NUCLEIC ACID PROBES

Information

  • Patent Application
  • 20230083623
  • Publication Number
    20230083623
  • Date Filed
    June 24, 2020
    4 years ago
  • Date Published
    March 16, 2023
    a year ago
Abstract
The present invention relates to a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte for fluorescence in situ hybridization (FISH) wherein the probes comprise a first nucleic acid probe comprising a first probe binding arm that is complementary to a first probe target region of a bridge probe and a first polynucleotide analyte binding arm that is complementary to a first analyte target region of a polynucleotide analyte and a second nucleic acid probe comprising a second probe binding arm that is complementary to a second probe target region of the bridge probe. The binding of the pair of probes to target polynucleotides permits the binding of the bridge probe to allow detection of the polynucleotide analyte. It also provides a probe system comprising said pair of nucleic acid probes and methods of detecting polynucleotide analytes in a sample.
Description
FIELD

The present invention relates to fluorescence in situ hybridization (FISH). In particular, the invention relates to a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte for fluorescence in situ hybridization.


BACKGROUND

As an attractive approach to spatial transcriptomics, multiplexed fluorescent in situ hybridization (FISH) allows combinatorial imaging of the transcriptome, and promises to reveal the state-to-function relationships of single cells in native tissues. A key challenge to making multiplexed FISH more broadly applicable to all tissue types is the difficulty in accurately detecting individual RNA molecules in complex tissue environments, which often suffer from low signals and tissue-dependent background. To address this limitation, much effort has been focused on signal amplification to generate brighter RNA spots. However, such approaches can only improve the signal relative to the tissue auto-fluorescence. In addition, since all probes are equally amplified, these amplification methods do not help to distinguish between real RNA spots (true positives) from non-specifically bound probes (false positives).


Off-target binding of FISH probes generates background fluorescence and spurious signals. These problems are exacerbated in multiplexed FISH because of the use of highly diverse (usually consisting of thousands of sequences) and concentrated probe solutions. One approach to solve these problems is to use customized tissue clearing approaches to remove cellular proteins and lipids, thereby reducing non-specific probe binding. However, clearing does not remove the non-specific binding of probes to non-target RNAs inside the cells and tissues. In addition, tissue clearing creates another source of technical variability from sample to sample, and it entails lengthy protocols that may require customization for each tissue type.


Accordingly, it is generally desirable to overcome or ameliorate one or more of the above mentioned difficulties.


SUMMARY

In one aspect, there is provided a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte, comprising:

    • i. a first nucleic acid probe comprising:
      • a) a first probe binding arm that is complementary to a first probe target region of a bridge probe; and
      • b) a first polynucleotide analyte binding arm that is complementary to a first analyte target region of the polynucleotide analyte, and
    • ii. a second nucleic acid probe comprising:
      • a) a second probe binding arm that is complementary to a second probe target region of the bridge probe; wherein the first probe target region is located downstream of the second probe target region on the bridge probe, and
      • b) a second polynucleotide analyte binding arm that is complementary to a second analyte target region of the polynucleotide analyte, wherein the second analyte target region is located downstream of the first analyte target region on the polynucleotide analyte,
      • wherein binding of the first polynucleotide analyte binding arm to the first analyte target region and binding of the second polynucleotide analyte binding arm to the second analyte target region permit binding of the first probe binding arm to the first probe target region and binding of the second probe binding arm to the second probe target region, thereby detecting the polynucleotide analyte.


In one aspect, there is provided a probe system as defined herein.


In one embodiment, there is provided a probe system comprising:

    • i. a first nucleic acid probe that comprises:
      • a) a first probe binding arm that is complementary to a first probe target region of a bridge probe, and
      • b) a first polynucleotide analyte binding arm that is complementary to a first analyte target region of a polynucleotide analyte; and
    • ii. a second nucleic acid probe that comprises:
      • a) a second probe binding arm that is complementary to a second probe target region of the bridge probe, wherein the first probe target region is located downstream of the second probe target region on the bridge probe, and
      • b) a second polynucleotide analyte binding arm that is complementary to a second analyte target region of the polynucleotide analyte, wherein the second analyte target region is located downstream of the first analyte target region on the polynucleotide analyte;
      • wherein binding of the first polynucleotide analyte binding arm to the first analyte target region and binding of the second polynucleotide analyte binding arm to the second analyte target region permit binding of the first probe binding arm to the first probe target region and binding of the second probe binding arm to the second probe target region, thereby detecting the polynucleotide analyte.


In one embodiment, the probe binding arm in the first and/or second nucleic acid probe comprises an identification portion for binding to a unique bridge probe. The identification portion may allow a pair (or multiple pairs) of nucleic acid probes to be recognized by a unique bridge probe. Multiple pairs of nucleic acid probes may comprise the same identification portion for binding to the same unique bridge probe, this may allow each pair of nucleic acid probes (or a set of nucleic acid probe pairs) to be distinguishable from one another in a library comprising a plurality of nucleic acid probe pairs.


In one aspect, there is provided a method of detecting a polynucleotide analyte in a sample, the method comprising:

    • (a) contacting the sample with a pair of non-naturally occurring nucleic acid probes or a probe system as defined herein; and
    • (b) detecting the polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.


In one aspect, there is provided a library for detecting two or more polynucleotide analytes in a sample; the library comprising two or more pairs of non-naturally occurring nucleic acid probes or a plurality of probe systems as defined herein,

    • wherein each pair of nucleic acid probes is specific to each polynucleotide analyte; and
    • wherein each pair of nucleic acid probes is configured to hybridize to a unique bridge probe in the presence of the polynucleotide analyte.


In one aspect, there is provided a method of detecting two or more polynucleotide analytes in a sample, the method comprising:

    • a) contacting a sample with a library as defined herein, and
    • b) detecting each polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.


The method may comprise providing a unique bridge probe that is configured to bind to a specific pair (or multiple pairs) of nucleic acid probes prior to step b). A plurality of unique bridge probes may be provided either concurrently, sequentially or combinatorically to enable detection of a plurality of polynucleotide analytes.


In one aspect, there is provided a method of detecting or visualising the expression of one or more polynucleotide analytes in a sample, the method comprising

    • a) contacting a sample with a library as defined herein, and
    • b) detecting or visualising each polynucleotide analyte based on hybridisation to a unique bridge probe.


In one aspect, there is provided a kit comprising a pair of non-naturally occurring nucleic acid probes as defined herein or a plurality of probe systems or a library as defined herein.


In one embodiment, the kit further comprises one or more bridge probes.





BRIEF DESCRIPTION OF THE FIGURES

Certain embodiments are illustrated by the following figures. It is to be understood that the following description is for the purpose of describing particular embodiments only and is not intended to be limiting with respect to the description.



FIG. 1: Optimization of the bridge sequence length (a) Split probes were designed to target a polymorphic repeat region (SEQ ID NO: 591) of the MUC5AC transcripts in A549 cell lines.





RNA FISH images of split bridge sequence length (x) 7-12 nucleotides (nt) in (b) unpaired and (c) paired split probes (orange and light blue sequences). Shorter (7-9 nucleotides) bridge lengths were able to suppress the binding of unpaired probes. However, using bridge lengths that were too short (7+7 nucleotides) resulted in poor binding even in paired probes. 9+9 nucleotides appeared to be the most optimal length.



FIG. 2: Optimization of split-FISH workflow. Split-FISH image (a) with, and (b) without amplification primers removed from the probes via restriction digestion. (c) Same as b, but at 10× contrast. (d) Normalized RNA brightness after hybridization of bridge probe for split-FISH (blue) versus conventional readout probe (red) for 1, 5, 10, 30, and 60 minutes. Additional round of dye labelled readout probe hybridization (10 minutes) is needed for split-FISH.



FIG. 3: Optimization of the split probe construct. (a-f) Six different constructs—circular, cruciform, double ‘C’, and double ‘Z’, conventional, and unpaired were tested (SEQ ID NOs; 344-353). The targeted RNA (SEQ ID NO: 591) and probe sequences are shown. (g-k) Example RNA FISH images of the tested constructs with DAPI nucleus (blue) staining. It was found that the circular construct (g) resulted in the best RNA signals, which achieved similar brightness to the conventional scheme (k). (1) In contrast, unpaired probe showed no signal (negative control). (m) Box plots of the brightness of single RNA molecules (n=1,000 randomly selected RNAs from 5 FOVs) for each of the probe constructs. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.



FIG. 4: Two channels co-localization control for the split probe construct. (a) 75 unique probes (Cy3) against non-repeat regions on MUC5AC transcripts were simultaneously hybridized with split probe constructs (Cy5)—circular, cruciform, double ‘C’, double ‘Z’, and conventional. (b-e) Sample RNA FISH images from Cy3 and Cy5 channels for the circular and double ‘Z’ constructs, with DAPI staining (blue) for cell nucleus. Double ‘Z’ Cy5 is displayed at 4× enhanced contrast compared to ‘circular’. This experiment was repeated twice with similar results. (f) Box plots of the fraction of Cy5 spots that co-localized with Cy3 spots (n=10 FOVs) for each of the probe constructs. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.



FIG. 5: Split-probes eliminate false positive signals associated with known off targets (a) Using conventional read-out, the false positive signals were also observed in the nucleus (blue). (b) Removal of the ‘rogue’ probe (red) eliminated the false positive signals in the nucleus. (c) Using split readouts, no false positive signals were observed in the nucleus despite the presence of the ‘rogue’ sequence. (d) Readout probes are unable to bind to the unpaired RECTIFICATION SHEET RULE 91 ‘rogue’ sequence.



FIG. 6. Split probe-based multiplexed FISH (split-FISH) in mammalian cell line and tissues. (a) Scheme of multiplexed split-FISH protocol. Encoding probes are hybridized first.


At each round of imaging, bridge probes are introduced and allowed to hybridize, followed by dye-labelled readout probes. After imaging, both bridge and readout probes are washed out in preparation for the next round. (b) Decoded transcript locations for the region in FIG. 8d from split-FISH in AML12 cells. Maximum intensity projections across all rounds of hybridization are shown with decoded transcript locations overlaid. Each dot denotes a single transcript.


Colors represent different genes. Length of the scale bar is 10 μm. Scatter plot of total counts per gene vs bulk RNA-sequencing FPKM values for AML12, with Log Pearson correlation in red. Scatter plot of counts per cell between split-FISH and conventional, for the 10 genes common to both schemes. The y=x line is shown in red. (c) Scatter plot of total counts per gene vs bulk RNA-sequencing FPKM values for brain, kidney, ovary, and liver tissues. Log Pearson correlation values in red. (d) Comparison of ‘blank’ counts per cell between conventional multiplexed FISH and split-FISH for mouse brain and liver tissues. Eight and seven ‘blank’ barcodes were tested for split-FISH (317 genes) and conventional (133 genes) schemes respectively. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; all data points shown in blue.



FIG. 7: Optimized split-FISH allows repeated cycles of hybridization and wash (a) Alternating hybridization and wash of the FLNA transcripts in the same A549 cells for 20 cycles. (b) Box plots of number of spots detected per cell (n=38 cells) over the 20 hybridization and wash cycles. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. (c) Box plots of RNA brightness (n=1,000 randomly selected RNAs from 4 FOVs) over the 20 hybridizations. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.



FIG. 8. Comparison of conventional and split probe approaches to multiplexed FISH. (a) Schematic comparison of the two approaches. Cellular RNA in black, encoding probes in red, dye-labelled readout probes in orange. Bridge probes (split scheme only) are in green, which bind only when two matching encoding probes are coincident within close proximity. (b to e) Unprocessed images from a single imaging round of multiplexed FISH, from AML12 cells and mouse brain slices using conventional (b and c) and split probe (d and e) schemes. Images in b, c, d and e are scaled to the same camera intensity range (30 k, orange dashed box on histogram). Inset shows full field of view, of which the main image shows a zoomed-in region (red box). The length of the scale bars are 10 μm. Histograms show distribution of raw pixel intensity from the entire field of view. X-axis of histograms are scaled to the maximum camera sensor output of 65535. Red lines show median.



FIG. 9: Tissue auto-fluorescence was negligible compared to real RNA signals (a) Representative image from split-FISH with DAPI stain (blue). (b) Post-wash images, showing no detectable RNA spots. (c) Same image as b, but at 10× contrast, to highlight tissue auto-fluorescence and un-washed single fluorescent dye molecules.



FIG. 10. Distinct transcriptomic localization patterns in four types of un-cleared mouse tissue revealed by split-FISH. Decoded transcript locations of selected genes overlaid on stitched image from one round of imaging. The length of the scale bars are 100 μm. (a) Brain tissue showing differential localization of transcripts in neuronal processes (Map4) and regions containing cell bodies (e.g. Itpr1). (b) Zonation patterns of 5 genes (Pp1, Sptbn2, Irs1, Notch3, and Osbpl8) in a kidney section. (c) Compartmentalized localization of Plxnc1, Dsp, and Slc12a7 transcripts within ovarian follicles, localization of Myh11 transcripts surrounding follicles and Rnf213 transcripts near the outer surface of the ovary (d) Localization of genes around portal veins of the liver section.



FIG. 11: Correlations between total counts and bulk RNA-sequencing FPKM values for conventional multiplexed FISH. (a) AML-12 (b) Liver (c) Brain.



FIG. 12: Additional images from 5 bits of the AML-12 dataset shown in FIG. 1. In the bottom right images, detected genes in the same region are annotated by gene name, with different colors for each gene. (a) Conventional (b) Split-FISH.



FIG. 13: Additional images from 5 bits of the mouse brain dataset shown in FIG. 1. In the bottom right images, detected genes in the same region are annotated by gene name, with different colors for each gene. (a) Conventional (b) Split-FISH.



FIG. 14: Additional images from 5 bits of the mouse liver dataset. In the bottom right images, detected genes in the same region are annotated by gene name, with different colors for each gene. (a) Conventional (b) Split-FISH.


DETAILED DESCRIPTION

The specification discloses a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte.


Provided herein is a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte, comprising

    • i. a first nucleic acid probe comprising:
      • a) a first probe binding arm that is complementary to a first probe target region of a bridge probe; and
      • b) a first polynucleotide analyte binding arm that is complementary to a first analyte target region of a polynucleotide analyte, and
    • ii. a second nucleic acid probe comprising:
      • a) a second probe binding arm that is complementary to a second probe target region of the bridge probe, wherein the first probe target region is located downstream of the second probe target region on the bridge probe, and
      • b) a second polynucleotide analyte binding arm that is complementary to a second analyte target region of the polynucleotide analyte wherein the second analyte target region is located downstream of the first analyte target region on the polynucleotide analyte,


wherein binding of the first polynucleotide analyte binding arm to the first analyte target region and binding of the second polynucleotide analyte binding arm to the second analyte target region permit binding of the first probe binding arm to the first probe target region and binding of the second probe binding arm to the second probe target region, thereby detecting the polynucleotide analyte.


In one aspect, there is provided a probe system comprising:

    • i. a first nucleic acid probe that comprises:
      • a) a first probe binding arm that is complementary to a first probe target region of a bridge probe, and
      • b) a first polynucleotide analyte binding arm that is complementary to a first analyte target region of a polynucleotide analyte; and
    • ii. a second nucleic acid probe that comprises:
      • a) a second probe binding arm that is complementary to a second probe target region of the bridge probe, wherein the first probe target region is located downstream of the second probe target region on the bridge probe, and
      • b) a second polynucleotide analyte binding arm that is complementary to a second analyte target region of the polynucleotide analyte, wherein the second analyte target region is located downstream of the first analyte target region on the polynucleotide analyte;
      • wherein binding of the first polynucleotide analyte binding arm to the first analyte target region and binding of the second polynucleotide analyte binding arm to the second analyte target region permit binding of the first probe binding arm to the first probe target region and binding of the second probe binding arm to the second probe target region, thereby detecting the polynucleotide analyte.


Without being bound by theory, the inventors have found a way to decrease non-specific background when detecting polynucleotide analytes in a cell or tissue (such as using Fluorescence in-situ hybridization). This can be done by using a set of split probes whereby a fluorescence signal is generated only when two independent hybridization events are co-localized (termed as split-FISH). In the split-FISH scheme (FIGS. 6a and 8a), a bridge sequence is shared between a pair of adjoining encoding probes. The bridge probe can be designed to be unable to hybridize with sufficient affinity to any single encoding probe. Only when a pair of encoding probes is hybridized at adjacent locations on the polynucleotide analyte (such as a target RNA) will there be sufficient complementary base pairing in close proximity to enable the bridge probe to bind efficiently. A fluorescently labeled readout probe may then hybridize to the bridge probes to generate on-target signals. By improving the probe design at the single-molecule level and designing custom-barcoded bridge sequences, split-FISH can be used for accurate transcriptomic profiling even in uncleared tissues.


