shewanella oneidensis MR-1


1514
gl_23467432
Haemophilus somnus 129PT


1515
gl_15894323
Clostridium acetobutylicum


1516
gl_12643655
Agaricus bisporus


1517
gl_5758914
Sparganium eurycarpum


1518
gl_16416748
Marsilea drummondii


1519
gl_4995761
Paramelhania decaryana


1520
gl_20385590
Vitis vinifera


1521
gl_20530741
Ipomoea batatas


1522
gl_6689111
Rhynchoglossum notonianum


1523
gl_6689410
Tagetes sp. Nickrent 3061


1524
gl_20135989
Shigella boydii


1525
gl_26190149
Physcomitrella patens


1526
gl_28898813
Vibrio parahaemolyticus RIMD 2210633


1527
gl_19745323
Streptococcus pyogenes MGAS8232


1528
gl_13620169
Capsella rubella


1529
gl_15834703
Chlamydia muridarum


1530
MRT3847_6971P.3
Glycine max


1531
gl_5830469
Medicago sativa


1532
gl_775168
Escherichia coli


1533
gl_142369
Azotobacter vinelandii


1534
gl_11498766
Archaeoglobus fulgldus DSM 4304


1535
gl_28564015
Saccharomyces bayanus


1536
MRT3847_208509P.3
Glycine max


1537
gl_27468813
Staphylococcus epidermidis ATCC 12228


1538
gl_24113065
Shigella flexneri 2a str. 301


1539
gl_2130078
Oryza sativa


1540
gl_261212
Pisum sativum


1541
gl_15901171
Streptococcus pneumoniae TIGR4


1542
gl_19033077
Cosmocladium perissum


1543
MRT4530_104183P.1
Oryza sativa


1544
gl_5001589
Kingdonia uniflora


1545
MRT4565_8769P.3
Triticum aestivum


1546
gl_7546983
Lactococcus lactis


1547
MRT3847_10488P.3
Glycine max


1548
gl_4995715
Matisia cordata


1549
gl_16124956
Caulobacter crescentus CB15


1550
gl_27887595
Fusobacterium nucleatum subsp. vincentii ATCC 49256


1551
gl_24940264
Echiochilon pauciflorum


1552
gl_4206602
Eremocitrus glauca


1553
gl_24940248
Nonea versicolor


1554
gl_24215987
Leptospira interrogans serovar lai str. 56601


1555
gl_20136089
Escherichia coli


1556
gl_4995105
Dombeya sp. Chase 273


1557
gl_8272441
Streptococcus mutans


1558
gl_10955560
Yersinia enterocolitica


1559
gl_16759429
Salmonella enterica subsp. enterica serovar Typhi


1560
gl_401322
Gossypium hirsutum


1561
gl_3777497
Hordeum vulgare subsp. vulgare


1562
gl_14194485
Galdieria sulphuraria


1563
MRT4565_26535P.2
Triticum aestivum


1564
gl_729238
Ralstonia eutropha


1565
gl_27435896
Saglttaria latifolia


1566
gl_32441504
Agrocybe aegerita


1567
MRT4530_81439P.1
Oryza sativa


1568
gl_15901640
Streptococcus pneumoniae TIGR4


1569
MRT3847_42675P.2
Glycine max


1570
MRT3847_24864P.2
Glycine max


1571
gl_3169287
Gossypium hirsutum


1572
gl_6324923
Saccharomyces cerevisiae


1573
gl_2493099
Haloferax volcanii


1574
gl_22983077
Burkholderia fungorum


1575
gl_147276
Escherichia coli


1576
MRT4530_27060P.2
Oryza sativa


1577
gl_27804365
Chrysanthemum x morifolium


1578
gl_16127677
Caulobacter crescentus CB15


1579
MRT3847_33513P.3
Glycine max


1580
gl_3212365
Salmonella typhimurium


1581
MRT4565_38061P.3
Triticum aestivum


1582
gl_32409603
Neurospora crassa


1583
gl_15924664
Staphylococcus aureus subsp. aureus Mu50


1584
gl_21684909
Pharus parvifolius


1585
gl_23501986
Brucella suis 1330


1586
gl_20384955
Chara rusbyana


1587
gl_15835199
Chlamydia muridarum


1588
gl_3850926
Isopogon buxifolius


1589
gl_12004137
Lysimachia maxima


1590
MRT4530_146073P.1
Oryza sativa


1591
gl_27804891
Myxococcus xanthus


1592
gl_13540883
Thermoplasma volcanium


1593
gl_7708468
Lactoris fernandeziana


1594
gl_15645984
Helicobacter pylori 26695


1595
gl_15618021
Chlamydophila pneumoniae CWL029


1596
gl_29134857
Hordeum vulgare subsp. vulgare


1597
gl_30021917
Bacillus cereus ATCC 14579


1598
gl_4995858
Tilia platyphyllos


1599
gl_27528478
Saccharomyces exiguus


1600
gl_2493120
Acetabularia acetabulum


1601
MRT4530_103360P.1
Oryza sativa


1602
gl_5758911
Sansevieria socotrana


1603
gl_12005284
Amborella trichopoda


1604
gl_18077603
Polyosma cunninghamii


1605
gl_16973296
Malus x domestica


1606
MRT4530_76824P.2
Oryza sativa


1607
gl_2098385
Salmonella typhimurium


1608
gl_20269069
Sesbania rostrata


1609
MRT4565_41750P.3
Triticum aestivum


1610
gl_3668069
Lycopersicon esculentum


1611
gl_21633423
Dicranostyles mildbraediana


1612
gl_11466794
Oryza sativa (japonica cultivar-group)


1613
gl_5758910
Ruscus aculeatus


1614
MRT4530_18787P.2
Oryza sativa


1615
gl_14718095
Kiggelaria africana


1616
gl_23051710
Methanosarcina barkeri


1617
gl_7716952
Medicago truncatula


1618
MRT4530_37726P.2
Oryza sativa


1619
gl_27367975
Vibrio vulnificus CMCP6


1620
gl_5834682
Rhizobium etli


1621
gl_15231135
Arabidopsis thaliana


1622
MRT4530_14452P.1
Oryza sativa


1623
gl_21226882
Methanosarcina mazei Goe1


1624
gl_15595233
Pseudomonas aeruglnosa PAO1


1625
gl_29654073
Coxiella burnetii RSA 493


1626
gl_12004113
Grammadenia sp. Stahl 1579


1627
gl_16329464
Synechocystis sp. PCC 6803


1628
gl_20269418
Heliamphora sp. Anderberg s.n.