The probe system may further comprise the bridge probe.


The pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte may also be referred to a pair of non-naturally occurring nucleic acid split probes.


The pair of non-naturally occurring nucleic acid probes may also be referred to as “encoding probes”.


The pair of nucleic acid probes may be a pair of single-stranded nucleic acid probes.


The “bridge probe” may hybridize to the nucleic acid probes when the first and second nucleic acid probes hybridizes with the polynucleotide analyte. The “bridge probe” may therefore detect the binding of the first and second nucleic acid probes to the polynucleotide analyte.


Each pair of nucleic acid probes may be configured to hybridize to a unique bridge probe. In one embodiment, the probe binding arm in the first and/or second nucleic acid probes comprises an identification portion for binding to a unique bridge probe. The identification portion may allow a pair (or multiple pairs) of nucleic acid probes to be recognized by a unique bridge probe. This may allow each pair of nucleic acid probes (or a set of nucleic acid probe pairs) to be distinguishable from one another in a library comprising a plurality of nucleic acid probe pairs.


Also provided herein is the use of a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte. Also provided herein is a pair of non-naturally occurring nucleic acid probes when used to detect a polynucleotide analyte


In one embodiment, the probe binding arm in the first and/or second nucleic acid probes consists of 9 or 10 nucleotides. In one embodiment, the probe binding arm in the first and/or second nucleic acid probes consists of 9 nucleotides. It was found that the length of the split bridge may affect non-specific background signal and a length of about 9 nucleotides was surprisingly able to produce a level of non-specific background signal that is virtually undetectable. For example, the first nucleic acid probe may comprise a first probe binding arm at the 3′ terminus that is complementary to and selectively hybridizes to a first probe target region of a bridge probe, wherein the first probe binding arm is ATTTAACCG (SEQ ID NO: 592) (see Table 9). The second nucleic acid probe may comprise a second probe binding arm at the 5′ terminus that is complementary to and selectively hybridizes with a second probe target region of the bridge probe, wherein the second probe binding arm is CCCATTACC (SEQ ID NO: 593). The bridge probe may have a sequence of GGTAATGGGCGGTTAAAT (SEQ ID NO: 594). The bridge probe may further comprise one or two readout sequences (e.g. ATTGTAAAGCGTGAGAAA (SEQ ID NO: 595)) that allows the bridge probe to be detected or recognised by a readout probe.


In one embodiment, the polynucleotide analyte binding arm in the first or second nucleic acid probes consists of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides. In one embodiment, the polynucleotide analyte binding arm in the first or second nucleic acid probes consists of 25 nucleotides.


In one embodiment, a linker is positioned between the probe binding arm and the polynucleotide analyte binding arm. The linker may be a short linker that is about 1 to 10 nucleotides. The linker may be a short linker of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleobases. In one embodiment, the linker is about 1 to 10, 1 to 9, 1 to 8; 1 to 7; 1 to 6; 1 to 5, 1 to 4, 1 to 3, 1 to 2 nucleobases. In one embodiment, the linker is about 1 to 5 nucleobases. In one embodiment, the linker is 1, 2, 3, 4 or 5 nucleobases. In one embodiment, the linker is 2 or 3 nucleobases. In one example, the linker is TAT (see Table 8a under Paired (circular) split probe sequences).


The term “nucleic acid” refers to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides.


As used herein, the term “nucleic acid”, and equivalent terms such as “polynucleotide”, refer to a polymeric form of nucleotides of any length, such as ribonucleotides, deoxyribonucleotides or peptide nucleic acids (PNAs), that comprise purine and pyrimidine bases, or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases. The nucleic acid may be double stranded or single stranded. References to single stranded nucleic acids include references to the sense or antisense strands. The backbone of the polynucleotide can comprise sugars and phosphate groups, as may typically be found in RNA or DNA, or modified or substituted sugar or phosphate groups. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. The sequence of nucleotides may be interrupted by non-nucleotide components. The terms nucleoside, nucleotide, deoxynucleoside and deoxynucleotide generally include complements, fragments and variants of the nucleoside, nucleotide, deoxynucleoside and deoxynucleotide, or analogs thereof.


In one embodiment, the first analyte target region is immediately adjacent to the second analyte target region. In another embodiment, the first analyte target region is spaced from the second analyte target region by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleobases.


In one embodiment, the first probe target region is immediately adjacent to the second probe target region. In another embodiment, the first probe target region is spaced from the second probe target region by no more than 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 nucleobases.


An “oligonucleotide” as used herein is a single stranded molecule which may be used in hybridization or amplification technologies. In general, an oligonucleotide may be any integer from about 15 to about 100 nucleotides in length, but may also be of greater length.


The term “probe” refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example, a nucleotide transcript. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations.


The nucleic acid probes (or nucleic acid split probes) of the present invention may be useful for detecting the presence or absence of one or more polynucleotide analytes in one or more samples known to contain or suspected of containing the polynucleotide analytes. The nucleic acid probes can also be used to quantify the amount of polynucleotide analytes within the sample. The nucleic acid probes are useful for detecting unamplified polynucleotide target in a sample such as for example RNA, MRNA, rRNA, plasmid DNA, viral DNA, bacterial DNA, and chromosomal DNA. Additionally, the nucleic acid probes may be useful in conjunction with the amplification of a polynucleotide target by well-known methods such as PCR, ligase chain reaction, Q-B replicase, strand-displacement amplification (SDA), rolling-circle amplification (RCA), nucleic acid sequence-based amplification (NASBA), and the like.


In one embodiment, the bridge probe is coupled or conjugated to a label (such as a fluorescent label). Such a bridge probe may be referred to as a readout probe. In one embodiment, the bridge probe is detected via hybridization to a secondary detection probe (or readout probe) that is conjugated to a label (such as a fluorescent label). The bridge probe may comprise a specific (or unique) tag or barcode sequences that enable it to be recognised via hybridisation to a secondary detection probe (or readout probe).


Examples of fluorescent labels include, but are not limited to, rare earth chelates (europium chelates), Texas Red, rhodamine, fluorescein, dansyl, phycocrytherin, phycocyanin, spectrum orange, spectrum green, and/or derivatives of any one or more of the above. Multiple probes used in the assay may be labeled with more than one distinguishable fluorescent or pigment color. These color differences provide a means to identify, for example, the hybridization positions of specific probes. Moreover, probes that are not separated spatially can be identified by a different color light or pigment resulting from mixing two other colors (e.g., light red+green=yellow) pigment (e.g., blue+yellow=green) or by using a filter set that passes only one color at a time. Probes can be labeled directly or indirectly with the fluorophore, utilizing conventional methodology. Additional probes and colors may be added to refine and extend this general procedure to include more genetic abnormalities or serve as internal controls.


In one embodiment, the secondary detection probe (or readout probe) hybridizes to a terminal region of the bridge probe.


In one embodiment, two secondary detection probes hybridize to both terminal regions of the bridge probe.


In one embodiment, the secondary detection probe or probes (or readout probes) hybridize to a central region of the bridge probe.


In one embodiment, the bridge probe has the same sequence as the polynucleotide analyte.


In one embodiment, the readout probe has the same sequence as the polynucleotide analyte.


In one embodiment, there is provided a pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte, the pair of nucleic acid probes comprising two anti-parallel nucleic acid strands, wherein:

    • i. a first nucleic acid strand comprises:
      • a) a readout binding arm at the 3′ terminus that is complementary to and selectively hybridizes to a first region of a readout probe; and
      • b) a polynucleotide analyte binding arm at the 5′ terminus that is complementary to and selectively hybridizes with a first region of the polynucleotide analyte, and
    • ii. a second nucleic acid strand comprises:
      • a) a readout binding arm at the 5′ terminus that is complementary to and selectively hybridizes with a second region of a readout probe; and
      • b) a polynucleotide analyte binding arm at the 3′ terminus that is complementary to and selectively hybridizes with a second region of the polynucleotide analyte positioned at the 3′ end of the first region;


wherein hybridization of the first and second nucleic acid strands with the polynucleotide analyte enables hybridization to the readout probe and detection of the polynucleotide analyte.


The term “complementary” refers to the base pairing between nucleotides or nucleic acids, such as, for instance, between the two strands of a double stranded DNA molecule or between an oligonucleotide primer and a primer binding site on a single stranded nucleic acid to be sequenced or amplified. Complementary nucleotides are, generally, A and T (or A and U), or C and G. Two single stranded RNA or DNA molecules are said to be complementary when the nucleotides of one strand, optimally aligned and compared and with appropriate nucleotide insertions or deletions, pair with at least about 80% of the nucleotides of the other strand, usually at least about 90% to 95%, and more preferably from about 98 to 100% of the nucleotides of the other strand. Alternatively, complementarity exists when an RNA or DNA strand will hybridize under selective hybridization conditions to its complement. Typically, selective hybridization will occur when there is at least about 65% complementarity over a stretch of at least 14 to 25 nucleotides, preferably at least about 75%, and more preferably at least about 90% complementarity.


As used herein, the term “hybridization” or “hybridizes” refers to the process in which two single-stranded polynucleotides bind non-covalently to form a stable double-stranded polynucleotide. The term “hybridization” may also refer to triple-stranded hybridization. The resulting (usually) double-stranded polynucleotide is a “hybrid”. The proportion of the population of polynucleotides that forms stable hybrids is referred to herein as the “degree of hybridization.”


Hybridization conditions will typically include salt concentrations of less than about 1M, more usually less than about 500 mM and less than about 200 mM. Hybridization temperatures can be as low as 5° C., but are typically greater than 22° C., more typically greater than about 30° C., and preferably in excess of about 37° C. Hybridizations are usually performed under stringent conditions, i.e. conditions under which a probe will hybridize to its target. Stringent conditions are sequence-dependent and are different under different circumstances. Longer fragments may require higher hybridization temperatures for specific hybridization. As other factors may affect the stringency of hybridization, including base composition and length of the complementary strands, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid composition) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Typically, stringent conditions include salt concentration of at least 0.01 M to no more than 1 M Na ion concentration (or other salts) at a pH 7.0 to 8.3 and a temperature of at least 25° C. For example, conditions of 5×SSPE (750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4) and a temperature of 25-30° C. are suitable for allele-specific probe hybridizations.


A “label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or non-covalently joined to a polynucleotide.


The term “labelled”, with regard to, for example, a probe, is intended to encompass direct labelling of the probe by coupling (i.e., physically linking) a detectable substance to the probe, as well as indirect labelling of the probe by reactivity with another reagent that is directly labelled. Examples of indirect labelling include detection of a bridge probe (bound to a nucleic acid pair in the presence of a polynucleotide analyte) using a fluorescently labelled secondary probe (or readout probe).


The term “polynucleotide analyte” may be any polynucleotide that may be detected or analyzed by a pair of nucleic acid probes or probe system as defined herein. The analyte may be naturally-occurring or synthetic. A polynucleotide analyte may be present in a sample obtained using any methods known in the art. In some cases, a sample may be processed before analyzing it for a polynucleotide analyte. The polynucleotide may include DNA, RNA, peptide nucleic acids, and any hybrid thereof, where the polynucleotide contains any combination of deoxyribo- and/or ribo-nucleotides. Polynucleotides may be single stranded or double stranded, or contain portions of both double stranded or single stranded sequence. Polynucleotides may contain any combination of nucleotides or bases, including, for example, uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine, isocytosine, isoguanine and any nucleotide derivative thereof. As used herein, the term “nucleotide” may include nucleotides and nucleosides, as well as nucleoside and nucleotide analogs, and modified nucleotides, including both synthetic and naturally occurring species. Polynucleotides may be any suitable polynucleotide, including but not limited to cDNA, mitochondrial DNA (mtDNA), messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), nuclear RNA (nRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), small Cajal body-specific RNA (scaRNA), microRNA (miRNA), double stranded (dsRNA), ribozyme, riboswitch or viral RNA. Polynucleotides may be contained within any suitable vector, such as a plasmid, cosmid, fragment, chromosome, or genome. The polynucleotide analyte can be a nucleic acid endogenous to the cell. As another example, the polynucleotide analyte can be a nucleic acid introduced to or expressed in the cell by infection of the cell with a pathogen, for example, a viral or bacterial genomic RNA or DNA, a plasmid, a viral or bacterial mRNA, or the like.


Genomic DNA may be obtained from naturally occurring or genetically modified organisms or from artificially or synthetically created genomes. Polynucleotide analytes comprising genomic DNA may be obtained from any source and using any methods known in the art. For example, genomic DNA may be isolated with or without amplification. Amplification may include PCR amplification, rolling circle amplification and other amplification methods. Genomic DNA may also be obtained by cloning or recombinant methods, such as those involving plasmids and artificial chromosomes or other conventional methods (see Sambrook and Russell, Molecular Cloning: A Laboratory Manual., cited supra.) Polynucleotide analytes may be isolated using other methods known in the art, for example as disclosed in Genome Analysis: A Laboratory Manual Series (Vols. I-IV) or Molecular Cloning: A Laboratory Manual. If the isolated polynucleotide analyte is an mRNA, it may be reverse transcribed into cDNA using conventional techniques, as described in Sambrook and Russell, Molecular Cloning: A Laboratory Manual., cited supra.


The term “gene” is used broadly to refer to any nucleic acid associated with a biological function. Genes typically include coding sequences and/or the regulatory sequences required for expression of such coding sequences. The term gene can apply to a specific genomic sequence, as well as to a cDNA or an mRNA encoded by that genomic sequence. Genes also include non-expressed nucleic acid segments that, for example, form recognition sequences for other proteins. Non-expressed regulatory sequences include promoters and enhancers, to which regulatory proteins such as transcription factors bind, resulting in transcription of adjacent or nearby sequences.


As used herein, the term “sample” includes tissues, cells, body fluids and isolates thereof etc., isolated from a subject, as well as tissues, cells and fluids etc. present within a subject (i.e. the sample is in vivo). Examples of samples include: whole blood, blood fluids (e.g. serum and plasm), lymph and cystic fluids, sputum, stool, tears, mucus, hair, skin, ascitic fluid, cystic fluid, urine, nipple exudates, nipple aspirates, sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, archival samples, explants and primary and/or transformed cell cultures derived from patient tissues etc.


The sample (such as a tissue or cell sample) may be fixed and permeabilized before hybridization with a pair of nucleic acid probe as defined herein, to retain the polynucleotide analytes in the cell and to permit the nucleic acid probes, bridge probes, etc. to enter the sample. The sample is optionally washed to remove materials not captured to one of the polynucleotide analytes. The sample can be washed after any of the various steps, for example, after hybridization of the nucleic acid probes to the polynucleotide analytes to remove unbound nucleic acid probes or after hybridization with the nucleic acid probes and bridge probes, before removing unbound nucleic acid probe and bridge probes.


The terms “restriction enzyme” and “restriction endonuclease” as used herein means an endonuclease enzyme that recognises and cleaves a specific sequence of DNA (recognition sequence).


In one aspect, there is provided a method of detecting a polynucleotide analyte in a sample, the method comprising:

    • (a) contacting the sample with a pair of non-naturally occurring nucleic acid probes or a probe system as defined herein; and
    • (b) detecting the polynucleotide analyte based on hybridization to a bridge probe in the presence of the polynucleotide analyte.


In one embodiment, there is provided a method of determining the level of a polynucleotide analyte in a sample, the method comprising:

    • (a) contacting the sample with a pair of non-naturally occurring nucleic acid probes or a probe system as defined herein; and
    • (b) detecting the polynucleotide analyte based on hybridization to a bridge probe in the presence of the polynucleotide analyte.


The various hybridization steps can be performed simultaneously or sequentially, in essentially any convenient order. In one embodiment, a hybridization step with the multiple pairs (or library) of nucleic acid probes is accomplished for all of the polynucleotide analytes at the same time. For example, all the nucleic acid probes can be added to the sample at once and permitted to hybridize to their corresponding targets, the sample can then be washed. Corresponding bridge probes can be hybridized to the nucleic acid probes and sample can be washed again prior to detection of the bridge probes. It will be evident that double-stranded polynucleotide analyte(s) are preferably denatured, e.g., by heat, prior to hybridization of the corresponding pair(s) of nucleic acid probes to the polynucleotide analyte.


The method may comprise the step of hybridizing a bridge probe to the pair of non-naturally occurring nucleic acid probes that are bound to the polynucleotide analyte that is present. Any unbound bridge probe may be removed or washed off.


The bridge probe may be coupled or conjugated to a label (such as a fluorescent label) that enables detection of the bridge probe and thus enables detection of the polynucleotide analyte. Such a bridge probe may also be referred to as a “readout probe”.