1629
gl_14718222
Shepherdia canadensis


1630
gl_22128591
Petunia x hybrida


1631
gl_23054147
Geobacter metallireducens


1632
gl_24528335
Emericella nidulans


1633
gl_32441506
Pleurotus ostreatus


1634
gl_29345937
Bacteroides thetaiotaomicron VPI-5482


1635
gl_7489434
Hordeum vulgare


1636
gl_23006623
Magnetospirillum magnetotacticum


1637
gl_15794478
Neisseria meningltidis Z2491


1638
gl_1791247
Chlamydia trachomatis


1639
gl_14718003
Chrysobalanus icaco


1640
gl_6017806
Itea ilicifolia


1641
gl_7489096
Nicotiana sylvestris


1642
gl_19552720
Corynebacterium glutamicum ATCC 13032


1643
MRT3847_223708P.3
Glycine max


1644
MRT4565_4354P.3
Triticum aestivum


1645
gl_4433778
Hydrogenophilus thermoluteolus


1646
gl_119006
Phaseolus vulgaris


1647
gl_15605438
Chlamydia trachomatis


1648
gl_15795149
Arabidopsis thaliana


1649
gl_67842
Spinacia oleracea


1650
gl_10953875
Hordeum vulgare subsp. vulgare


1651
gl_1041768
Acer pseudoplatanus


1652
gl_15966542
Sinorhizobium meliloti


1653
gl_22960295
Rhodobacter sphaeroides


1654
gl_16761259
Salmonella enterica subsp. enterica serovar Typhi


1655
MRT4530_87660P.1
Oryza sativa


1656
gl_24940196
Buglossoides arvensis


1657
MRT3847_37502P.1
Glycine max


1658
gl_23429044
Cocos nucifera


1659
gl_14718153
Nuphar variegata


1660
gl_18379267
Arabidopsis thaliana


1661
gl_20807894
Thermoanaerobacter tengcongensis


1662
gl_23010914
Magnetospirillum magnetotacticum


1663
gl_28212071
Clostridium tetani E88


1664
MRT4565_106072P.1
Triticum aestivum


1665
gl_23053574
Geobacter metallireducens


1666
gl_18978077
Pyrococcus furiosus DSM 3638


1667
gl_30248063
Nitrosomonas europaea ATCC 19718


1668
gl_12006484
Calystegla sepium


1669
gl_11465459
Cyanidium caldarium


1670
gl_7708256
Cinchona pubescens


1671
gl_19112558
Schizosaccharomyces pombe


1672
gl_22328782
Arabidopsis thaliana


1673
gl_15639519
Treponema pallidum


1674
gl_7573598
Populus nigra


1675
gl_136266
Thermus thermophilus


1676
gl_3915597
Arabidopsis thaliana


1677
gl_29840442
Chlamydophila caviae GPIC


1678
MRT3847_33514P.2
Glycine max


1679
gl_22991262
Enterococcus faecium


1680
gl_4206592
Lunasia amara


1681
gl_28188331
Coleochaete sp. 18b3


1682
gl_7708163
Barringtonia asiatica


1683
MRT4565_61922P.2
Triticum aestivum


1684
gl_15828707
Mycoplasma pulmonis


1685
gl_23000680
Magnetococcus sp. MC-1


1686
gl_3850958
Macadamia jansenii


1687
gl_8452718
Parnassia palustris


1688
gl_32441499
Stropharia aeruglnosa


1689
MRT3847_257212P.1
Glycine max


1690
gl_14718224
Siphonodon celastrineus


1691
MRT3847_213371P.3
Glycine max


1692
gl_15800168
Escherichia coli O157:H7 EDL933


1693
gl_15921917
Sulfolobus tokodaii


1694
gl_28565038
Kluyveromyces lactis


1695
gl_21633383
Wilsonia backhousei


1696
gl_25814821
Stigmatella aurantiaca


1697
gl_16801989
Listeria innocua


1698
gl_28194504
Medicago truncatula


1699
gl_12004127
Ardisiandra wettsteinii


1700
gl_23466988
Haemophilus somnus 129PT


1701
gl_6729356
Selenomonas ruminantium


1702
gl_25346630
Arabidopsis thaliana


1703
gl_14520674
Pyrococcus abyssi


1704
MRT4565_118038P.1
Triticum aestivum


1705
gl_7688339
Trigonobalanus verticillata


1706
gl_22298053
Thermosynechococcus elongatus BP-1


1707
gl_5911463
Agaricus bisporus


1708
gl_23131734
Prochlorococcus marinus str. MIT 9313


1709
gl_7687964
Brasenia schreberi


1710
gl_4883425
Cicer arietinum


1711
MRT4530_28144P.1
Oryza sativa


1712
gl_3913035
Trifolium repens


1713
gl_19033061
Tolypella prolifera


1714
gl_6970413
Rosa rugosa


1715
gl_22962067
Rhodopseudomonas palustris


1716
MRT3847_11589P.3
Glycine max


1717
gl_28901282
Vibrio parahaemolyticus RIMD 2210633


1718
gl_3850988
Grevillea baileyana


1719
gl_17988331
Brucella melitensis 16M


1720
gl_7708153
Antirrhinum majus


1721
gl_136261
Methanothermobacter marburgensis str. Marburg


1722
gl_32490885
Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis


1723
gl_27528472
Saccharomyces cariocanus


1724
gl_21399162
Bacillus anthracis str. A2012


1725
gl_28867399
Pseudomonas syringae pv. tomato str. DC3000


1726
gl_15425576
Escallonia rubra


1727
gl_1004320
Sulfolobus solfataricus


1728
gl_23465516
Bifidobacterium longum NCC2705


1729
gl_11357336
Arabidopsis thaliana


1730
MRT4530_104720P.2
Oryza sativa


1731
gl_20136053
Shigella dysenteriae


1732
MRT4530_120903P.1
Oryza sativa


1733
gl_22966395
Rhodospirillum rubrum


1734
gl_9799472
Mytilaria laosensis


1735
gl_23503627
Pseudocarteria mucosa


1736
gl_2500204
Corynebacterium ammoniagenes


1737
gl_6017838
Heuchera sanguinea


1738
gl_6225174
Yersinia enterocolitica


1739
MRT3847_36848P.3
Glycine max


1740
gl_30019391
Bacillus cereus ATCC 14579


1741
gl_17987729
Brucella melitensis 16M


1742
gl_12004139
Lysimachia minoricensis


1743
MRT4530_87661P.1
Oryza sativa


1744
gl_18075929
Escallonia resinosa


1745
gl_22091479
Daucus carota subsp. sativus


1746
gl_29893654
Oryza sativa (japonica cultivar-group)


1747
gl_24940180
Echium vulgare


1748
gl_30267072
Ipomoea umbraticola


1749
gl_3702409
Cichorium intybus x Cichorium endivia


1750
MRT3847_215323P.2
Glycine max


1751
gl_15965009
Sinorhizobium meliloti


1752
gl_14717924
Agave ghiesbreghtii


1753
gl_16416736
Isoetes engelmannii


1754
gl_6318287
Thermoproteus tenax


1755
gl_7708658
Stackhousia minima


1756
gl_28071332
Oryza sativa (japonica cultivar-group)


1757
gl_14574707
Nostoc punctiforme


1758
gl_17646111
Nicotiana tabacum


1759
gl_25089839
Parthenium argentatum


1760
gl_15668390
Methanocaldococcus jannaschii


1761
gl_11497535
Spinacia oleracea


1762
gl_16549060
Magnolia praecocissima


1763
gl_22265999
Hordeum vulgare


1764
gl_20269416
Halesia carolina


1765
gl_15673109
Lactococcus lactis subsp. lactis


1766
gl_6688636
Melanophylla alnifolia


1767
gl_28380210
Azospirillum brasilense


1768
MRT4530_25301P.1
Oryza sativa


1769
gl_29420861
Saccharomyces exiguus


1770
MRT3847_199862P.2
Glycine max


1771
gl_6689307
Sesamum indicum


1772
gl_4887235
Hyacinthus orientalis


1773
MRT4530_10021P.1
Oryza sativa


1774
gl_15893448
Clostridium acetobutylicum


1775
gl_32526543
Pennantia cunninghamii


1776
gl_7708268
Dicella nucifera


1777
gl_4995183
Hermannia erodioides


1778
gl_7489198
Nicotiana tabacum


1779
MRT4530_100340P.1
Oryza sativa


1780
MRT4565_9771P.3
Triticum aestivum


1781
MRT4530_19282P.1
Oryza sativa


1782
gl_15425560
Brunonia australis


1783
MRT4530_103362P.1
Oryza sativa


1784
gl_12004115
Douglasia nivalis


1785
gl_4063542
Cupaniopsis anacardioides


1786
gl_4995798
Schoutenia glomerata


1787
gl_19698536
Hordeum vulgare subsp. vulgare


1788
gl_30265620
Ipomoea cordatotriloba


1789
gl_20146358
Oryza sativa (japonica cultivar-group)


1790
gl_29349251
Bacteroides thetaiotaomicron VPI-5482


1791
gl_24940174
Cystostemon heliocharis


1792
gl_23465557
Bifidobacterium longum NCC2705


1793
gl_14718151
Nolina recurvata


1794
gl_13508042
Mycoplasma pneumoniae


1795
gl_22960297
Rhodobacter sphaeroides


1796
gl_6689231
Scrophularia californica


1797
MRT3847_53577P.3
Glycine max


1798
MRT3847_58239P.2
Glycine max


1799
gl_15236304
Arabidopsis thaliana


1800
MRT4530_140459P.1
Oryza sativa


1801
gl_6226270
Mycobacterium intracellulare


1802
gl_23050672
Methanosarcina barkeri


1803
gl_3334408
Acetabularia acetabulum


1804
gl_25409314
Halobacterium sp. NRC-1


1805
gl_30263713
Bacillus anthracis str. Ames


1806
gl_5305242
Brassica rapa


1807
gl_18407057
Arabidopsis thaliana


1808
gl_22970179
Chloroflexus aurantiacus


1809
gl_15608751
Mycobacterium tuberculosis H37Rv


1810
gl_27904899
Buchnera aphidicola str. Bp (Baizongla pistaciae)