Alternatively, a secondary detection probe (i.e. a readout probe) may be hybridized to the bridge probe and allows the bridge probe (and the polynucleotide analyte) to be detected.


The bridge probe may comprise a specific tag or barcode sequence (such as a 6 nucleotide sequence). This may enable to bridge probe to be recognised by the secondary detection probe (or readout probe).


The method may allow the detection of the presence or levels of the polynucleotide analyte based on the signal that is detected.


The method may involve detecting one or more polynucleotide analytes. The polynucleotide analytes may be detected concurrently or sequentially.


In the case where the polynucleotide analytes are detected sequentially, this may involve multiple rounds of hybridization for each polynucleotide analyte with a specific pair of nucleic acid probes, and subsequent detection with bridge and/or readout probes. There may also be a step of washing or removal of signal (by, for example, bleaching) in between detection of each polynucleotide analyte.


In one aspect, there is provided a library for detecting two or more polynucleotide analytes in a sample; the library comprising two or more pairs of non-naturally occurring nucleic acid probes or a plurality of probe systems as defined herein, wherein each pair of nucleic acid probes is specific to each polynucleotide analyte; and wherein each pair of nucleic acid probes is configured to hybridize to a unique bridge probe in the presence of the polynucleotide analyte.


The term “unique bridge probe” may refer to the ability of a bridge probe to recognise a specific pair of nucleic acid probes. Each pair of nucleic acid probes in a library may comprise an “identification portion” (or barcode) in the probe binding arm of either the first or second nucleic acid probe (or both) for binding to a unique bridge probe. In one embodiment, the identification portion consists of 6 nucleotides (e.g. actcta). The bridge probe may have a corresponding barcode sequence that recognises the identification portion in the pair of nucleic acid probes.


More than one pair of nucleic acid probes (e.g. a set of nucleic acid probes) may comprise the same identification portion (or barcode) that allows them to bind to a unique bridge probe. A library of nucleic acid probe pairs may be grouped according to nucleic acid probe pairs that share the same identification portion (or barcode). This may allow for the combinatorial detection of polynucleotide analytes based on addition of a corresponding unique bridge probe that recognises nucleic acid probe pairs that share the same identification portion.


A library of identification portions (or barcodes) may be used in certain embodiments, e.g., containing at least 10, at least 102, at least 103, at least 104, at least 105, at least 106, at least 107, at least 108, etc. unique sequences. The unique sequences may be all individually determined (e.g., randomly), although in some cases, the identification portion may be defined as a plurality of variable portions (or “bits”). e.g., in sequence. For example, an identification portion may include at least 2, at least 3, at least 5, at least 6, at least 7, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, or at least 50 variable portions. Each of the variable portions may include at least 2, at least 3, at least 4, at least 5, at least 7, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, or more possibilities. In one embodiment, the identification portion consists of 6 variable portions.


Thus, for example, an identification portion defined with 22 variable regions and 2 unique possibilities per variable region would define a library of identification portions with 2=4,194,304 members. As another non-limiting example, an identification portion may be defined with 10 variable regions and 7 unique possibilities per variable region to define a library of identification portions with 710 members. It should be understood that a variable portion may include any suitable number of nucleotides, and different variable portions within an identification portion may independently have the same or different numbers of nucleotides. Different variable regions also may have the same or different numbers of unique possibilities. For example, a variable portion may be defined having a length of at least 2, at least 3, at least 4, at least 5, at least 7, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, or more nucleotides, and/or a maximum length of no more than 50, no more than 40, no more than 30, no more than 25, no mom than 20, no more than 15, no more than 10, no more than 7, no more than 5, no more than 4, no more than 3, or no more than 2 nucleotides. Combinations of these are also possible, e.g., a variable portion may have a length of between 5 and 50 nt, or between 15 and 25 nt, etc. A non-limiting example of a library is illustrated with identification sequences 1-1, 1-0, 2-1, 2-0, etc. through 22-1 and 22-0, which may be concatenated together (e.g., identification sequence 1- identification sequence 2-identification sequence 3- . . . —identification 22) to produce an bridge sequence (in this non-limiting example, each sequence position 1, 2, . . . 22 may have one of two possibilities, identified with −0 and −1. e.g., sequence position 1 can be either identification sequence 1-1 or 1-0, sequence position 2 can be either identification sequence 2-1 or 2-0, etc.). Similarly, according to certain embodiments, information could also be included in the absence of such sequences. For example, the same information included in the presence of one sequence (e.g. sequence 1-0), could also be determined from the absence of another sequence (e.g., sequence 1-1) Each identification sequence position may be thought of as a “bit” (e.g., 1 or 0 in this example), although it should be understood that the number of possibilities for each “bit” is not necessarily limited to only 2, unlike in a computer. In other embodiments, there may be 3 possibilities (i.e., a “trit”), 4 possibilities (i.e., a “quad-bit”), 5 possibilities, etc., instead of only 2 possibilities as in some embodiments.


The method for generating a library may comprise (a) associating barcode sequences with a plurality of oligonucleotide sequences and a plurality of codewords, wherein the codewords comprise a number of positions that is less than the number of targets, and b) grouping the pairs of nucleic acid probes based on a plurality of codewords, wherein each of the bridge probe corresponds to a specific value of a unique position within the codewords. The method may comprise exposing a sample to one of the bridge probes; imaging the sample; and repeating the exposing and imaging steps one or more times, before repeating with a different bridge probe. This process may be repeated for at least 10, 15, 20, 50, 80, 100, 500 repetitions.


In one aspect, there is provided a method of detecting two or more polynucleotide analytes in a sample, the method comprising:

    • a) contacting a sample with a library or a probe system as defined herein, and
    • b) detecting each polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.


In one embodiment, there is provided a method for combinatorial detection of two or more polynucleotide analytes in a sample, the method comprising:

    • a) contacting a sample with a library or a probe system as defined herein, and
    • b) detecting the two or more polynucleotide analytes based on hybridization to a unique bridge probe in the presence of the two or more polynucleotide analyte.


In one embodiment, there is provided a method of determining the levels of two or more polynucleotide analytes in a sample, the method comprising:

    • a) contacting a sample with a library or a probe system as defined herein, and
    • b) detecting each polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.


In one embodiment, two or more nucleic acid probe pairs may be configured to bind to the same unique bridge probe to allow the two or more polynucleotide analytes to be detected combinatorically.


The terms “detecting”, “determining”, “measuring”, “evaluating”, “assessing” and “assaying” are used interchangeably herein to refer to any form of measurement, and include determining if an element is present or not. These terms include both quantitative and/or qualitative determinations. Assessing may be relative or absolute. The method as defined herein may comprise measuring or visualising the levels of two or more polynucleotide analytes in a sample.


In one embodiment, the method comprises contacting the sample with a unique (or bar-coded) bridge probe for each polynucleotide analyte.


In one embodiment, the multiple polynucleotide analytes are detected concurrently based on hybridization to a unique bridge probe for each polynucleotide analyte.


In one embodiment, the multiple polynucleotide analytes are detected sequentially based on multiple rounds of hybridization to a unique bridge probe for each polynucleotide analyte.


In one embodiment, the method comprises detecting the unique bridge probe via hybridization to a readout probe that is conjugated to a label.


In one embodiment, the method comprises contacting the sample with a unique readout probe for each polynucleotide analyte.


The method may comprise removing any bound or unbound bridge and/or readout probe (such as by washing) in between detection of each polynucleotide analyte.


The method may comprise removing any signal from any bound or unbound readout probe in between detection of each polynucleotide analyte. This may be done by, for example, bleaching or quenching a signal.


In one aspect, there is provided a kit comprising a pair of non-naturally occurring nucleic acid probes as defined herein or a library as defined herein. The kit may further comprise bridge probes for detecting nucleic acid probes that are bound to polynucleotide analytes. The bridge probes may be labelled to enable detection or measurement of the analyte. Alternatively, the kit may further comprise readout probes that bind to the bridge probes. The kit optionally also includes instructions for detecting one or more polynucleotide analytes in a sample, one or more buffered solutions (e.g., diluent, hybridization buffer, and/or wash buffer), reference cell(s) comprising one or more of the polynucleotide analytes.


In one embodiment, there is provided a method of performing an array-based assay. Provided herein is also an array-based assay. The term “array” encompasses the term “microarray” and refers to an ordered array presented for binding to nucleic acids and the like. An “array,” includes any two-dimensional or substantially two-dimensional (as well as a three-dimensional) arrangement of spatially addressable regions bearing nucleic acids, particularly oligonucleotides or synthetic mimetics thereof, and the like.


Provided herein is a method of performing a multiplex fluorescence in situ hybridisation (FISH) assay.


Provided herein is a composition, the composition comprising a pair of non-naturally occurring nucleic acid probes as defined herein.


Essentially any type of cell that can be differentiated based on its nucleic acid content (presence, absence, expression level or copy number of one or more nucleic acids) can be detected and identified using the nucleic acid probes as defined herein to detect a suitable selection of polynucleotide analytes. The cell can, for example, be a circulating tumor cell, a virally infected cell, a fetal cell in maternal blood, a bacterial cell or other microorganism in a biological sample (e.g., blood or other body fluid), an endothelial cell, precursor endothelial cell, or myocardial cell in blood, a stem cell, or a T-cell. Rare cell types can be enriched prior to performing the methods, if necessary, by methods known in the art (e.g., lysis of red blood cells, isolation of peripheral blood mononuclear cells, further enrichment of rare target cells through magnetic-activated cell separation (MACS), etc.). The methods are optionally combined with other techniques, such as DAPI staining for nuclear DNA. It will be evident that a variety of different types of nucleic acid markers are optionally detected simultaneously by the methods and used to identify the cell. For example, a cell can be identified based on the presence or relative expression level of one nucleic acid target in the cell and the absence of another nucleic acid target from the cell; e.g., a circulating tumor cell can be identified by the presence or level of one or more markers found in the tumor cell and not found (or found at different levels) in blood cells, and its identity can be confirmed by the absence of one or more markers present in blood cells and not circulating tumor cells. The principle may be extended to using any other type of markers such as protein based markers in single cells.


Provided herein are methods of diagnosis of a disease. The disease may be cancer, or viral or bacterial infection or a genetic disorder due to the presence of a defective gene. The method may comprise detecting the presence or absence of one or more polynucleotide analytes in a sample obtained from a subject. Provided herein are also methods of treating the disease following detection of the disease.


By “subject” or “patient” is meant any single subject for which therapy is desired, including humans, cattle, horses, pigs, goats, sheep, dogs, cats, guinea pigs, rabbits, chickens, insects and so on. Also intended to be included as a subject are any subjects involved in clinical research trials not showing any clinical sign of disease, or subjects involved in epidemiological studies, or subjects used as controls.


One or more polynucleotide analytes associated with cancer can be detected using the nucleic acid probes as defined herein, e.g., those that encode over expressed or mutated polypeptide growth factors (e.g., sis), overexpressed or mutated growth factor receptors (e.g., erb-B1), over expressed or mutated signal transduction proteins such as G-proteins (e.g., Ras), or non-receptor tyrosine kinases (e.g., abl), or over expressed or mutated regulatory proteins (e.g., myc, myb, jun, fos, etc.) and/or the like. In general, cancer can often be linked to signal transduction molecules and corresponding oncogene products, e.g., nucleic acids encoding Mos, Ras, Raf, and Met; and transcriptional activators and suppressors, e.g., p53, Tat, Fos, Myc, Jun, Myb, Rel, and/or nuclear receptors, p53. For detection of circulating tumor cells (CTC), a variety of suitable polynucleotide analytes are known. For example, a multiplex panel of markers for CTC detection could include one or more of the following markers: epithelial cell-specific (e.g. CK19, Mucl, EpCAM), blood cell-specific as negative selection (e.g. CD45), tumor origin-specific (e.g. PSA, PSMA, HPN for prostate cancer and mam, mamB, her-2 for breast cancer), proliferating potential-specific (e.g. Ki-67, CEA, CA15-3), apoptosis markers (e.g. BCL-2, BCL-XL), and other markers for metastatic, genetic and epigenetic changes.


Similarly, one or more polynucleotide analytes from pathogenic or infectious organisms can be detected by the nucleic acid probes as defined herein, e.g., for infectious fungi, e.g., Aspergillus, or Candida species; bacteria, particularly E. coli, which serves a model for pathogenic bacteria (and, of course certain strains of which are pathogenic), as well as medically important bacteria such as Staphylococci (e.g., aureus), or Streptococci (e.g., pneunoniae); protozoa such as sporozoa (e.g., Plasmodia), rhizopods (e.g., Entamoeba) and flagellates (Trypanosona, Leislunania, Trichonmonas, Giardia, etc.); viruses such as (+) RNA viruses (examples include Poxviruses e.g., vaccinia; Picornaviruses. e.g., polio; Togaviruses, e.g., rubella; Flaviviruses, e.g., HCV; and Coronaviruses), (−) RNA viruses (e.g., Rhabdoviruses. e.g., VSV; Paramyxovimses. e.g., RSV; Orthomyxovimses, e.g., influenza; Bunyaviruses; and Arenaviruses), dsDNA viruses (e.g. Reoviruses), RNA to DNA viruses, i.e., Retroviruses, e.g., HIV and HTLV, and certain DNA to RNA viruses such as Hepatitis B.


Gene amplification or deletion events can be detected at a chromosomal level using the nucleic acid probes as described herein, as can altered or abnormal expression levels. Some polynucleotide analytes include oncogenes or tumor suppressor genes subject to such amplification or deletion. Exemplary nucleic acid targets include, integrin (e.g., deletion), receptor tyrosine kinases (RTKs; e.g., amplification, point mutation, translkcation, or increased expression), NF1 (e.g., deletion or point mutation), Akt (e.g., amplification, point mutation, or increased expression). PTEN (e.g., deletion or point mutation), MDM2 (e.g., amplification), SOX (e.g., amplification), RAR (e.g., amplification), CDK2 (e.g., amplification or increased expression). Cyclin D (e.g., amplification or translocation), Cyclin E (e.g., amplification), Aurora A (e.g., amplification or increased expression), P53 (e.g., deletion or point mutation), NBS1 (e.g., deletion or point mutation). Gli (e.g., amplification or translocation). Myc (e.g., amplification or point mutation). HPV-E7 (e.g., viral infection), and HPV-E6 (e.g., viral infection).


If a polynucleotide analyte is used as a reference, suitable reference nucleic acids have similarly been described in the art or can be determined. For example, a variety of genes whose copy number is stably maintained in various tumor cells is known in the art. Housekeeping genes whose transcripts can serve as references in gene expression analyses include, for example, 18S rRNA, 28S rRNA, GAPD, ACTB, and PPIB.


Provided herein is a method of detecting or visualising the expression of one or more polynucleotide analytes in a sample, the method comprising a) contacting a sample with a library as defined herein, and b) detecting or visualising the expression of each polynucleotide analyte based on hybridisation to a unique bridge probe in the presence of the one or more polynucleotide analytes.


The method may comprise detecting the presence or level of mRNA in a sample.


The sample may be a cell or tissue sample.


Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element or integer or method step or group of elements or integers or method steps but not the exclusion of any other element or integer or method steps or group of elements or integers or method steps.


As used in the subject specification, the singular forms “a”, “an” and “the” include plural aspects unless the context clearly dictates otherwise. Thus, for example, reference to “a method” includes a single method, as well as two or more methods; reference to “an agent” includes a single agent, as well as two or more agents; reference to “the disclosure” includes a single and multiple aspects taught by the disclosure; and so forth. Aspects taught and enabled herein are encompassed by the term “invention”. Any variants and derivatives contemplated herein are encompassed by “forms” of the invention.


EXAMPLES
Materials and Methods

SPLIT-FISH library design. Targeting regions (pairs of 25-nt sequences with 2-nt spacing in between the pair) were identified using a previously published algorithm. First, reference transcript sequences were downloaded from the GENCODE website (human v24 and mouse m4 respectively). A specificity table was calculated using 15-nt seed and 0.2 specificity cut-off was used. Quartet repeats (‘AAAA’, ‘TITT’, ‘GGGG’, and ‘CCCC’), KpnI restriction sites (‘GGTACC’ (SEQ ID NO: 1) and ‘CCATGG’ (SEQ ID NO: 2)), and EcoRI restriction sites (‘GAATTC’(SEQ ID NO: 3) and ‘CTTAAG’ (SEQ ID NO: 4)) were excluded from the possible target regions. Then, the right targeting region pairs were concatenated with the right bridge sequence (e.g. ‘CactctaCCTAT’ (SEQ ID NO: 5), lowercase indicates variable bases that form the 6-nt barcode, TAT is a linker between the bridge sequence and the targeting region). The left targeting region pairs were concatenated with the left bridge sequence ‘TAT ATTTAACCG’ (SEQ ID NO: 6). Finally, KpnI and EcoRI restriction sites, as well as the forward and reverse PCR primers were introduced at both ends of each side of the probes.