1811
MRT4530_37728P.2
Oryza sativa


1812
MRT4530_87778P.1
Oryza sativa


1813
gl_14279306
Vitis vinifera


1814
MRT4530_14454P.2
Oryza sativa


1815
gl_6689408
Titanotrichum oldhamii


1816
gl_23137115
Cytophaga hutchinsonii


1817
gl_17227784
Nostoc sp. PCC 7120


1818
gl_21633339
Aniseia cernua


1819
gl_13473275
Mesorhizobium loti


1820
gl_7688337
Trema micrantha


1821
gl_20136019
Shigella flexneri


1822
gl_15791717
Campylobacter jejuni subsp. jejuni NCTC 11168


1823
gl_7708622
Rourea minor


1824
gl_15639499
Treponema pallidum


1825
gl_7708442
Fouquieria columnaris


1826
gl_11558464
Deutzia rubens


1827
gl_4995792
Ruizia cordata


1828
gl_6706180
Gilia capitata


1829
gl_18075917
Desfontainia spinosa


1830
gl_12655901
Brassica napus


1831
gl_15217662
Arabidopsis thaliana


1832
gl_11321164
Capsicum annuum


1833
gl_14718030
Dialypetalanthus fuscescens


1834
gl_7271955
Lilium longlflorum


1835
MRT4565_9346P.3
Triticum aestivum


1836
MRT3847_242965P.2
Glycine max


1837
gl_16760154
Salmonella enterica subsp. enterica serovar Typhi


1838
gl_21633381
Wilsonia humilis


1839
gl_19033051
Chara connivens


1840
gl_23135446
Cytophaga hutchinsonii


1841
MRT3847_36849P.2
Glycine max


1842
gl_20093841
Methanopyrus kandleri AV19


1843
gl_15608935
Mycobacterium tuberculosis H37Rv


1844
gl_460160
Saccharomyces cerevisiae


1845
gl_15227441
Arabidopsis thaliana


1846
gl_15616426
Bacillus halodurans


1847
gl_6689309
Sollya heterophylla


1848
gl_7708558
Pouteria macrantha


1849
gl_5922599
Allium macrostemon


1850
gl_13474231
Mesorhizobium loti


1851
gl_11467561
Odontella sinensis


1852
gl_29427825
Lycopersicon peruvianum


1853
gl_1469934
Nicotiana glutinosa


1854
gl_23475131
Desulfovibrio desulfuricans G20


1855
gl_11278993
Lycopersicon esculentum


1856
gl_125607
Emericella nidulans


1857
gl_6467935
Triglochin maritimum


1858
gl_21633369
Breweria rotundifolia


1859
gl_28194506
Lotus japonicus


1860
MRT3847_272723P.1
Glycine max


1861
gl_5758895
Maranta bicolor


1862
gl_15673314
Lactococcus lactis subsp. lactis


1863
gl_5031147
Trochodendron aralioides


1864
gl_3850922
Petrophile circinata


1865
gl_16332067
Synechocystis sp. PCC 6803


1866
gl_25028545
Corynebacterium efficiens YS-314


1867
gl_21684891
Paepalanthus fasciculatus


1868
gl_15602518
Pasteurella multocida


1869
gl_24940260
Phacelia grandiflora


1870
gl_22997030
Xylella fastidiosa Ann-1


1871
gl_20805999
Chlamydia trachomatis


1872
gl_15604535
Rickettsia prowazekii


1873
gl_7489412
Hordeum vulgare


1874
gl_6687660
Guettarda uruguensis


1875
gl_6687201
Cyrtandra hawaiensis


1876
gl_23052059
Methanosarcina barkeri


1877
MRT4565_52146P.2
Triticum aestivum


1878
gl_21244070
Xanthomonas axonopodis pv. citri str. 306


1879
gl_19033063
Coleochaete orbicularis


1880
gl_20808006
Thermoanaerobacter tengcongensis


1881
gl_20136051
Shigella dysenteriae


1882
gl_5758894
Liriope muscari


1883
gl_7708454
Jasminum polyanthum


1884
gl_5834521
Cichorium intybus x Cichorium endivia


1885
gl_30682129
Arabidopsis thaliana


1886
gl_16122303
Yersinia pestis CO92


1887
MRT4565_88207P.2
Triticum aestivum


1888
gl_23023390
Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293


1889
gl_6689006
Phyllonoma laticuspis


1890
gl_11465473
Cyanidium caldarium


1891
MRT3847_284135P.1
Glycine max


1892
gl_15611020
Mycobacterium tuberculosis H37Rv


1893
gl_23103063
Azotobacter vinelandii


1894
gl_322787
Solanum tuberosum


1895
gl_30351931
Brimeura amethystina


1896
gl_231596
Cuscuta reflexa


1897
gl_14626277
Oryza sativa (japonica cultivar-group)


1898
gl_20136039
Shigella flexneri


1899
MRT3847_98062P.3
Glycine max


1900
gl_24940164
Buglossoides purpurocaerulea


1901
gl_7487603
Arabidopsis thaliana


1902
gl_29828077
Streptomyces avermitilis MA-4680


1903
gl_1072952
Thermus aquaticus


1904
gl_320885
Asperglllus niger


1905
gl_20465197
Bartonella henselae


1906
gl_28971666
Burkholderia multivorans


1907
MRT4565_34024P.3
Triticum aestivum


1908
gl_4218160
Gerbera hybrid cv. [Terra Reglna]


1909
gl_136260
Lactobacillus casei


1910
gl_29375625
Enterococcus faecalis V583


1911
gl_30267058
Ipomoea nil


1912
gl_1345505
Arabidopsis thaliana


1913
gl_28373459
Salmonella typhimurium


1914
MRT4565_60761P.2
Triticum aestivum


1915
gl_16416738
Tmesipteris obliqua


1916
gl_27528498
Saccharomyces servazzii


1917
gl_4995717
Muntingla calabura


1918
gl_15827655
Mycobacterium leprae


1919
gl_27550061
Photorhabdus luminescens


1920
gl_24940266
Tiquilia plicata


1921
gl_21219540
Streptomyces coelicolor A3(2)


1922
gl_16416760
Sphagnum palustre


1923
gl_4063540
Cistus revolii


1924
MRT4565_127690P.1
Triticum aestivum


1925
gl_6687548
Erithalis fruticosa


1926
gl_17933944
Agrobacterium tumefaciens str. C58 (U. Washington)


1927
gl_15678973
Methanothermobacter thermautotrophicus str. Delta H


1928
gl_21593950
Arabidopsis thaliana


1929
gl_602764
Arabidopsis thaliana


1930
gl_14717984
Callitriche heterophylla


1931
gl_3913209
Rhodobacter sphaeroides


1932
MRT3847_61998P.3
Glycine max


1933
gl_15229157
Arabidopsis thaliana


1934
gl_7484643
Beta vulgaris


1935
gl_22331664
Arabidopsis thaliana


1936
gl_22962301
Rhodopseudomonas palustris


1937
MRT4565_25946P.3
Triticum aestivum


1938
gl_15027611
Cryptococcus neoformans var. grubii


1939
gl_5758891
Hemerocallis lilioasphodelus


1940
gl_15616928
Buchnera aphidicola str. APS (Acyrthosiphon pisum)