Removal of the PCR primers via restriction digestion is required for efficient subsequent hybridization of the bridge sequence. The list of encoding probes can be found in Table 1. The bridge sequences were flanked by readout sequences at both ends. The list of bridge sequence can be found in Table 3. The readout sequences used were ‘/5Cy5/TTACTCACGCACCCATCA’ (SEQ ID NO: 7) and ‘/5Alex750NfTTCTCACGCTTTACAAT’ (SEQ ID NO: 8). To construct the 317-genes combinatorial library, a ‘26 choose 2’ coding scheme was used. Eight of the 325 possible code-words were blanks, which are not assigned to any gene (no encoding probes), to act as negative controls that estimate the levels of the false-positive background. For each gene, 72 pairs of target regions were split into two pools. Each pool was assigned a 6-nt barcode according to the gene's ‘on’ bits. The gene codebook assignment for the 317-genes library can be found in Table 2. The conventional multiplexed FISH probe and library were designed as previously described. The conventional encoding probe library and readout sequences can be found in Table 4 and 5 respectively. The conventional codebook can be found in Table 6.


Probe amplification and preparation. Probe library (Twist Bioscience) was made using a slightly modified version of a previously published protocol. Briefly, the oligopool was first amplified by limited cycle PCR using Phusion Hot Start Flex 2× master mix (NEB, Cat: M0536L) with an annealing temperature of 66° C., followed by an overnight in vitro transcription using a high yield in vitro transcription kit (NEB, Cat: E2050S). T7 promoter sequence was introduced on the reverse primer during the PCR. Next, reverse transcription from the RNA template (ThermoFisher Cat: EP0753) was performed. The RNA was then cleaved off using alkaline hydrolysis, leaving behind ssDNA which was then purified via spin column purification (Zymo Cat: C1016-50), and eluted in nuclease free water (Ambion, Cat: AM9930). Cut primers, complementary to the EcoRI and KpnI restriction sites were then annealed to the ssDNA probes before performing a double restriction digest for 16 hours at 37° C. using high fidelity enzymes (NEB Cat: R3101M, R3142M) to cleave off the forward and reverse primers. Finally, the ssDNA probes were purified using a spin column (Zymol, Cat: C1016-50) or magnetic beads (Beckman Coulter, Cat: A63882) and eluted in nuclease-free water. Probes were dried and stored at −20° C. The primers used for PCR are f‘AACGAACGGAGGGTCATTGG’ (SEQ ID NO: 9) and ‘TAATACGACTCACTATAGGGAGGCTCTACTCGCATTAGGG’ (SEQ ID NO: 10); the primers used for restriction digestion are ‘TACTCGCATTAGGGGAATTCNN’ (SEQ ID NO: 11) and ‘NNGTACCCCAATGACCCTCCGT’ (SEQ ID NO: 12).


Cell culture sample preparation. Human foreskin fibroblasts (ATCC® CRL-2097™), human A549 (ATCC® CCL-185™), and AML12 (ATCC® CRL-2254™) cells were cultured in Dulbecco's High Glucose Modified Eagles Medium (Hyclone™ Cat: SH30022.01), supplemented with 10% fetal bovine serum (Thermofisher, Cat: 26140079). A549 cells were cultured in DMEM/F12 1:1, supplemented with 10% fetal bovine serum. Cells were grown in 6-well plates on 22 mm×22 mm No. 1 coverslips (Marienfeld-Superior Cat: 0101050) for the XLOC_010514 and MUC5AC experiments, or 40 mm diameter No. 1 coverslips (Warner Instruments Cat: 64-1500) for the FLNA experiments. Cells were grown to ˜80% confluency before fixation in 4% vol/vol paraformaldehyde (Electron Microscopy Sciences Cat: 15714) in 1× PBS for 15 minutes at room temperature. Following fixation, the samples were quenched in 0.1 M Glycine (1st BASE) for 1 minute at room temperature. The cells were then permeabilized in 70% ethanol overnight at 4° C.


Tissue sample preparation and coverslip functionalization. All animal care and experiments were carried out in accordance with Agency for Science, Technology and Research (A*STAR) Institutional Animal Care and Use Committee (IACUC) guidelines. Coverslip functionalization and tissue processing were based on a slightly modified version of a previously published protocol3. Briefly, coverslips (Warner Instruments Cat: 64-1500) were cleaned with 1 M KOH in an ultrasonic water bath for 20 minutes, rinsed thrice with MilliQ water followed by 100% methanol. Then, the coverslips were immersed in an amino-silane solution (3% vol/vol (3-Aminopropyl)triethoxysilane [MERCK Cat: 440140] 5% vol/vol acetic acid [Sigma Cat: 537020] in methanol) for 2 minutes at room temperature before rinsing thrice with MilliQ water and air dried. Functionalized coverslips can then be used immediately or stored in a dry, desiccated environment at room temperature for several weeks. Histology work was performed by the Advanced Molecular Pathology Laboratory, IMCB, A*STAR, Singapore. Briefly, C57BL/6NTac mice aged 8 weeks (InVivos) were euthanized with ketamine, the kidney, liver, brain, and ovary were quickly harvested, cut to smaller pieces, and frozen immediately in Optimal Cutting Temperature compound (Tissue-Tek O.C.T.; VWR, 25608-930), and stored at −80° C. 7 μm sections of fresh frozen tissues were cut using a cryotome onto functionalized coverslips. Sections were air-dried for 5 minutes at room temperature prior to fixation in 4% vol/vol paraformaldehyde in 1× PBS for 15 minutes. Following fixation, samples were rinsed once with 1× PBS and either permeabilized in 70% ethanol overnight at 4° C. or stored at −80° C.


XLOC_010514, MUC5AC, and FLNA experiments. After permeabilization, the cultured cells were equilibrated to room temperature before rehydration in 2× saline-sodium citrate (SSC, Axil Scientific Cat: BUF-3050-20X1L) for 5 minutes. Samples were incubated in a 10% formamide wash buffer, containing 10% deionized formamide (Ambion™ Cat: AM9342, AM9344) and 2×SSC, for 30 minutes at room temperature. The split probes were diluted in a 10% hybridization buffer to a final concentration of 20 nM per probe. The 10% hybridization buffer composed of 10% deionized formamide (vol/vol) and 10% dextran sulfate (Sigma Cat: D8906) (wt/vol) in 2×SSC. The encoding probes were stained overnight at 37° C. in a humidified chamber. Following hybridization of the encoding probes, the samples were washed in a 10% formamide wash buffer twice, incubating for 15 minutes at 37° C. per wash. The samples were then removed from the 10% formamide wash buffer and stained with either the bridge probe or the conventional readout probe. The probes were diluted to a concentration of 10 nM in 10% hybridization buffer and stained for 20 minutes at room temperature. The cells were then washed once with 10% formamide wash buffer and then twice with 2×SSC at room temperature. DAPI (Sigma Cat: D9564) was stained at a concentration of 1 μg/mL in 2×SSC for 10 minutes at room temperature. The samples were then washed twice with 2×SSC and either imaged immediately or stored for no longer than 12 hours at 4° C. in 2×SSC before imaging. The list of XLOC_010514, MUC5AC, and FLNA sequences can be found in Table 7, 8, and 9 respectively.


Multiplexed FISH experiments in tissue. Tissue samples were stained as described above, using 20% formamide concentration in the hybridization and wash buffers instead of 10%. For tissue samples, pre-hybridization was also extended to 3 hours at 37° C. in 20% formamide wash buffer. The samples were stained overnight or longer at a final probe concentration of 500 μM (2 to 3 fold higher concentration than used in the conventional experiment) in 20% hybridization buffer. After two 20% formamide washes, the samples were washed twice with 2×SSC and either imaged immediately or stored in 2×SSC for no longer than one week at 4° C. prior to imaging.


Split-FISH imaging cycle. Samples were then mounted into a flow chamber (Bioptechs Cat: FCS2), which was secured to the microscope stage. Hybridization of the bridge and readout probes in the flow chamber was done sequentially by buffer exchange controlled by a custom-built, computer-controlled fluidics system. The system consisted of three daisy-chained eight-way valves for buffer selection and a peristaltic pump providing the driving force for fluid flow, as previously described. The bridge probe solution contained 5 nM of each bridge sequence in a 10% hybridization buffer. The sample was incubated in the solution for 10 minutes at room temperature. Next, 5 nM of fluorescently labeled readout probe in 10% hybridization buffer was flowed into the chamber and incubated for another 10 minutes at room temperature. Following hybridization, the sample was washed with 10% formamide wash buffer to remove unbound probes. Imaging buffer was then flowed into the chamber before images were acquired. The imaging buffer consisted of 2×SSC, 50 mM Tris-HCl pH 8, 10% glucose, 2 mM Trolox (Sigma, Cat: 238813), 0.5 mg/ml glucose oxidase (Sigma, Cat: G2133) and 40 μg/ml catalase (Sigma, Cat: C30). To remove the fluorescent signals, the samples were washed with 40% formamide wash buffer. This hybridization and wash cycle was repeated until all the bits were imaged. With two-color imaging, 26 bits were completed in 13 cycles. 133-genes (Modified Hamming Distance 4) multiplexed FISH imaging using the conventional probes was performed as previously described. The conventional probe library correlated well with bulk RNA-seq (FIG. 11).


Imaging Setup 1. The XLOC_010514 and MUC5AC experiments were performed using a custom-built microscope that was constructed around a Nikon Ti-E body, MS-200 ASI X-Y stage, CFI Plan Apo Lambda 100×1.45 N.A, oil-immersion objective, and Andor iXon Ultra 888 EMCCD camera. DAPI was excited by 405 nm (LuxX, 405-20), and Cy5 was excited by 638 nm (LuxX, 638-100) solid-state lasers (Omicron). Z-stacks, of 400 nm apart, were obtained for each laser excitation for five different Z positions. The exposure time was 1 second.


Imaging Setup 2. The FLNA and multiplexed FISH experiments were performed using a second custom-built microscope that was constructed around a Nikon Ti2-E body, Marzhauser SCANplus IM 130×85 motorized X-Y stage, a Nikon CFI Plan Apo Lambda 60×1.4 N.A, oil-immersion objective, and an Andor Sona 4.2B-11 sCMOS camera. Focus was maintained using the Nikon Perfect Focus system and only one Z position was imaged per field of view per cycle. The DAPI channel was excited by a Coherent Obis 405 100 mW laser. The following two fiber lasers from MPB Communications: 2RU-VFL-P-1000-647-B1R (1000 mW), 2RU-VFL-P-500-750-BIR (500 mW) were used as illumination for Cy5 (647 nm) and Alexa750 (750 nm) respectively. All laser channels were combined and launched into a Newport F-SM8-C-2FCA fiber. The resulting beam was collimated and flattened using an AdlOptica 6_6 series Pi-shaper, then expanded before being sent into a 300 mm lens near the back-port of the Ti-2 to illuminate an approximately 230 um×230 um field of view. Custom multi-wavelength filters ZET488/532/592/647/750m (Chroma) and ZT488/532/592/647/750rpc-UF2 (Chroma) were used. A Finger Lakes Instrumentation HS-632 High Speed Filter Wheel, containing FF01-433/24-32, FF02-684/24-32 and FFO1-776/LP-32 emission filters (Semrock), was attached to the output port between the microscope and the camera, allowing different emission filters to be used when imaging respective channels. The exposure time was 500 ms.


Image analysis. The multiplexed FISH images were processed by a custom Python pipeline, following a previously published approach but with modified pre-processing, gene callout filtering, and mosaic-stitching procedures. Briefly, the images from each hybridization cycle were first corrected for field and chromatic distortion. Images were then registered for translation relative to a selected frame in the Cy5 channel by phase correlation using a subpixel registration algorithm provided in the Scikit-image package. For each dataset, a global bit-wise normalization was performed by pooling all pixels above the 99.9th percentile of intensity in each field of view, then taking the 50th percentile of the pooled pixel intensities as a normalization value for the bit. Images were filtered in the frequency domain using a second order 2D band-pass Butterworth filter to remove cell background (low frequency cutoff) and camera noise (high frequency cutoff). The n-dimensional vector (where n is the number of bits) for each aligned pixel is then normalized to the unit length by dividing by its magnitude (L2 norm). The same normalization was done for each code-word in the set of genes. The Euclidean distance from the pixel vector to each gene's code-word was then calculated. All pixels were filtered for maximum Euclidean distance (distance threshold) to a gene's code-word, using a threshold of 0.52 for conventional and 0.33 for split-FISH. The L2 norm of each pixel vector was used as a second filter (magnitude threshold) to remove called pixels with too low intensities. The called and filtered pixels were then grouped into connected regions (4-connected neighbourhood) for each gene. Regions with only 1 pixel were subject to a second more stringent intensity threshold. Sets of parameters which yielded both good correlation to bulk FPKM counts and high gene counts were chosen. The number of regions for each gene across all fields of view was then summed, and total counts for each gene compared to the respective FPKM values by calculating the Pearson correlation. The FPKM values from bulk RNA sequencing of mouse tissues were downloaded from the ENCODE portal (https://www.encodeproect.org/) with the following identifiers: ENCSR000BZC (ovary), ENCFF478QMU (kidney replicate 1), ENCFF638NYA (kidney replicate 2), ENCFF844MJF (liver replicate 1), ENCFF271DWG (liverreplicate 2), ENCFF653BKJ (frontal cortex replicate 1), and ENCFF703SOK (frontal cortex replicate 2). The FPKM values of AML12 cell line was obtained by performing bulk RNA sequencing in-house. Briefly, RNA was extracted using Isolate II RNA Mini Kit (Bioline), sequencing was performed at the GIS next generation sequencing platform, A*STAR, Singapore, and the sequences were analyzed using Salmon. The list of FPKM values (or their mean if the tissue has sequencing replicates) used for the Pearson correlation analysis is listed in Table 10. Cells were manually counted using the DAPI and RNA images. For the split-FISH library, 789, 4043, 7484, 13405, and 26001 cells were imaged for the AML-12, brain, liver, ovary and kidney experiments respectively. For the conventional library, 1382, 2581 and 2729 cells were imaged for the AML-12, brain and liver experiments respectively. Brightness and spot counting analysis for the MUC5AC and FLNA experiments (for FIGS. 3 and 7) were done using a multi-Gaussian-fitting algorithm, as previously described. For mosaic stitching in tissue samples, adjacent field of view (FOV) alignments were estimated using the phase correlation algorithm from Scikit-Image modified to output a value for the phase correlation peak magnitude, which is an indication of registration accuracy. A graph with FOVs as vertices and edges weighted by the negative of the phase correlation peak value was generated. The full mosaic was then stitched by calculating the minimum spanning tree (SciPy) and shifting each field of view accordingly. Overlapping regions were blended using maximum intensity projection.


Example 1

First, the split probe sequence was optimized using single-molecule FISH on MUC5AC transcripts in A549 cells (FIG. 1). It was reasoned that the length of the complementary sequences between the bridge probe and either of the encoding probes has to be shorter in length than in conventional multiplexed FISH to prevent any single and unpaired off-target encoding probe from binding to the readout probe. Thus, the length of the split bridge sequence was titrated and it was discovered that nine or fewer nucleotides is required to produce a level of non-specific background signal that is virtually undetectable (FIG. 1). Several pairing schemes were further screened, including circular, cruciform, double ‘C’, and double ‘Z’ (FIG. 3), and it was found that the circular construct produces the brightest on-target signal. It had a mean brightness that was ˜4.7 fold higher than the double ‘Z’ construct. Importantly, the circular construct scheme produced a signal intensity that is comparable to the conventional readout scheme, indicating that RNA brightness was not compromised as a result of eliminating non-specific probe binding. To further test the optimized split probe construct, single-molecule FISH was performed on the long non-coding RNA XLOC_010514, for which one of the probes is known to non-specifically bind to off-targets within the cell nuclei, which was shown in a previous study (FIG. 5). The split probe approach successfully quells the signals arising from the non-specific binding, suggesting that there is no need to remove or even know the non-specific ‘rogue’ sequence a priori.


Next, the inventors focused on optimizing the split-FISH workflow (FIG. 6a). It was found that the primers used for oligo library amplification impeded the circularization of the adjoining probe pairs, so restriction sites adjacent to primer sequences were incorporated, allowing the primers to be cleaved off by restriction digestion (FIG. 2). It was also observed that different bridge probe sequences yielded varying RNA spot brightness. Thus, several sequences were screened, and those that yielded the highest brightness within 10 minutes of hybridization time were selected. With the optimized design, the inventors were able to perform multiple iterations of hybridization and washing (at least 20 rounds) without any observable loss of FISH signal or RNA counts (FIG. 7).