1941
gl_12004117
Dodecatheon meadia


1942
gl_15604890
Chlamydia trachomatis


1943
gl_4103486
Pinus radiata


1944
gl_32441496
Trametes versicolor


1945
gl_541528
Cyanidium caldarium


1946
gl_6225163
Azospirillum brasilense


1947
gl_23019267
Thermobifida fusca


1948
gl_22328179
Arabidopsis thaliana


1949
gl_11034791
Gnetum gnemon


1950
gl_21673370
Chlorobium tepidum TLS


1951
gl_23473416
Desulfovibrio desulfuricans G20


1952
gl_27904753
Buchnera aphidicola str. Bp (Baizongla pistaciae)


1953
gl_15425574
Echinops bannaticus


1954
gl_15827806
Mycobacterium leprae


1955
gl_7708560
Prostanthera ovalifolia


1956
MRT4565_113424P.1
Triticum aestivum


1957
gl_7486722
Arabidopsis thaliana


1958
gl_23469166
Pseudomonas syringae pv. syringae B728a


1959
gl_16800736
Listeria innocua


1960
gl_23128273
Nostoc punctiforme


1961
gl_18077605
Quintinia verdonii


1962
gl_16129807
Escherichia coli K12


1963
gl_21220152
Streptomyces coelicolor A3(2)


1964
gl_16973298
Malus x domestica


1965
gl_464145
Hordeum vulgare subsp. vulgare


1966
gl_28564205
Saccharomyces castellii


1967
gl_7708304
Frankenia pulverulenta


1968
gl_19881581
Oryza sativa (japonica cultivar-group)


1969
gl_5305244
Brassica oleracea


1970
gl_22990852
Enterococcus faecium


1971
gl_21553510
Arabidopsis thaliana


1972
gl_18310374
Clostridium perfringens str. 13


1973
gl_16263937
Sinorhizobium meliloti


1974
gl_5758899
Musa acuminata


1975
MRT4530_27618P.1
Oryza sativa


1976
gl_15594693
Borrelia burgdorferi B31


1977
gl_14717950
Barbeya oleoides


1978
MRT4530_19284P.1
Oryza sativa


1979
MRT3847_16287P.3
Glycine max


1980
gl_16764728
Salmonella typhimurium LT2


1981
gl_7708187
Carallia brachiata


1982
gl_4206576
Calodendrum capense


1983
gl_6687447
Donatia sp. Morgan 2142


1984
gl_15792017
Campylobacter jejuni subsp. jejuni NCTC 11168


1985
gl_6687485
Eucnide bartonioides


1986
gl_23040075
Trichodesmium erythraeum IMS101


1987
gl_29420857
Saccharomyces castellii


1988
gl_30063190
Shigella flexneri 2a str. 2457T


1989
MRT4530_8337P.2
Oryza sativa


1990
gl_15924363
Staphylococcus aureus subsp. aureus Mu50


1991
gl_14591712
Pyrococcus horikoshii


1992
gl_15422204
Acicarpha tribuloides


1993
gl_22956679
Rhodobacter sphaeroides


1994
gl_21241839
Xanthomonas axonopodis pv. citri str. 306


1995
gl_7708157
Asparagus officinalis


1996
gl_28493446
Tropheryma whipplei str. Twist


1997
gl_15608755
Mycobacterium tuberculosis H37Rv


1998
gl_19033053
Lamprothamnium macropogon


1999
gl_15921495
Sulfolobus tokodaii


2000
gl_32405352
Neurospora crassa


2001
gl_5758898
Monocostus uniflorus


2002
gl_23004962
Magnetospirillum magnetotacticum


2003
gl_30102526
Arabidopsis thaliana


2004
gl_28210965
Clostridium tetani E88


2005
gl_20808232
Thermoanaerobacter tengcongensis


2006
gl_7706835
Acorus calamus


2007
gl_23501390
Brucella suis 1330


2008
gl_15605055
Chlamydia trachomatis


2009
gl_5231205
Streptococcus pneumoniae


2010
gl_27526581
Kluyveromyces thermotolerans


2011
gl_3850984
Opisthiolepis heterophylla


2012
MRT3847_53988P.3
Glycine max


2013
gl_7708497
Metrosideros nervulosa


2014
MRT3847_161472P.3
Glycine max


2015
gl_169779
Oryza sativa


2016
gl_3122320
Mycobacterium intracellulare


2017
MRT3847_249176P.2
Glycine max


2018
gl_15239624
Arabidopsis thaliana


2019
gl_14718090
Ixonanthes icosandra


2020
gl_25956266
Lotus japonicus


2021
gl_5758897
Mayaca aubletii


2022
gl_29376200
Enterococcus faecalis V583


2023
gl_32029713
Haemophilus somnus 2336


2024
gl_15608450
Mycobacterium tuberculosis H37Rv


2025
gl_3850908
Symphionema montanum


2026
gl_29420837
Saccharomyces cerevisiae


2027
gl_12004165
Soldanella montana


2028
gl_27883932
Lycopersicon esculentum


2029
gl_15900780
Streptococcus pneumoniae TIGR4


2030
gl_15232517
Arabidopsis thaliana


2031
gl_13235340
Mesembryanthemum crystallinum


2032
gl_7708646
Sloanea berteriana


2033
gl_29833453
Streptomyces avermitilis MA-4680


2034
gl_14717920
Abatia parviflora


2035
gl_608671
Arabidopsis thaliana


2036
gl_15615725
Bacillus halodurans


2037
gl_23021827
Clostridium thermocellum ATCC 27405


2038
gl_98485
Bacillus subtilis


2039
gl_7688039
Schisandra sphenanthera


2040
MRT3847_7845P.3
Glycine max


2041
MRT3847_51771P.3
Glycine max


2042
gl_23502956
Brucella suis 1330


2043
gl_5758896
Marantochloa atropurpurea


2044
gl_20330751
Oryza sativa (japonica cultivar-group)