The performance of split-FISH was then compared against conventional multiplexed FISH in mouse cell cultures and mouse tissue slices. To demonstrate the combinatorial labelling of RNAs, 317 genes were randomly selected as targets, and 26 barcoded bridge sequences were designed. An ‘N Choose 2’ barcoding scheme (Table 2) was designed by assigning each of the two required barcodes to half of the available encoding probes (Table 1). Compared with samples stained with the conventional probe library, samples stained with the split probe library showed decreases in non-specific background (estimated as the median value of all the raw images) that was about 16% in cultured mouse hepatocytes (AML12, FIG. 8b, c) and about 44% in brain tissue slices (FIG. 8d, e). The number of detected RNAs in AML12 correlated well with bulk RNA-seq (log Pearson correlation of 0.7) and conventional multiplexed FISH (10 common genes, log Pearson correlation of 0.97) (FIG. 5a). The average false positive rate (estimated using number of blank code-words detected per cell) in AML12 (0.13±0.015 per cell, S.E.M, n=8 replicates) was comparable to that previously reported while using conventional multiplexed FISH in a cleared U-2OS cell-line sample (0.08 ±0.03 per cell).


To demonstrate that split-FISH works robustly without any tissue-specific clearing, the same probe set for the 317 genes was used and split-FISH imaging of three additional mouse tissues-kidney, liver, and ovary was performed. The transcript counts from all the tissues also correlated strongly with bulk RNA-seq results, with log Pearson correlation values between 0.54 and 0.75 (FIG. 5b). Images taken after washing also confirmed that off-target binding is the main contributor to background signal, and tissue auto-fluorescence in our detection channels was insignificant in comparison (FIG. 9). The average false positive rates of split-FISH in brain, kidney, liver, and ovary were 0.012±0.002, 0.0042±0.0004, 0.008±0.003, and 0.03±0.009 per cell respectively (S.E.M., n=8 replicates). In fact, the false positive rates were lower by ˜44 fold (in brain tissue), and ˜19 fold (in liver tissue) compared to the conventional multiplexed FISH (Welch's t-test, p-values of 0.020 and 0.014 respectively, FIG. 5a), despite employing a barcoding scheme with lower Hamming distance. This confirmed that non-specific probe binding was contributing to false positive signals.


For each tissue type that was imaged, diverse localization patterns of the single-cell transcriptome was observed. For example, Map4 transcripts were found to be highly enriched in the neuronal processes in the frontal cortex (FIG. 10a), and Ahnak was found predominantly lining the portal veins in the liver (FIG. 10d). Distinct zonation patterns of certain transcripts (e.g., Osbp18, Pp1, and Notch 3) in the kidney tissue (FIG. 10b) suggest a spatial division of labor previously observed in liver via single molecule FISH. Some transcripts, such as Slc12a7, Plxnc1, and Dsp, were highly compartmentalized in the mouse ovary, possibly corresponding to different maturation stages of the follicles (FIG. 10c). In the mouse liver tissue, the transcripts of Son and Abcc2 were found to be highly localized to the nucleus in the cells, highlighting the power of multiplexed FISH to distinguish subcellular features in tissue samples.


In conclusion, the inventors showed accurate multiplexed FISH of 317 genes in diverse mouse tissues without requiring tissue clearing, demonstrating the prowess of split-FISH not only in simplifying tissue preparation protocols for multiplexed FISH, but also in broadening the range of accessible tissue types.









TABLE 1







317-genes split library template sequences. Template sequences include the forward 


and reverse primer sequences necessary for library amplification. The template 


sequences for 1 target gene is shown below.









Target Gene
Transcript ID
Template Sequence





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GGGTTACTGCCGGCTGCAGCAGCCA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 13)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CGGAGGCGGAGGCCGAGGAGGCAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 14)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AGCAGCTCCACGGGCTTGACCGCGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 15)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCGCATGATGCGCTCGCGCTCGGCG GAATTC CCCTAATGCGAGTAGAGCCT




SEQ ID NO: 16)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GGCTCTTTCTACCTGTCCGAGAACC GAATTC CCCTAATGCGAGTAGAGCCT




SEQ ID NO: 17)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTGTTCCTGGCGGAAGCTCGAGGTG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 18)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AGTGGCTCAGGTCTCCGAGGCTGAA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 19)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




TGGTGCCGGGCCAGCATGAGGGCGG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 20)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CGCTGCTTCTCTCGCTCCTCGCGCT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 21)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTCCCGCCGCAGCAGTCCCTGACGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 22)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCGCCGCCCGCTGGGCGCGCTCCCG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 23)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCTGCTGCCGGACTCGGCCTCTAAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 24)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CGCGCTCCCGCAGCTCCCGGGCGCG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 25)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCCGTCGTTCTCCCGCCCGCGCCAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 26)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GTCTTCGTCTCTCTCTACCTTCTCC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 27)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CCGGGCCGTGGAGCGAGCGCTCTCC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 28)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AGAGAGGCCACACCTGGCCATATCC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 29)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AATACCATGTCTGCCTTCTCAGTGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 30)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTACAGGGACCTTCCTCCTCCCAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 31)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AAGATAGAGAGGTAAGTCTGGGAGA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 32)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GGGAACAGGATAATTTGTTCACGTG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 33)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTGGAGGTTGGAGGGCTTCCATTAA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 34)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GAAGGTAGCTCTACTTCGTAAGGCA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 35)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCAGCCAAGGATCCTAAATTGTCTT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 36)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTTCAGGTATAAGTGAGAGGGTACC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 37)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GCCTCCCAACTCCAGGTCAAGAAAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 38)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CCACACACACCTTGGATGCTAAATG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 39)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GACTTTCCACCTTCCCTGGTGAAGA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 40)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CATTATCTCACACGTGACACCTAAA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 41)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTGTCTTAGAGACAACACCAGTTAT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 42)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




AATGCTCATGCTTTGAAGTAAGTAC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 43)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




GTCGGTGAGGACTAAGAAAGGTGAC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 44)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CCGTGTACGGCAACTGCACCTTCAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 45)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




ACGTCACATGTGACTCTGGATCTGA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 46)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




ATATGGTCTGGAACTTGAAGGTACC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 47)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTCTACC TAT




CTATCTGGTATGGGCTGACTCAATA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 48)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GTCTCTCCATGGGAGACTACGAACT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 49)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCTGCTGGGCTCCCTGGGCATCGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 50)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGGGCGCAGGCCTCCAGAGAGCGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 51)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCACTGCTGCAGTTTGGCCAGGCGC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 52)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAGC CGGGCGGAGGCCGGCTCCTGGCGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 53)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAGC CAGCGAAGCTCCCGAAGGCTCTCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 54)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TGCGGGCCGTGAGCGGAACCAGAGC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 55)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ATCTTGCGGTCGCGCTCGGGTACCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 56)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGCCGCTGTTCGGCGCGCACGCGCT




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 57)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGCCAGCTCCCGCCGCCGCTCCTCG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 58)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GGACCAGCTCCGCGCGCTCCCGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 59)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCGCCTCGTGGCGCGCCCGCTCGGC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 60)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GTTCCTGCAGCTGCTCGTAGTTCTC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 61)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CCTCCAAGTGCGCCTGATGCTCCCG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 62)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GTTGGCACGCTGGGCCCTCTCCTTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 63)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGCGCTTCGCCGTTCTCGAGAGAGC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 64)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAGCACGGTCTGTCCAGGGCGGCTG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 65)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CATTAATGGTTCATTAGTCTGGAGA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 66)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CTTTCTATTCCAACCCAAAGACACC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 67)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTCCCTCCGCTGCTGCTACTTAAAT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 68)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAATTCACAGTCTAGCGATAGCTTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 69)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CTAAGCAGCCTCACCGATCCAGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 70)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GGCTTCTGTCTGCAGGAGCTGGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 71)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GAACGCTGAACTAAGTCACAGAGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 72)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GAATTTAAAGAGGGAAGACTCCTTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 73)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ACAAAGGAGACCAACAAATAACACT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 74)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CATTTGTCTGTGATGCACTGCCCTG TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 75)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC AAGCTGACGGGTGGATCTGAGTGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 76)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAGCTTTCTTCTACACAAGACTCCC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 77)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAGCTCACTGACAAGGAAATTAAGG TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 78)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TCAAGGGTAGAACTTTCCATGGAGG TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 79)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ACCTGAAGTCGCTCAGTAAGGTGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 80)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CCAAGGTGACAGAAACAGGAAATAT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 81)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GAGCTTCTCAAGACTGTTCCTTCTG TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 82)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTCTTACTGTCACTAGGTCTGAATT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 83)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ATTATCCATCTACTTCAGCATCCTC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 84)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCTTCTGGCACCGGGTCCACCATAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 85)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AAGAGATCGAGGTGCAGCAACGGAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 86)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CGCCTCGTAGGCCTCGTACAGGCCG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 87)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GGCGGGCGAGGCCGGGAGGCTGCTG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 88)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CGGACTCGGAGCTCAGGGCACCGTC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 89)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GGGCCGAAGGGCGGCCCAGTGGGTT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 90)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GCTCGGCGCGCACTTGGCGGACGAT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 91)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TGCTCCCACTGGCCGTGGGCCGCGG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 92)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GCGCTCGCACTGCTGCTGCCGCCTC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 93)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CTGCTCCTGCTGCAGCTTGCGCAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 94)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GGCTCAGCTCGCGCTTCTCGCGCTG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 95)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GCGCGCGGCCCAAGCTGGCCTCCAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 96)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CTTTGCGCTCGGCCGCTTCCTTCGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 97)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CGCGCCGGGCCTTCTGCTGCACAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 98)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CTCACTGCGCTCCAGCTTGCGCCCA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 99)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




ATTTGCGGTCCAGGCTGGCATGTAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 100)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCATAGTGTGGCAACTGGACTGGAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 101)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TGGATGTGGGTAGATTGTGCCATGT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 102)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCTTGAACACAATTGTTAGAAAGAT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 103)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AGACGAGCTGTGCTTTCTTGGGAAA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 104)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TTATTATCTGTAGATGATTGTCTAA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 105)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CATCAGACACTGCCTCCACTTACGT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 106)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCCAGACTGCATTCAAGGCTGGAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 107)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AACAATAGCACAGCTCCACACAGGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 108)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AGTGATGCTTTGGATCCAAGAGACC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 109)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TAATGCCAGCAATCCATGTCACCAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 110)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AACTGAACCTTCTGACCAGGGAGCG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 111)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




AGACACACTAACACGTCTAATGCAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 112)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GAACCCACCCACTCAAGAAACAAGC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 113)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCAGAAGCAACCCAGGGACCACAAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 114)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TCGCTCGCGTGCTTCCCAGTGCTTG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 115)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CCGTCATTCTCGTTTGCACAAACTA GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 116)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




CCAAATCCTGATGGTACATTACACT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 117)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




TTACATAGTGGTTCTCTCAGTGTCT GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 118)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GGTTAGGTATAGAGATGTGAGCCAC GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 119)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAC CACTTACCC TAT




GAAAGAAACATGAACATTTCTTTAG GAATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 120)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GAACCTCGTTCTTTGTTGGAGTCCC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 121)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TGCTCCCGACGTCCACCTTCTGCCC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 122)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GGCCACGCGCATGGAGCGGCCCGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 123)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCTGCTGCAGCTGCTGCTGCTGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 124)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TCCGGCGGGAGAGCGAGTCCAGCGA




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 125)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAGC GTGCAGACGACGCCGAGCCCGCGGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 126)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAGC GCTCCACATGCTGGGCTGTCTGCGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 127)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGCTGCTCCAGCAACAGGCGCTCTT




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 128)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGCGGCCTCGCGCTCCTCCCGGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 129)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GTCGTCCCGCGCGGCGCGTTCCACC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 130)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GTTGGCCCTCTTGCCGCTCTCGGGC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 131)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC AGCTCCGCAGGCCCTCCCGCTCCTC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 132)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCCGACCCTGGAGCTCCTCTCTCCG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 133)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CTTCGGCCACCTGCGCCGCGTGCTG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 134)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GGCCTGCAGCAGCTCGCGGCGGCGG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 135)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GGGCCTCTCGCACCATGCGGTCAAA




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 136)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GCCTGGAGTTTGGTCAAGGTGACTA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 137)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTTCCAAATGGAGTAAGTCTGTAAA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 138)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CCAAGGCAGCTGTGGCAGAGAGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 139)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTCAAGTCCTGTGCAACTTGTATTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 140)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC AGAAAGCCAAGGGACTCAACTGAAA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 141)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TCACCTTCCATGGAAGCCTCATGGG TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 142)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TAAGCAAGAGTGGCCTGGGCAGGCA




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 143)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTCTAGCCCTTCAGCCACCACAGGCTAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 144)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC GAGGTACCAGAAGAGTTGATGGCCC




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 145)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ACAAACTAGGCTAACAGCTGTCCTC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 146)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TTGGTATTGCAAGTACCAAGTACCC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 147)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CGTCTCTACCCTGATTCCTTTCTTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 148)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAGTACATAGCTCCTTTCCTGGTAC TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 149)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC CAAAGGACCATAATCACATTAATTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 150)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAOC TCAGAACACCCGATTGCCTCCTCAA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 151)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAOC GCTCAGGAACCATGATCTCAGTTCT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 152)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC ACAGTACGGCGCAGGAGCCATGGAG




TAT ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 153)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTAOC TTTGTCAACATTCTGGCCTGGGCCT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 154)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TGTCCAACTTCAGTAGAGTATCCTA TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 155)





Ccdc177
ENSMUST00000073251.6
AACGAACGGAGGGTCATTGG GGTACC TATACAGGTGATTCTCCTTGCATTT TAT




ATTTAACCG AATTC CCCTAATGCGAGTAGAGCCT




(SEQ ID NO: 156)
















TABLE 2







Codebook for each gene in the 317-genes split probe library.


The binary code word assigned to each gene in the 317-genes


split probe library.








Gene
Code-word





Ccdc177
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


RP23-383N15.1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0


RP24-338G10.1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Myh11
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Xlrp1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


Col6a5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0


Abca9
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Pkdrej
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Col6a6
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Igsf10
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Tmc3
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Wdfy4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0


Scn10a
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fat4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1


Hmcn2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Zfp83l
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Map3k9
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Scn7a
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Nat8l
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Sdk1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Dnah8
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0


Dnah11
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Pappa
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Spag17
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Trabd2b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0


Prtg
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Grik3
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Gpr179
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Edaradd
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Akap6
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Adamts17
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0


Map1a
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Bend4
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Reps2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0


Armcx4
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Plcb2
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Adam19
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Galnt15
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Pygo1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0


Tnxb
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Stab2
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Ptprz1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Kif5a
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0


Dnah1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Chst2
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Cacna1c
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Col4a4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Scn4a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0


Sdk2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0


Pcdhb19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0


Myom2
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fgd5
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Kif1a
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Caskin1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Csmd1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0


Acacb
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Ksr2
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Mgam
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0


Plxnc1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Pcdhb22
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0


Impg2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1


Sptbn2
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Rnf150
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Myh7b
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Adamts2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Ppfia2
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Camk4
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Rims3
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0


Fign
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Gpr116
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Prune2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Erc2
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Abca1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0


Notch3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0


Dock10
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Ntrk2
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Synm
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1


Pkd1l3
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Mrc2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0


Foxo1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Il17rd
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Myom3
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Rassf4
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Ddr2
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Trpm6
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Spon1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Celsr1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Aldh1l2
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0


Parp14
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Daam2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0


Ago4
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Ctif
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0


Setd1b
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Pla2r1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Gpr161
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Dock6
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Gm20342
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0


Trpm2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0


Lgr6
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Fry
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Flrt2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1


Ptprm
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Srgap3
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Dock8
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Shroom3
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Sned1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0


Gm29666
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Nhsl2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0


Arhgap31
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Zfp334
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Cdyl2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Veph1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Slc38a1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0


Hspg2
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Itga4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Amer1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0


Dzank1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


F8
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0


Nid1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Atp1a2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1


Kcnq1ot1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Notch4
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Myh10
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Col4a6
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Fbxo32
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Hivep2
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Plxna3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1


Cacna1e
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0


Phlpp2
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Nup210l
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Helz2
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Mixip
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Mkl2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Prkaa2
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Nhsl1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0


Sox6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0


Szt2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0


Nfia
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Qser1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0


Elmsan1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0


Abca4
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Dennd4a
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Nr6a1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0


Crocc
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Dennd3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1


Tmed8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0


Dock5
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Irs1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Kdm7a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0


Nav2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Ppm1l
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Baz2a
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Itpr2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0


Arid1a
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Mylk
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Jrk
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Crebbp
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Dab2ip
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0


Aim1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Lrrk2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0


Zfp516
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0


Thsd7a
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Plxnd1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0


Crb2
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Dock4
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Tbc1d32
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Onecut2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0


Polr2a
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Zfyve26
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Irgq
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Cacna1a
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Alms1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Arhgef10
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Zbtb1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Dip2c
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Rttn
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Prdm15
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0


Kmt2c
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Lsm11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0


Kif13a
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Usp36
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Rnf213
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0


Spg11
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0


Dcaf5
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Cmah
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0


Trim56
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Thada
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Col7a1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Fancm
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Rprd2
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Rnf217
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Med12
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Sestd1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1


Flnc
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Itpr1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


AU022252
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Sh3pxd2b
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Rfx7
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0


Wdr7
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Brca2
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Wdr81
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0


Tnrc18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0


Ep300
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Piezo1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0


Atxn1l
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Plexd2
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Atg2b
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Nf1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0


Wdr90
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Rnf169
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Myo9a
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Ly75
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Sox11
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Kif21a
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0


Btrc
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Dock9
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Ubn1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0


Pask
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Svil
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Rapgef1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0


Nedd4l
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1


Gas2l3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0


2410089E03Rik
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Sec16a
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Dpy19l4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Ep400
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Nin
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0


Nipbl
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0


Utp14b
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0


Slc12a7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0


Akap11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0


Smg7
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Brip1
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Ythdc2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1


Rc3h1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Utrn
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Rsf1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0


Zfyve16
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


4932438A13Rik
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0


Cdc42bpb
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Trove2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0


Abcc2
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Gtf3c4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


1700020I14Rik
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0


Luzp1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Abca3
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Dicer1
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Larp1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Map4
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Ehbp1l1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0


Uhrf1bp1l
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Aspm
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Osbpl8
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Dsp
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Mysm1
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Arhgap35
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Plxna1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Ppl
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0


Eif5b
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Atr
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Psd3
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Tmem2
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Cenpe
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Als2cl
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Kntc1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Zfp26
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Tspan7
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Nvl
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Cacna2d1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Arhgef12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0


Slc4a7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1


Sart1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Brwd1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Trim33
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Letm1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Arfgef1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0


Nbeal2
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Golga4
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Zbtb41
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Cgnl1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Sbf1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Prrc2c
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Myo6
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Spag9
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Edem1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0


Heatr1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


Arhgef5
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Dynd1h1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


Ogt
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0


Macf1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Utp20
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0


Smchd1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


Pdzd8
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Polr1a
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Arhgef28
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Mki67
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1


Myo5c
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


Tjp1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Son
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Cnot1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0


Mlec
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Mllt4
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


Prpf8
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Abhd
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Myo18a
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0


Sptlc2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Ppp2ca
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Aars
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Pten
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Pik3c2a
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Slk
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Cand1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


Tnpo1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


Myof
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Flna
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Kpnb1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0


Ahnak
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0


Biank1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0


Blank2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0


Blank3
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Blank4
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


Blank5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0


Blank6
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


Blank7
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Blank8
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
















TABLE 3







Bridge sequence for each bit in the 317-genes split probe library. 


Each bridge sequence consists of three blocks (separated by spaces): a split 


probe binding block in the centre, flanked by two readout binding blocks. 


In the split probe binding block, the barcode sequences are in lowercase. 


Bridge sequences used in AML-12, kidney, frontal cortex, and liver experiments 


are shown. B1 to B13 were read out by Alexa750, and B14 to B26 were read out 


by Cy5. For ovary experiments, B1, B3, B8 to B13, B15, and B17 to B20 were 


read out by Cy5 and B2, B4 to B7, B14, B16, and B21 to B26 were 


read out by Alexa750.








Bit
Bridge sequence 





B1
ATTGTAAAGCGTGAGAAA GGgatagtgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 157)





B2
ATTGTAAAGCGTGAGAAA GGtagagtgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 158)





B3
ATTGTAAAGCGTGAGAAA GGattgaggGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 159)





B4
ATTGTAAAGCGTGAGAAA GGgtgtgggGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 160)





B5
ATTGTAAAGCGTGAGAAA GGgtaagtgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 161)





B6
ATTGTAAAGCGTGAGAAA GGtttggtgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 162)





B7
ATTGTAAAGCGTGAGAAA GGaaggttgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 163)





B8
ATTGTAAAGCGTGAGAAA GGtaatgggGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 164)





B9
ATTGTAAAGCGTGAGAAA GGaagaaggGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 165)





B10
ATTGTAAAGCGTGAGAAA GGagagttgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 166)





B11
ATTGTAAAGCGTGAGAAA GGtggtttgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 167)





B12
ATTGTAAAGCGTGAGAAA GGgagattgGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 168)





B13
ATTGTAAAGCGTGAGAAA GGattagggGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 169)





B14
TGATGGGTGCGTGAGTAA GGgtatgagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 170)





B15
TGATGGGTGCGTGAGTAA GGgaagttgGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 171)





B16
TGATGGGTGCGTGAGTAA GGagatgtgGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 172)





B17
TGATGGGTGCGTGAGTAA GGaggaaagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 173)





B18
TGATGGGTGCGTGAGTAA GGgagagggGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 174)





B19
TGATGGGTGCGTGAGTAA GGtaaggtgGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 175)





B20
TGATGGGTGCGTGAGTAA GGtgtttggGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 176)





B21
TGATGGGTGCGTGAGTAA GGttgttggGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 177)





B22
TGATGGGTGCGTGAGTAA GGagtgtagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 178)





B23
TGATGGGTGCGTGAGTAA GGtaggtagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 179)





B24
TGATGGGTGCGTGAGTAA GGttgtgtgGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 180)





B25
TGATGGGTGCGTGAGTAA GGttggaagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 181)





B26
TGATGGGTGCGTGAGTAA GGttgagagGCGGTTAAAT TGATGGGTGCGTGAGTAA (SEQ ID NO: 182)
















TABLE 4







133-genes conventional library template sequences. Template sequences include 


the forward and reverse primer sequences necessary for library amplification. 


The primers used for PCR are ‘TGGTTCAATCGTATGCCCGT’ (SEQ ID NO: 183) and


‘TAATACGACTCACTATAGGGGTCACTTAGCCAACGCCGAT’ (SEQ ID NO: 184).









Target Gene
Transcript ID
Template Sequence





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




GTCTGATTCAAATAAGTCAAACCACACCTT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 185)





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ACCTGTGATTGTAATAGATACTATTTCAAA




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 186)





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




GGAGCTTTCCTGTAAACTTAATATACACTG




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 187)





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AAGGTTCAGACAGTCTTATCTCTTTCCTTT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 188)





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




GGACTAGGAGATATAGTTATATATATATTT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 189)





Igf1
ENSMUST00000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AGCTGGATCCTTCCTTCTAAGCAGACACTA




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 190)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




GAGCGTATGCACGCATGTGCAAATGCACAT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 191)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




CAACTGGATCTCTACAACATCCATGCATTT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 192)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AATGAAATGATTGAGCCATCTAACTTTAAA




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 193)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ACATTCGCCTTCTCTCTCTCTCCCTCTTCT




TTAGTCGTCGCAACGCCAGGCAACTCATGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 194)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AAACCCAAACCCAACAACAACAACAACAAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 195)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TGTGATCTCTTTATCATGTGCCTTACGAAT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 196)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AGACAGTCTTTAGTCTGGCCAGCCTCTAAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 197)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AATACAAGTGTTAGGAAAGGGTGTGTCTAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 198)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TATTGTTATTTGGTAGGTGTTTCGATGTTT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 199)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ATGAATGACCAAATATTACTTTCAGGTTTC




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 200)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TGCGCATCCTCCCAAGTGCACAAACCATAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 201)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TGTGTTTGGCAAACTGAGTAGAGTCTCATT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 202)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ACAATCTTGCTATATACATAGAGAACATTT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 203)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TTCCTTGCATCCTAGCAATTCAAGGGTTCT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 204)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




CATCACCCTTGGCCTTTAAAGTGTGATAAA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 205)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TAAATGTAAGATAATGATTCAGTTAGTTAC




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 206)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




CTTCCCTTTCTTTGTCAGTAGATAAGCCCA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 207)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




TAAGGGAACCATTCATAAACCACCTCTACA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 208)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AGTTGGAGAGAATTAGGTATTGGATAAAGG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 209)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




CAAACAAGGGCAAGACTACATCTGCTACAG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 210)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ATTTCAATTGGGCAGTGACATTTAGAATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 211)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ATTATTATGATTAATTAGTACAATTAATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 212)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




AAATCAACAGGAAACCAAACAATCAACAAA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 213)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT CCCATGATCGTCCGATCTGGTCGGATTTGT




ACAATTTACCTCCATAGCAAAGTCTACAAA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 214)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




GACTGAGTCCTTAGCTTGTCACTAATTAGT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 215)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




AAACGAAATGAGACTAGGTGATAGATCAAC




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 216)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




ATTCCTTCCTACCTATCTTTATAGTTCTTT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 217)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




ACTTCAGATTGGGTGAAGTATTGCCAATTT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 218)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




AATGTAATTACTAAAGAAAGATATACCATT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 219)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




CCCAGTTGAATGCATCCAACACATTTCCAG




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 220)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




CAGCTAGACAAGATGATTAGACTCTGTAAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 221)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




ATACTATAGGATTAAGCACTAGCATTGAAA




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 222)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




TCAAGTACTTTCTTAAAGAAACAATAGCAC




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 223)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




TCTTAGGCTCCAGGCTTTCGTTTGTTGTTT




GTAAGCGCAACGGTGGACCGGAGACGACGG ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 224)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




AGCAAAGGATCCTGCGGTGATGTGGCATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 225)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




AGTGTTTAGCAGTAGGTACAATGTAAATAT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 226)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




TAAATAATTGAGTTGGAAGGCTGCTGATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 227)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




CTGGCGGAAGGAGAGCTAAAGGTGTCCTTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 228)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




TTTACACAAGTTCACTTTGGGCAAGAGAAA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 229)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




GAGAACCTCAGGCTTGAGAAGGAAGAATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 230)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




CATGTACACAGACATGCCACATTTCACATT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 231)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




ACTTCCTTCTGAGTCTTGGGCATGTCAGTG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 232)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




CAAATGTCTCCTGCCGTGTGACATGCTGGG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 233)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGT TTAGTCGTCGCAACGCCAGGCAACTCATGC




ACTTGTGAGTGACACATAGTTGAAAGGTGG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 234)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




TAAATGTCCCTTTCTATCAATCTTGAGTCA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 235)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




TAATTAATTACCCTTTAATGAGAGTGGATA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 236)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




AGATGTTAGAGCAATGTCACATTTCAATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 237)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




ACAGATCTGGAGAAGGCCACCTATGTGTTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 238)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




GGAGCTACATTGTTAGTGGGTTATTTACAG




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 239)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




CACAGCTTCACCAATAAGAACTTGGATATT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 240)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




CTTTATCTTCAAGAAGTCACAGAGGCAGAT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 241)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




TAGATTATAATGGAGAGATGTATTACATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 242)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




AAGGATTGAACCAGATATGGCTTGTTATTT




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 243)





Igf1
ENSMUSTO0000095360.6
TGGTTCAATCGTATGCCCGTGTAAGCGCAACGGTGGACCGGAGACGACGG




AGCCATAGCCTGTGGGCTTGTTGAAGTAAA




CGGCCGAATTACATCCGTCGTAATCGAGGC ATCGGCGTTGGCTAAGTGAC




(SEQ ID NO: 244)





* Only the template sequence for the first gene is shown in this PDF as the table is too large. The full sequence table can be downloaded as excel file.













TABLE 5







Readout probe sequences for each of the 16 bits used in the 


133-genes conventional library.








Bit
Readout Sequence 





B1
CGCAACGCTTGGGACGGTTCCAATCGGATC/3Cy5Sp/ (SEQ ID NO: 245)





B2
CGAATGCTCTGGCCTCGAACGAACGATAGC/3Cy5Sp/ (SEQ ID NO: 246)





B3
ACAAATCCGACCAGATCGGACGATCATGGG/3Cy5Sp/ (SEQ ID NO: 247)





B4
CAAGTATGCAGCGCGATTGACCGTCTCGTT/3Cy5Sp/ (SEQ ID NO: 248)





B5
GCGGGAAGCACGTGGATTAGGGCATCGACC/3Cy5Sp/ (SEQ ID NO: 249)





B6
AAGTCGTACGCCGATGCGCAGCAATTCACT/3Cy5Sp/ (SEQ ID NO: 250)





B7
CGAAACATCGGCCACGGTCCCGTTGAACTT/3Cy5Sp/(SEQ ID NO: 251)





B8
ACGAATCCACCGTCCAGCGCGTCAAACAGA/3Cy5Sp/ (SEQ ID NO: 252)





B9
/5IRD800CWN/CGCGAAATCCCCGTAACGAGCGTCCCTTGC (SEQ ID NO: 253)





B10
/5IRD800CWN/GCATGAGTTGCCTGGCGTTGCGACGACTAA (SEQ ID NO: 254)





B11
/5IRD800CWN/CCGTCGTCTCCGGTCCACCGTTGCGCTTAC (SEQ ID NO: 255)





B12
/5IRD800CWN/GGCCAATGGCCCAGGTCCGTCACGCAATTT (SEQ ID NO: 256)





B13
/5IRD800CWN/TTGATCGAATCGGAGCGTAGCGGAATCTGC (SEQ ID NO: 257)





B14
/5IRD800CWN/CGCGCGGATCCGCTTGTCGGGAACGGATAC (SEQ ID NO: 258)





B15
/5IRD800CWN/GCCTCGATTACGACGGATGTAATTCGGCCG (SEQ ID NO: 259)





B16
/5IRD800CWN/GCCCGTATTCCCGCTTGCGAGTAGGGCAAT (SEQ ID NO: 260)
















TABLE 6







Codebook for each gene in the 133-genes


conventional library. The binary code word


assigned to each gene in the 133-genes


conventional library.










Gene
Code-word







Igf1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0



Cps1
1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0



Glul
0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0



Glud1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0



Pigr
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1



Pck1
1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0



Uox
0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0



Hnf4a
0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1



Abcc3
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1



G6pc
0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0



Paqr9
0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1



Cpt1a
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0



Acly
1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0



Ganab
0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0



Gpam
0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0



Plxnb2
0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0



Dpyd
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0



Clptm1
0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0



Ddx17
0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0



Scap
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1



Uba1
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0



Gns
0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0



Lrrc3
0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0



Fads6
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1



Hs3st3b1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0



Zcchc24
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0



Cdc42bpb
1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0



Zdhhc5
1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0



Pdxk
0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0



Vwa8
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1



Flii
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1



Ube2z
0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0



Slc38a2
0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0



Stat2
0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0



Bcl9l
0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0



Tomm20
1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0



Il4ra
0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0



Nol6
0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0



Ide
1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0



Ddx3x
0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0



Rnf144b
1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0



Mybbp1a
1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0



Hnf1b
1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0



Flnb
0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0



Golga2
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1



Cdh5
0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0



Tbx3
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0



Paxip1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0



Dennd5a
1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0



Rhbdd2
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1



Mob3b
0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0



Plekhm2
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0



Ube3a
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0



Dgkq
1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0



Tecpr1
0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0



Iffo2
1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0



Zhx2
0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0



Gpd2
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1



Lrat
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0



Lrtm1
1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0



Tbl1xr1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1



Pecam1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0



Cog3
0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0



Atp11b
0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0



Add3
0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0



Mcam
0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0



1700017B05Rik
0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0



Megf8
1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0



Tppp
1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0



Vps13c
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1



Exoc2
0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0



Taok1
1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0



Enpp4
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0



Des
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0



Ranbp2
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1



Golga4
1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0



Sptlc2
0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1



Sox9
0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0



Capn5
0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0



Rasa1
0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1



Vcpip1
1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0



Tln2
1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0



Gpc1
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1



Adcy7
0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0



Zxdb
0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0



Cdk19
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1



Chic1
0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0



C3ar1
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0



Ccdc88b
0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0



Aatk
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1



Tmed8
1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1



Zfp174
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1



Fastkd2
0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0



Zfp870
0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1



Dsg1c
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1



Wdr19
0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0



Mphosph9
0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0



Abca5
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0



Atp8b5
0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0



Ankrd26
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1



Tbc1d9
0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0



Zfp560
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1



Ggt1
0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0



AW554918
0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0



Itga4
0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0



Ammecr1
0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0



Hecw2
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1



Fam102b
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1



Nova2
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0



Krt7
1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0



Prrg3
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1



Kif7
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0



Setbp1
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0



Pcdh17
0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0



Brip1
0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0



Armcx4
0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0



Scube1
0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0



Alms1
0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1



Dync2h1
1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1



Hcn3
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0



Sdk1
0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0



Slit3
0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0



Plag1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0



Sema3g
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0



Ncs1
0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0



Egflam
0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0



Lama3
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1



Igdcc4
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0



Sgpp2
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0



Lrrc16b
0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0



Col4a4
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1



Cnnm1
0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1



Cftr
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0



Biank1
0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0



Blank2
0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0



Blank3
1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0



Blank4
0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0



Blank5
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1



Blank6
1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0



Blank7
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1

















TABLE 7





Probe sequences for the conventional, split probe pairs, and 


readout probe used in the XLOC_010514 experiment (FIG. 4). 