2045
gl_3850950
Musgravea heterophylla


2046
gl_7442732
Solanum tuberosum


2047
gl_15676021
Neisseria meningltidis MC58


2048
gl_4206578
Severinia buxifolia


2049
MRT4565_28703P.3
Triticum aestivum


2050
gl_15843516
Mycobacterium tuberculosis CDC1551


2051
gl_4995767
Pterospermum celebicum


2052
gl_22976982
Ralstonia metallidurans


2053
gl_11467696
Guillardia theta


2054
gl_21633405
Dipteropeltis poranoides


2055
gl_6599365
Pistacia vera


2056
gl_30267056
Ipomoea littoralis


2057
gl_16225426
Castanea sativa


2058
gl_15594440
Borrelia burgdorferi B31


2059
MRT3847_28679P.3
Glycine max


2060
gl_3041863
Bacillus subtilis


2061
MRT4530_10024P.1
Oryza sativa


2062
MRT4565_71415P.2
Triticum aestivum


2063
gl_14718136
Mollugo verticillata


2064
gl_5231196
Streptococcus pneumoniae


2065
gl_14718060
Galphimia gracilis


2066
gl_16079320
Bacillus subtilis subsp. subtilis str. 168


2067
MRT4565_30002P.3
Triticum aestivum


2068
gl_1296452
Bacillus subtilis


2069
gl_20136067
Shigella sonnei


2070
gl_22992679
Enterococcus faecium


2071
MRT3847_239538P.2
Glycine max


2072
gl_23473439
Desulfovibrio desulfuricans G20


2073
gl_24940256
Patagonula americana


2074
gl_22775591
Cryptococcus neoformans var. neoformans


2075
gl_22996222
Xylella fastidiosa Ann-1


2076
gl_22653795
Mesorhizobium loti


2077
gl_15982954
Prunus persica


2078
gl_6970415
Rosa rugosa


2079
gl_32441494
Auricularia auricula-judae


2080
gl_15790973
Halobacterium sp. NRC-1


2081
gl_9955873
Asperglllus oryzae


2082
gl_478405
Secale cereale


2083
gl_23115534
Desulfitobacterium hafniense


2084
MRT4565_20121P.3
Triticum aestivum


2085
gl_227786
Sorghum bicolor


2086
gl_15601464
Vibrio cholerae


2087
gl_21633399
Itzaea sericea


2088
gl_14600753
Aeropyrum pernix


2089
gl_1170699
Yarrowia lipolytica


2090
gl_28378350
Lactobacillus plantarum WCFS1


2091
MRT3847_53989P.3
Glycine max


2092
gl_20136015
Shigella boydii


2093
gl_15827659
Mycobacterium leprae


2094
MRT3847_241638P.2
Glycine max


2095
gl_28564203
Saccharomyces castellii


2096
gl_32423711
primary endosymbiont of Bemisia tabaci


2097
gl_12004119
Diospyros digyna


2098
gl_23428880
Lycopersicon esculentum


2099
gl_8134368
Myxococcus xanthus


2100
gl_21401812
Bacillus anthracis str. A2012


2101
gl_2981133
Populus balsamifera subsp. trichocarpa


2102
MRT3847_249177P.2
Glycine max


2103
MRT3847_250748P.2
Glycine max


2104
gl_28564230
Saccharomyces castellii


2105
gl_7708171
Borago officinalis


2106
gl_25402689
Arabidopsis thaliana


2107
gl_22988101
Burkholderia fungorum


2108
gl_100285
Nicotiana sp.


2109
gl_4995852
Trochetiopsis erythroxylon


2110
gl_25005270
Lactobacillus delbrueckii subsp. lactis


2111
gl_21219937
Streptomyces coelicolor A3(2)


2112
gl_24940182
Ehretia cymosa


2113
MRT3847_43842P.3
Glycine max


2114
gl_15897484
Sulfolobus solfataricus


2115
MRT4530_54700P.1
Oryza sativa


2116
gl_5231181
Streptococcus pneumoniae


2117
gl_25307910
Arabidopsis thaliana


2118
MRT4530_118075P.1
Oryza sativa


2119
gl_4995107
Eriolaena spectabilis


2120
gl_7452981
Hordeum vulgare subsp. vulgare


2121
gl_585371
Geobacillus stearothermophilus


2122
gl_26247590
Escherichia coli CFT073


2123
gl_399096
Brassica napus


2124
gl_4164408
Ricinus communis


2125
gl_32034348
Actinobacillus pleuropneumoniae serovar 1 str. 4074


2126
gl_20092951
Methanosarcina acetivorans C2A


2127
MRT4565_14604P.1
Triticum aestivum


2128
MRT3847_7846P.2
Glycine max


2129
gl_21633365
Evolvulus glomeratus


2130
gl_29420863
Saccharomyces exiguus


2131
gl_6688706
Montinia caryophyllacea


2132
gl_21633301
Merremia aegyptia


2133
gl_23023764
Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293


2134
gl_7708306
Fuchsia procumbens


2135
gl_8452779
Staphylea trifolia


2136
gl_4995790
Reevesia thyrsoidea


2137
gl_15242347
Arabidopsis thaliana


2138
gl_30684104
Arabidopsis thaliana


2139
gl_20136069
Shigella sonnei


2140
gl_5758867
Costus malortieanus


2141
gl_16129221
Escherichia coli K12


2142
gl_3023975
Borrelia burgdorferi


2143
MRT4565_118744P.1
Triticum aestivum


2144
gl_15220923
Arabidopsis thaliana


2145
MRT4530_91129P.1
Oryza sativa


2146
gl_27372782
Populus tremuloides


2147
gl_23122758
Prochlorococcus marinus subsp. pastoris str. CCMP1378


2148
gl_169777
Oryza sativa


2149
gl_4063528
Berrya javanica


2150
gl_32483423
Oryza sativa (japonica cultivar-group)


2151
gl_9663979
Oryza sativa (japonica cultivar-group)