The known off-target sequence is shown in bold.







XLOC conventional probe sequences











XLOC_1
CATTCCCAGGGACATTCATT TATCCACCGAACCCTTAC (SEQ ID NO: 261)





XLOC_2
GATGACTTCTCTATCCCACTTATCCACCGAACCCTTAC (SEQ ID NO: 262)





XLOC_3
GAAGTGCCTCGTCATTCTGGTATCCACCGAACCCTTAC (SEQ ID NO: 263)





XLOC_4
GCTCCAGTAACTAGCTGACATATCCACCGAACCCTTAC (SEQ ID NO: 264)





XLOC_5

AAGCCCAGGGGTACTCCTTATATCCACCGAACCCTTAC (SEQ ID NO: 265)






XLOC_6
GGAGCCTTGTAAATACTGATTATCCACCGAACCCTTAC (SEQ ID NO: 266)





XLOC_7
GCTGGAACCCTTAGGAAATATATCCACCGAACCCTTAC (SEQ ID NO: 267)





XLOC_8
GAGAATGGCAAGAACTCCATTATCCACCGAACCCTTAC (SEQ ID NO: 268)





XLOC_9
ATGAACAGGCAGAGGCTAGATATCCACCGAACCCTTAC (SEQ ID NO: 269)





XLOC_10
TACTGATCTGAAGCAGCAGGTATCCACCGAACCCTTAC (SEQ ID NO: 270)





XLOC_11
CAGACTAAAAGGAGGCCAGGTATCCACCGAACCCTTAC (SEQ ID NO: 271)





XLOC_12
AGTGAATTGAGAATATGAGGTATCCACCGAACCCTTAC (SEQ ID NO: 272)





XLOC_13
AGGATAGTAACTCAGTAGAATATCCACCGAACCCTTAC (SEQ ID NO: 273)





XLOC_14
TGATAGGAGGCATTGTCATTTATCCACCGAACCCTTAC (SEQ ID NO: 274)





XLOC_15
TTGTATCAAACCAAGTCTCTTATCCACCGAACCCTTAC (SEQ ID NO: 275)





XLOC_16
ACGAGCAGTTGTATGTGAATTATCCACCGAACCCTTAC (SEQ ID NO: 276)





XLOC_17
TTCCCCAGTTATAGAAATCATATCCACCGAACCCTTAC (SEQ ID NO: 277)





XLOC_18
TATCTGGGGTAATGGAGACATATCCACCGAACCCTTAC (SEQ ID NO: 278)





XLOC_19
CGAATTTCCTGCACTGGTAATATCCACCGAACCCTTAC (SEQ ID NO: 279)





XLOC_20
TCAGGTTGTATGATATAGTGTATCCACCGAACCCTTAC (SEQ ID NO: 280)





XLOC_21
ACTGTCTACTTCACCATTGATATCCACCGAACCCTTAC (SEQ ID NO: 281)





XLOC_22
TAAAACATCCATTGCCCTGGTATCCACCGAACCCTTAC (SEQ ID NO: 282)





XLOC_23
ACAGACCGGTTAACCATCCATATCCACCGAACCCTTAC (SEQ ID NO: 283)










XLOC split probe sequences








Name
Sequence





XLOC_SplitLeft_1
AACCCTTAC TAT AAATTAACATGCTCGGCCAG (SEQ ID NO: 284)





XLOC_SplitLeft_2
AACCCTTAC TAT AATTCTCCTTGAAGATCATT (SEQ ID NO: 285)





XLOC_SplitLeft_3
AACCCTTAC TAT TCAGACACAGGTGCAGATAG (SEQ ID NO: 286)





XLOC_SplitLeft_4
AACCCTTAC TAT TCCAGTAACTAGCTGACATG (SEQ ID NO: 287)





XLOC_SplitLeft_5
AACCCTTAC TAT CTGATGAAGTGATTAAGGAG (SEQ ID NO: 288)





XLOC_SplitLeft_6
AACCCTTAC TAT AATTACACTGCCTGGCACAT (SEQ ID NO: 289)





XLOC_SplitLeft_7
AACCCTTAC TAT AGTGCCTCAGACACTGCCTG (SEQ ID NO: 290)





XLOC_SplitLeft_8
AACCCTTAC TAT TATCCATGGGCTGCTGGAAC (SEQ ID NO: 291)





XLOC_SplitLeft_9
AACCCTTAC TAT TCTGAGAATGGCAAGAACTC (SEQ ID NO: 292)





XLOC_SplitLeft_10
AACCCTTAC TAT GCAGAGGCTAGAGATGCTCA (SEQ ID NO: 293)





XLOC_SplitLeft_11
AACCCTTAC TAT AGCAGGTCCACGCCCAGGTG (SEQ ID NO: 294)





XLOC_SplitLeft_12
AACCCTTAC TAT CCATCCAACTGAGTTCATTC (SEQ ID NO: 295)





XLOC_SplitLeft_13
AACCCTTAC TAT GTAGAAAGAGTGAATTGAGA (SEQ ID NO: 296)





XLOC_SplitLeft_14
AACCCTTAC TAT TAGATGATAGGAGGCATTGT (SEQ ID NO: 297)





XLOC_SplitLeft_15
AACCCTTAC TAT CGAGCAGTTGTATGTGAATG (SEQ ID NO: 298)





XLOC_SplitLeft_16
AACCCTTAC TAT ACATCCTCCATTGCACCGCA (SEQ ID NO: 299)





XLOC_SplitLeft_17
AACCCTTAC TAT TCGAACGAATTTCCTGCACT (SEQ ID NO: 300)





XLOC_SplitLeft_18
AACCCTTAC TAT TTTCAGGTTGTATGATATAG (SEQ ID NO: 301)





XLOC_SplitLeft_19
AACCCTTAC TAT TCCACCTCATGGCCACAGAC (SEQ ID NO: 302)





XLOC_SplitLeft_20
AACCCTTAC TAT TAACTTGATTGTGATGATGG (SEQ ID NO: 303)





XLOC_SplitLeft_21
AACCCTTAC TAT TTTAGGAGGGAGGAATTACC (SEQ ID NO: 304)





XLOC_SplitLeft_22
AACCCTTAC TAT ACAAACAAATCTATAGTGAT (SEQ ID NO: 305)





XLOC_SplitLeft_23
AACCCTTAC TAT CCGTGGTGGTTTCGGGGCAG (SEQ ID NO: 306)





XLOC_SplitRight_1
GCGCGGTGGCTCACACCTGT TAT TATCCACCG (SEQ ID NO: 307)





XLOC_SplitRight_2
CCCAGGGACATTCATTTGCT TAT TATCCACCG (SEQ ID NO: 308)





XLOC_SplitRight_3
ATGACTTCTCTATCCCACTT TAT TATCCACCG (SEQ ID NO: 309)





XLOC_SplitRight_4
GAAGTGCCTCGTCATTCTGG TAT TATCCACCG (SEQ ID NO: 310)





XLOC_SplitRight_5
CCTTGTAAATACTGATTAAA TAT TATCCACCG (SEQ ID NO: 311)





XLOC_SplitRight_6
AGTAGGTGCTCAATGAATTG TAT TATCCACCG (SEQ ID NO: 312)





XLOC_SplitRight_7
GCACACAGCAGGTGCTCAAT TAT TATCCACCG (SEQ ID NO: 313)





XLOC_SplitRight_8
CCTTAGGAAATAATAGCTAG TAT TATCCACCG (SEQ ID NO: 314)





XLOC_SplitRight_9
CATTAACTCTCTTCTCCAAA TAT TATCCACCG (SEQ ID NO: 315)





XLOC_SplitRight_10
TTCCTAAAGGGATCAAATAA TAT TATCCACCG (SEQ ID NO: 316)





XLOC_SplitRight_11
CAGATTGTCCCAGATGAACA TAT TATCCACCG (SEQ ID NO: 317)





XLOC_SplitRight_12
TGATACCTACTGATCTGAAG TAT TATCCACCG (SEQ ID NO: 318)





XLOC_SplitRight_13
ATATGAGGAATGAGAGTGGG TAT TATCCACCG (SEQ ID NO: 319)





XLOC_SplitRight_14
CATTACTAGGATAGTAACTC TAT TATCCACCG (SEQ ID NO: 320)





XLOC_SplitRight_15
CATTGTATCAAACCAAGTCT TAT TATCCACCG (SEQ ID NO: 321)





XLOC_SplitRight_16
TATTTGCTTTCTGTATTCCC TAT TATCCACCG (SEQ ID NO: 322)





XLOC_SplitRight_17
GGTAACTAGGTGAAGAATTT TAT TATCCACCG (SEQ ID NO: 323)





XLOC_SplitRight_18
TGCCTGACAACTCTCCATTT TAT TATCCACCG (SEQ ID NO: 324)





XLOC_SplitRight_19
CGGTTAACCATCCATATAAA TAT TATCCACCG (SEQ ID NO: 325)





XLOC_SplitRight_20
CTTCACAGGTGTACACAGCT TAT TATCCACCG (SEQ ID NO: 326)





XLOC_SplitRight_21
AAAGGGCATGAGAACACTTT TAT TATCCACCG (SEQ ID NO: 327)





XLOC_SplitRight_22
AGAAAGTTGGTCAGCGGTTT TAT TATCCACCG (SEQ ID NO: 328)





XLOC_SplitRight_23

AAGCCCAGGGGTACTCCTTA TAT TATCCACCG (SEQ ID NO: 329)











XLOC readout sequence








Name
Readout Sequence





XLOC_Cy5_Readout
/5Cy5/GTAAGGGTT CGGTGGATA (SEQ ID NO: 330)
















TABLE 8





Probe sequences used in the MUC5AC experiment (FIGS. 1, 2 and 3). Sheet 8a:


Sequences of the unpaired, paired (circular), and readout probes used in 


FIG. 1. Sheet 8b: Sequences of the MUC5AC split-probe constructs and readout 


probe used for FIG. 3. Sheet 8c: Sequences of the MUC5AC split-probe, 


conventional probe, bridge probe, and readout probes used for the kinetic


experiment in FIG. 2. Lowercase letters denotes the target gene (MUC5AC) 


binding sequence. Uppercase letters denotes the 3 nucleotide linker and 


readout binding sequence.







Table 8a


Unpaired split probe sequences









Name
Sequence






12nt_Split_probe_2
acagggctgggagtagttccag TAT TATCCACCGAAC (SEQ ID NO: 331)






11nt_Split_probe_2
acagggctgggagtagttccag TAT TATCCACCGAA (SEQ ID NO: 332)






10nt_Split_probe_2
acagggctgggagtagttccag TAT TATCCACCGA (SEQ ID NO: 333)






9nt_Split_probe_2
acagggctgggagtagttccag TAT TATCCACCG (SEQ ID NO: 334)






8nt_Split_probe_2
acagggctgggagtagttccag TAT ATCCACCG (SEQ ID NO: 335)






7nt_Split_probe_2
acagggctgggagtagttccag TAT TCCACCG (SEQ ID NO: 336)










Paired (circular) split probe sequences









Name
Sequence






9nt_Split_probe_1
AACCCTTAC TAT agaggttgtgctggtggtggga (SEQ ID NO: 337)






9nt_Split_probe_2
acagggctgggagtagttccag TAT TATCCACCG (SEQ ID NO: 338)






8nt_Split_probe_1
AACCCTTA TAT agaggttgtgctggtggtggga (SEQ ID NO: 339)






8nt_Split_probe_2
acagggctgggagtagttccag TAT ATCCACCG (SEQ ID NO: 340)






7nt_Split_probe_1
AACCCTT TAT agaggttgtgctggtggtggga (SEQ ID NO: 341)






7nt_Split_probe_2
acagggctgggagtagttccag TAT TCCACCG (SEQ ID NO: 342)











Readout sequence










Name
Readout sequence






Readout
/5Cy5/GTAAGGGTT CGGTGGATA (SEQ ID NO: 343)











Table 8b



MUC5AC split probe construct sequences










Name
Sequence






Circular_probe_1
AACCCTTAC TAT agaggttgtgctggtggtggga (SEQ ID NO: 344)






Circular_probe_2
acagggctgggagtagttccag TAT TATCCACCG (SEQ ID NO: 345)






Cruciform_probe_1
agaggttgtgctggtggtggga TAT AACCCTTAC (SEQ ID NO: 346)






Cruciform_probe_2
TATCCACCG TAT acagggctgggagtagttccag (SEQ ID NO: 347)






Double‘C‘_probe_1
agaggttgtgctggtggtggga TAT AACCCTTAC (SEQ ID NO: 348)






Double‘C‘_probe_2
acagggctgggagtagttccag TAT TATCCACCG (SEQ ID NO: 349)






Double‘Z‘_probe_1
agaggttgtgctggtggtggga TAT TATCCACCG (SEQ ID NO: 350)






Double‘Z‘_probe_2
acagggctgggagtagttccag TAT AACCCTTAC (SEQ ID NO: 351)






Conventional_probe
TATCCACCGAACCCTTAC




agaggttgtgctggtggtgggaacagggctgggagtagttccag (SEQ ID NO: 352)






Negative_control
AACCCTTAC TAT agaggttgtgctggtggtggga (SEQ ID NO: 353)











MUC5AC split probe bridge sequence










Name
Readout Sequence






Cy5_bridge
/5Cy5/GTAAGGGTT CGGTGGATA (SEQ ID NO: 354)










Table 8c


MUC5AC colocalization Cy3 probe sequences








Name
Sequence





MUC5AC_Cy3_1
tgtccctcagcagcctctga TAT ATTTAACCGCACTATCCC (SEQ ID NO: 355)





MUC5AC_Cy3_2
actcattgtatggacggcag TAT ATTTAACCGCACTATCCC (SEQ ID NO: 356)





MUC5AC_Cy3_3
tectgggcatggcctatatg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 357)





MUC5AC_Cy3_4
gtagctagattcggaggagc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 358)





MUC5AC_Cy3_5
ataggagagagggcagggtg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 359)





MUC5AC_Cy3_6
agatgggaagacagtcgccc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 360)





MUC5AC_Cy3_7
ttagaggctcgtaccacagg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 361)





MUC5AC_Cy3_8
ggtcttgtagtagaagctac TAT ATTTAACCGCACTATCCC (SEQ ID NO: 362)





MUC5AC_Cy3_9
gaacacgtagttacagaggc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 363)





MUC5AC_Cy3_10
aaatcctcgtaggcggcacc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 364)





MUC5AC_Cy3_11
atgaggaccctgctcagcgt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 365)





MUC5AC_Cy3_12
gatgaccacgccatccacct TAT ATTTAACCGCACTATCCC (SEQ ID NO: 366)





MUC5AC_Cy3_13
ttgaccaggacggagccctt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 367)





MUC5AC_Cy3_14
agactggctgaagggcagca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 368)





MUC5AC_Cy3_15
tactctactgaatgaggacc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 369)





MUC5AC_Cy3_16
gcctccaccttggtgtagct TAT ATTTAACCGCACTATCCC (SEQ ID NO: 370)





MUC5AC_Cy3_17
acatgaggacaaggcccagc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 371)





MUC5AC_Cy3_18
agcaggctatcatcatagtt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 372)





MUC5AC_Cy3_19
gtatttggtatccagctcca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 373)





MUC5AC_Cy3_20
acgggcatcccgttgaagtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 374)





MUC5AC_Cy3_21
gcttggtattataggagagg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 375)





MUC5AC_Cy3_22
ttcccgaattccatgggtgt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 376)





MUC5AC_Cy3_23
acagggtcctgacactggtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 377)





MUC5AC_Cy3_24
agccagtggagcagttcctc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 378)





MUC5AC_Cy3_25
aggagctcctcacagatgcc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 379)





MUC5AC_Cy3_26
acgcagccagagaacagctg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 380)