2152
gl_21633437
Porana paniculata


2153
gl_4995846
Theobroma cacao


2154
gl_19033055
Lychnothamnus barbatus


2155
gl_20218805
Pinus pinaster


2156
gl_20805967
Chlamydia trachomatis


2157
gl_28378504
Lactobacillus plantarum WCFS1


2158
gl_15591909
Arabidopsis thaliana


2159
gl_15241190
Arabidopsis thaliana


2160
gl_3850906
Agastachys odorata


2161
gl_775193
Escherichia coli


2162
gl_17227820
Nostoc sp. PCC 7120


2163
gl_16765071
Salmonella typhimurium LT2


2164
gl_420929
Ralstonia eutropha


2165
gl_5758866
Costus barbatus


2166
gl_7708572
Rhabdodendron amazonicum


2167
gl_4063570
Tropaeolum tricolor


2168
gl_18311131
Clostridium perfringens str. 13


2169
MRT3847_272006P.1
Glycine max


2170
gl_17224922
Brassica napus


2171
MRT3847_30433P.3
Glycine max


2172
gl_7488932
Daucus carota


2173
gl_15612263
Helicobacter pylori J99


2174
gl_25297689
Arabidopsis thaliana


2175
gl_20136099
Escherichia coli


2176
gl_15791759
Campylobacter jejuni subsp. jejuni NCTC 11168


2177
gl_29420843
Saccharomyces cerevisiae


2178
gl_231541
Glycine max


2179
gl_20136035
Shigella flexneri


2180
gl_6016881
Bacillus sp.


2181
gl_7708628
Saintpaulia ionantha


2182
MRT3847_254592P.2
Glycine max


2183
gl_12004167
Theophrasta americana


2184
MRT4565_98303P.2
Triticum aestivum


2185
gl_15896652
Clostridium acetobutylicum


2186
gl_20269410
Eurya sp. Chung & Anderberg 1406


2187
gl_23021813
Clostridium thermocellum ATCC 27405


2188
gl_7708570
Reinwardtia indica


2189
gl_4063558
Pelargonium cotyledonis


2190
gl_6324844
Saccharomyces cerevisiae


2191
gl_13812343
Guillardia theta


2192
gl_24940198
Lobostemon fruticosus


2193
gl_7708197
Coffea arabica


2194
gl_27528474
Saccharomyces dairenensis


2195
gl_28898735
Vibrio parahaemolyticus RIMD 2210633


2196
gl_5881832
Gluconobacter oxydans


2197
CGPG25.pep
Arabidopsis thaliana


2198
gl_30267054
Ipomoea ramosissima


2199
gl_14718167
Pelliciera rhizophorae


2200
gl_11467655
Guillardia theta


2201
MRT3847_99459P.3
Glycine max


2202
MRT4565_90833P.2
Triticum aestivum


2203
MRT3847_36085P.3
Glycine max


2204
gl_18075919
Forgesia racemosa


2205
gl_8452620
Bulbine succulenta


2206
gl_2245390
Arabidopsis thaliana


2207
gl_6323699
Saccharomyces cerevisiae


2208
gl_30688566
Arabidopsis thaliana


2209
gl_15895897
Clostridium acetobutylicum


2210
gl_4995059
Byttneria filipes


2211
gl_4033725
Picea mariana


2212
gl_24430421
Nicotiana sylvestris


2213
MRT4530_37730P.2
Oryza sativa


2214
gl_16554463
Halobacterium sp. NRC-1


2215
gl_28380215
Buchnera aphidicola (Melaphis rhois)


2216
gl_6687278
Cephalanthus occidentalis


2217
gl_7677378
Lycopersicon esculentum


2218
gl_5031217
Liquidambar styraciflua


2219
gl_32477628
Pirellula sp.


2220
gl_27529826
Nicotiana tabacum


2221
gl_22965894
Rhodospirillum rubrum


2222
gl_20136065
Shigella sonnei


2223
gl_11322499
Hordeum vulgare


2224
gl_14717980
Cajophora acuminata


2225
gl_1934688
Tmesipteris tannensis


2226
gl_12655961
Brassica rapa


2227
gl_5001583
Cercidiphyllum japonicum


2228
MRT4565_43218P.3
Triticum aestivum


2229
gl_23037947
Oenococcus oeni MCW


2230
gl_23113700
Desulfitobacterium hafniense


2231
gl_101735
Yarrowia lipolytica


2232
gl_21282989
Staphylococcus aureus subsp. aureus MW2


2233
gl_23110381
Novosphingobium aromaticivorans


2234
gl_15838086
Xylella fastidiosa 9a5c


2235
gl_21633457
Cuscuta japonica


2236
MRT4565_14593P.3
Triticum aestivum


2237
gl_23336674
Bifidobacterium longum DJO10A


2238
gl_16943745
Polygonatum hookeri


2239
gl_24379020
Streptococcus mutans UA159


2240
gl_21684893
Flagellaria indica


2241
gl_24940262
Saccellium lanceolatum


2242
gl_14718046
Eucryphia lucida


2243
MRT4530_57792P.1
Oryza sativa


2244
MRT4565_36882P.3
Triticum aestivum


2245
gl_28564264
Saccharomyces castellii


2246
gl_21633397
Bonamia media


2247
gl_7446527
Arabidopsis thaliana


2248
gl_7708139
Aextoxicon punctatum


2249
gl_9294047
Arabidopsis thaliana


2250
gl_30060377
Oryza sativa (japonica cultivar-group)


2251
gl_13518304
Oenothera elata subsp. hookeri


2252
gl_421428
Lactococcus lactis subsp. lactis


2253
gl_20136013
Shigella boydii


2254
gl_15668279
Methanocaldococcus jannaschii


2255
MRT4530_21629P.1
Oryza sativa


2256
gl_7708642
Schima superba


2257
gl_15641182
Vibrio cholerae


2258
gl_6017792
Haloragls erecta


2259
gl_6539568
Oryza sativa (japonica cultivar-group)


2260
gl_15594957
Borrelia burgdorferi B31


2261
gl_6687120
Cajophora acuminata


2262
gl_5834523
Cichorium intybus x Cichorium endivia


2263
MRT3847_2805P.3
Glycine max


2264
gl_2981131
Populus balsamifera subsp. trichocarpa


2265
gl_19033087
Mougeotia sp. UTEX LB 758


2266
gl_2105144
Treponema denticola


2267
gl_14718013
Cneorum pulverulentum


2268
gl_6708108
Streptococcus thermophilus


2269
gl_6689008
Philadelphus lewisii


2270
gl_20467373
Ephedra intermedia


2271
gl_23019058
Thermobifida fusca


2272
gl_7708296
Ercilla volubilis


2273
gl_21684923
Xyris involucrata


2274
gl_23133806
Synechococcus sp. WH 8102


2275
gl_28198387
Xylella fastidiosa Temecula1


2276
gl_7708616
Rheum pinchonii


2277
gl_5758903
Ornithogalum caudatum


2278
MRT4565_58256P.2
Triticum aestivum


2279
gl_28380214
Vibrio metschnikovii


2280
gl_28262700
Rickettsia sibirica


2281
gl_22962442
Rhodopseudomonas palustris


2282
gl_15233656
Arabidopsis thaliana


2283
gl_30351917
Polyxena ensifolia


2284
gl_23121268
Desulfitobacterium hafniense


2285
MRT4530_114918P.2
Oryza sativa


2286
gl_7708460
Kedrostis nana


2287
gl_15673133
Lactococcus lactis subsp. lactis


2288
gl_7488483
Brassica napus


2289
gl_4995177
Grewia occidentalis


2290
gl_1272340
Capsicum annuum


2291
gl_12322049
Arabidopsis thaliana


2292
gl_27528490
Saccharomyces bayanus


2293
gl_1655938
Vibrio parahaemolyticus


2294
gl_17549667
Ralstonia solanacearum


2295
gl_15236196
Arabidopsis thaliana


2296
gl_20136103
Escherichia fergusonii


2297
gl_14718076
Humulus lupulus


2298
gl_4218162
Gerbera hybrid cv. [Terra Reglna]


2299
gl_7708662
Strychnos nux-vomica


2300
gl_25029429
Corynebacterium efficiens YS-314


2301
gl_5305260
Brassica rapa


2302
gl_3913225
Cyanidium caldarium


2303
gl_6689113
Roglera suffrutescens


2304
gl_3850980
Lomatia myricoides


2305
gl_22999862
Magnetococcus sp. MC-1


2306
gl_21230440
Xanthomonas campestris pv. campestris str. ATCC 33913


2307
gl_18309257
Clostridium perfringens str. 13


2308
gl_13357744
Ureaplasma urealyticum


2309
gl_27262354
Heliobacillus mobilis


2310
gl_7708333
Humiria balsamifera


2311
gl_29376445
Enterococcus faecalis V583


2312
gl_4063526
Ailanthus altissima


2313
gl_15835226
Chlamydia muridarum


2314
gl_28192488
Streptomyces carzinostaticus subsp. neocarzinostaticus


2315
gl_21633435
Cordisepalum phalanthopetalum


2316
gl_114516
Halobacterium salinarum


2317
gl_32412440
Neurospora crassa


2318
gl_7708674
Tetracera asiatica


2319
gl_16549078
Magnolia praecocissima


2320
gl_30265987
Coleochaete sp. 489a1


2321
gl_23465609
Bifidobacterium longum NCC2705


2322
gl_6175246
Lycopersicon esculentum


2323
gl_18650789
Phalaenopsis equestris


2324
MRT4565_16821P.3
Triticum aestivum


2325
gl_18075921
Escallonia calcottiae


2326
gl_23112455
Desulfitobacterium hafniense


2327
MRT3847_64872P.3
Glycine max


2328
gl_22297982
Thermosynechococcus elongatus BP-1


2329
gl_13366140
Hordeum vulgare subsp. vulgare


2330
gl_19033057
Nitellopsis obtusa


2331
gl_4206610
Trichilia emetica


2332
gl_24374035
Shewanella oneidensis MR-1


2333
gl_15216030
Vicia faba var. minor


2334
gl_20136097
Escherichia coli


2335
gl_20136033
Shigella flexneri


2336
gl_5001569
Hedera helix


2337
gl_11260405
Schizosaccharomyces pombe









Claims
  • 1-4. (canceled)
  • 5. Hybrid maize seed which is produced by crossing two parental maize lines where at least one of said parental maize lines is a transgenic maize line which has in its genome a recombinant DNA construct comprising at least one oil-associated gene operably linked to a promoter which is functional in said plant to transcribe said oil-associated gene.
  • 6-9. (canceled)
  • 10. A method of breeding maize comprising selecting from a breeding population of maize plants a selected maize plant with higher oil than other maize plants in said breeding population based on allelic polymorphisms associated by linkage disequilibrium to a higher seed oil-related trait, wherein the selected maize plant has 1 or more higher oil alleles linked to a maize oil marker.
  • 11. (canceled)
  • 12. A method of breeding maize according to claim 10 wherein said selected maize plant has 2 or more higher oil alleles linked to a maize oil marker.
  • 13. A method of breeding maize according to claim 10 wherein said selected maize plant has 3 or more higher oil alleles linked to a maize oil marker.
  • 14-20. (canceled)
  • 21. A method of associating a seed oil-related trait to a genotype in maize comprising (a) identifying a set of one or more seed oil level traits characterizing said maize plants, (b) selecting tissue from at least two maize plants having allelic DNA and assaying DNA or mRNA from said tissue to identify the presence or absence of a set of distinct polymorphisms comprising at least one polymorphism linked to a polymorphic maize DNA locus which comprises at least 20 consecutive nucleotides which include or are adjacent to a maize oil marker, and (c) identifying associations between said set of polymorphisms and said set of traits.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of Ser. No. 10/806,075 which claims priority to Ser. No. 10/613,520 is also a continuation in part of Ser. No. 10/389,566 which claims priority to U.S. Provisional Applications 60/365,301 filed Mar. 15, 2002, 60/391,786 filed Jun. 25, 2002 and 60/392,018 filed Jun. 26, 2002, each of which is incorporated herein by reference in its entirety.

Continuation in Parts (1)
Number Date Country
Parent 10806075 Mar 2004 US
Child 10812829 Mar 2004 US