MUC5AC_Cy3_27
tgcaagcctccaggtagctg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 381)





MUC5AC_Cy3_28
tcacagaagcagaggtcttg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 382)





MUC5AC_Cy3_29
tactcagcaagggtatagca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 383)





MUC5AC_Cy3_30
tggtactgcatgttgttggg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 384)





MUC5AC_Cy3_31
ttggagcaggtgtctgcgca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 385)





MUC5AC_Cy3_32
acacagtggtcctcacaggc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 386)





MUC5AC_Cy3_33
atgtcgtcaagcaccgtccc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 387)





MUC5AC_Cy3_34
ttgacacagggacacagccg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 388)





MUC5AC_Cy3_35
ccgttgtagacgcaggcaca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 389)





MUC5AC_Cy3_36
agtctgtggagtaggtggcc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 390)





MUC5AC_Cy3_37
atggaacctcctggcagctc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 391)





MUC5AC_Cy3_38
aagcacagagcaggtacccg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 392)





MUC5AC_Cy3_39
acgttgagaagtaggcacct TAT ATTTAACCGCACTATCCC (SEQ ID NO: 393)





MUG5AC_Cy3_40
accgtgtattgcttcccgtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 394)





MUC5AC_Cy3_41
cacatagctgcagtcgccgt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 395)





MUC5AC_Cy3_42
tgctgtcacagggcttggtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 396)





MUC5AC_Cy3_43
tcagccagtacagtgaaggc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 397)





MUC5AC_Cy3_44
ttcaggcaggtctcgctgtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 398)





MUC5AC_Cy3_45
atccaggctcagtgtcacgc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 399)





MUC5AC_Cy3_46
tgatcaccaccaccgtctac TAT ATTTAACCGCACTATCCC (SEQ ID NO: 400)





MUC5AC_Cy3_47
ctggttcaggaacacttccc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 401)





MUC5AC_Cy3_48
agatgggcagctgggtgtag TAT ATTTAACCGCACTATCCC (SEQ ID NO: 402)





MUC5AC_Cy3_49
aagatggtgacgttagctac TAT ATTTAACCGCACTATCCC (SEQ ID NO: 403)





MUC5AC_Cy3_50
gatgaagaaggttgagggtc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 404)





MUC5AC_Cy3_51
agctacaggttcagctacag TAT ATTTAACCGCACTATCCC (SEQ ID NO: 405)





MUC5AC_Cy3_52
gaacagctgcatggtgggca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 406)





MUC5AC_Cy3_53
ttcccacagagaccgcaggt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 407)





MUC5AC_Cy3_54
atcggcctggatgctgttga TAT ATTTAACCGCACTATCCC (SEQ ID NO: 408)





MUC5AC_Cy3_55
ttgaagaaggccgcagcagt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 409)





MUC5AC_Cy3_56
aagctgttcctgatgttggg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 410)





MUC5AC_Cy3_57
tctccacgctcagagagcag TAT ATTTAACCGCACTATCCC (SEQ ID NO: 411)





MUC5AC_Cy3_58
cagtactgagcatacttctc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 412)





MUC5AC_Cy3_59
agtagattcccagcttcacg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 413)





MUC5AC_Cy3_60
gtatcaaacatgcagttcga TAT ATTTAACCGCACTATCCC (SEQ ID NO: 414)





MUC5AC_Cy3_61
tcctcgctccgctcacagtt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 415)





MUC5AC_Cy3_62
ataggcttcgtgcagacgcc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 416)





MUC5AC_Cy3_63
tagtacgtcattgacttgag TAT ATTTAACCGCACTATCCC (SEQ ID NO: 417)





MUC5AC_Cy3_64
ctggcaggtgctgacatggt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 418)





MUC5AC_Cy3_65
aacactgcaggtgatgtccc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 419)





MUC5AC_Cy3_66
acagatgcagccatccacgg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 420)





MUC5AC_Cy3_67
tcgtccaggaaggtgccctt TAT ATTTAACCGCACTATCCC (SEQ ID NO: 421)





MUC5AC_Cy3_68
tactggcctacacacacttg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 422)





MUC5AC_Cy3_69
cctctgtggtagcagggaca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 423)





MUC5AC_Cy3_70
tgtgcaggtgcagatagccc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 424)





MUC5AC_Cy3_71
cgatgcagctcagcttccca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 425)





MUC5AC_Cy3_72
aacaccatgggcgcagcaca TAT ATTTAACCGCACTATCCC (SEQ ID NO: 426)





MUC5AC_Cy3_73
catagcatttcggcagtcaa TAT ATTTAACCGCACTATCCC (SEQ ID NO: 427)





MUC5AC_Cy3_74
agctcttctgacagccagcc TAT ATTTAACCGCACTATCCC (SEQ ID NO: 428)





MUC5AC_Cy3_75
caggtcatgtccagtgtgtg TAT ATTTAACCGCACTATCCC (SEQ ID NO: 429)










Colocalization readout sequence 








Name
Readout sequence





Readout
/5Cy3/GGGATAGTGCGGTTAAAT (SEQ ID NO: 430)










Table 8d


Kinetic experiment probe sequences








Name
Sequence





MUG5AC_Left_1
AACCCTTAC TAT agaggttgtgctggtggtggga (SEQ ID NO: 431)





MUC5AC_Right_1
acagggctgggagtagttccag TAT TATCCACCG (SEQ ID NO: 432)





MUC5AC_Conventional
acagggctgggagtagttccag TATCCACCGAACCCTTAC (SEQ ID NO: 433)










Kinetic experiment bridge sequence








Name
Sequence





Bridge_1
TGATGGGTGCGTGAGTAAGTAAGGGTTCGGTGGATATGATGGGTGCGTGAGTAA (SEQ ID NO: 434)










Kinetic experiment readout sequence








Name
Sequence





Bridge Readout
/5Cy5/TTACTCACG CACCCATCA (SEQ ID NO: 435)





Conventional Readout
/5Cy5/GTAAGGGTT CGGTGGATA (SEQ ID NO: 436)
















TABLE 9





Probe sequences used in the FLNA experiment (FIG. 2). The template sequence includes


the forward and reverse primer sequences for amplifying the template sequence. The 


primers used for PCR amplification are ‘TACCATCTCGTGTTCGTACC’ (SEQ ID NO: 437) and


‘TAATACGACTCACTATAGTTCGTTCCGCTACTCACCAC’ (SEQ ID NO: 438).







FLNA split probe sequences








Name
Sequence





FLNA_1
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CAGGGAGCAGAGGTTGCGCTGCTGT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 439)





FLNA_2
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGAGCCGCGCCTGCTGCGCTCTGGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 440)





FLNA_3
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGTCCTTCTCGGTGGCCGGCATCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 441)





FLNA_4
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CACCAGCGCGTGAAAGTGTTCTGCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 442)





FLNA_5
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGTCCGTCTGCAGGTTGGCGATGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 443)





FLNA_6
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ATCTTCTTCTGGCTGAGCACCTCCA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 444)





FLNA_7
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ACGTTCTCAAGCTGCATTTGGCGGA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 445)





FLNA_8
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCGATGGACACCAGTTTGATGCTCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 446)





FLNA_9
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GAGTAGTGCAGGATCAGGGTCCAGA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 447)





FLNA_10
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GTCTGCTTCTTGGCCTCCTCATCCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 448)





FLNA_11
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ATGGGCAGCTGCGGCAGCTTGTTCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 449)





FLNA_12
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCCACCAGGGCGCCCAGGGCCCGGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 450)





FLNA_13
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGTAACGGGCTTGCTGGCGTCCCAA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 451)





FLNA_14
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGCCCGTAGGCACGGGCTTTCTTCG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 452)





FLNA_15
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGACGTACCAGACGGAGAAGGTGCG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 453)





FLNA_16
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGCTCTTGGCGATGTGCTGGCCAGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 454)





FLNA_17
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GCCGTAAAGATCTCAAAGTAGGTGG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 455)





FLNA_18
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGGATGGGCACGCCGGCAAACGTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 456)





FLNA_19
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CCGCCCGGCAGGCACTCGGGTTACA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 457)





FLNA_20
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CACCTTGAAGTCAGCTGTCTCCTTC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 458)





FLNA_21
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CTCGGTGCCCACCTTCACTTCGAAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 459)





FLNA_22
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CACCACAAAGTCTGCTGACTTGCCA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 460)





FLNA_23
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TTAGCCTGCGATGGCCCTTCCACCG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 461)





FLNA_24
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGCGGCCAGTAGCGCACATCACAGG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 462)





FLNA_25
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGCGGATGTCTTCGCTGTTGCACA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 463)





FLNA_26
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TTCTCCAATCCAGGCCCACGTGCCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 464)





FLNA_27
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CCGTGCTTGGCATCCACTGTGAACT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 465)





FLNA_28
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CAACGCCTCCACAGGGCAGCCTTCA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 466)





FLNA_29
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CGGCTTCCTGGGCACGTAGGAGCAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 467)





FLNA_30
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GCCAGCCTCGGCGCAGTCCACAGTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 468)





FLNA_31
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGTGTCATTGTCATTGCGGATGAT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 469)





FLNA_32
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GTGGGCGTGGCCTGGTCAGCAAAGA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 470)





FLNA_33
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CGGCCTTCACCTTACTGGCGTCATG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 471)





FLNA_34
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGAAGTGGGTGGGCTTGCCAAGCTC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 472)





FLNA_35
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GTGTAGGTGTTGTCATGGTGGTCGA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 473)





FLNA_36
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CCATAAGTGACATTGACGCCTACTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 474)





FLNA_37
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCCAGGCTTGGAGATACTGCCACTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 475)





FLNA_38
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCTTTGCCAACGTCCACCTTCTCTC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 476)





FLNA_39
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GATGCCACTTTGCCTTGACCACCAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 477)





FLNA_40
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ACGGGCACGCCGTCATAGGTCACCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 478)





FLNA_41
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGCCCAGGCCACCTGTGCCGGCGCC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 479)





FLNA_42
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GCACTTGACTTTGGATGCGTCAAAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 480)





FLNA_43
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGCTCCGCGCTGCCCGCGCTCGAGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 481)





FLNA_44
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGGTGTGCGTGCCATCACCGTGGTC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 482)





FLNA_45
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGGAAGTTGGGCACGGGCTGGCCGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 483)





FLNA_46
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CCATAGCACTGGACACCGGAAGTGT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 484)





FLNA_47
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ACACTGAACTCAGTGGTGGCCTCAC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 485)





FLNA_48
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GCCACACGGGCCTTGACGTGCGGCC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 486)





FLNA_49
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ACATGCCATCGCCACGGTCCTGAAC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 487)





FLNA_50
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGGTCACGTCCACGGAGTGCAGTCC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 488)





FLNA_51
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CCGAGCAGCTGCCGTCCTTGTTATC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 489)





FLNA_52
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CACCATAGGTGACGTTGAGGCTGTA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 490)





FLNA_53
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CATCTGTCACATCATGCACAGGGAC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 491)





FLNA_54
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGGCACGAACCATGCCTGGGCTCAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 492)





FLNA_55
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GTCCACTGGCTCCACCAGGCCTTTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 493)





FLNA_56
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TTCTCGGCTGGGCACATAATTGACG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 494)





FLNA_57
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGGCCTTCACCTTGCTGGCATCATG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 495)





FLNA_58
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TGGTGAACTCCACGGGCAGGCTGGC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 496)





FLNA_59
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TTCTTCGGCTTGCCTTCGGGATCCG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 497)





FLNA_60
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCTGGCACGTAGGCCACTGTATACG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 498)





FLNA_61
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT ACTTTGCCTTTGCCTGCCGCCTTAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 499)





FLNA_62
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCCACCACGTCCACATCCACCTCTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 500)





FLNA_63
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGCACGTGCTCGCCACCAAAGCGCA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 501)





FLNA_64
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TTGTCAGTGATGGTGGGCTGCGCCA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 502)





FLNA_65
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT TCGTGCAGGCCAGCCTCGCTGGGTG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 503)





FLNA_66
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CATAGGCAGTGACATGGCCACAGTT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 504)





FLNA_67
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CTGCATCCTTGGTGTTGACGGTGAA GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 505)





FLNA_68
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGTGCAGCTGATTTCTGCTTTGGAC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 506)





FLNA_69
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGGCTGCCTGGGACGTGCTGTTCAT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 507)





FLNA_70
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGACCACAGTGGCCGTCAGCAGGCT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 508)





FLNA_71
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CGTGGCCATTACGCAGCCGCTTCAG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 509)





FLNA_72
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GTGTGGCCTTCGTGAAGGCCCTGAC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 510)





FLNA_73
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT AGCCCACCATAGCCTGCATCGCGGG GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 511)





FLNA_74
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT CGTGCTGGTCGGCAAACTTGATGTT GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 512)





FLNA_75
TACCATCTCGTGTTCGTACC GGTAC CCCATTACC TAT GGGTGATGCTCTCTTTCACCCGGCC GAATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 513)





FLNA_76
TACCATCTCGTGTTCGTACC GGTACC CTGAGAGCGACCGGTGACCGATGAC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 514)





FLNA_77
TACCATCTCGTGTTCGTACC GGTACC GCCCGAGAGTGGGAGCTACTCATTT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 515)





FLNA_78
TACCATCTCGTGTTCGTACC GGTACC GCGTCCCGCGTGTCGACGCCGCCGC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 516)





FLNA_79
TACCATCTCGTGTTCGTACC GGTACC ATCTTCTTCCACGGCGCGTCCTCCG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 517)





FLNA_80
TACCATCTCGTGTTCGTACC GGTACC TTGCTCACGCACTTCAGGTGCTCGT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 518)





FLNA_81
TACCATCTCGTGTTCGTACC GGTACC AGCGCGATAAGCCGCAGCCCGTCGC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 519)





FLNA_82
TACCATCTCGTGTTCGTACC GGTACC GTGGGCCGCTGGTTGTGCTTGCGGT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 520)





FLNA_83
TACCATCTCGTGTTCGTACC GGTACC CGGTCCAGGAACTCGAGCGCCACCG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 521)





FLNA_84
TACCATCTCGTGTTCGTACC GGTACC AGGCCCAGGATCAGCTTCAGGTTCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 522)





FLNA_85
TACCATCTCGTGTTCGTACC GGTACC TCCTCGTCCCACATGGGCATGGAGA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 523)





FLNA_86
TACCATCTCGTGTTCGTACC GGTACC ATCCAGCCCAGGAGCCTCTGCTTGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 524)





FLNA_87
TACCATCTCGTGTTCGTACC GGTACC CTCTGCCAGTCCCGGCTGAAGTTGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 525)





FLNA_88
TACCATCTCGTGTTCGTACC GGTACC GTCCCAGTCAGGACACAGGCCCGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 526)





FLNA_89
TACCATCTCGTGTTCGTACC GGTACC TTCAGTTTGGGCCGCAAGGGAGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 527)





FLNA_90
TACCATCTCGTGTTCGTACC GGTACC TCTTGTCGTTATTGGCGGTCACTTT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 528)





FLNA_91
TACCATCTCGTGTTCGTACC GGTACC AGAGCACAGTAACCTTATGAGTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 529)





FLNA_92
TACCATCTCGTGTTCGTACC GGTACC TTGTTGGCGATGTTGCCACTGGGCT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 530)





FLNA_93
TACCATCTCGTGTTCGTACC GGTACC GTGCACGGTGTGGACGCCCTCCATG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 531)





FLNA_94
TACCATCTCGTGTTCGTACC GGTACC CTTGGCCAACAGTGACAGTGTAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 532)





FLNA_95
TACCATCTCGTGTTCGTACC GGTACC CCGCACACCCTTGGGCTGGAGGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 533)





FLNA_96
TACCATCTCGTGTTCGTACC GGTACC ACTGCGCCCGATGTTCTGACCACCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 534)





FLNA_97
TACCATCTCGTGTTCGTACC GGTACC GACGCCGCCCTCCAGCCCAGGGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 535)





FLNA_98
TACCATCTCGTGTTCGTACC GGTACC AAGCCCAGCGTGCCCACGTCGTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 536)





FLNA_99
TACCATCTCGTGTTCGTACC GGTACC CCGTCGCCCTTGTCGTCACATTCGA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 537)





FLNA_100
TACCATCTCGTGTTCGTACC GGTACC ACGTGAACGGCATACTCGCCAGCCT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 538)





FLNA_101
TACCATCTCGTGTTCGTACC GGTACC ACCCTGTCTGGGTGGAAGTCCTGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 539)





FLNA_102
TACCATCTCGTGTTCGTACC GGTACC GCTGGCTTGTTGACGGCCACACCTG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 540)





FLNA_103
TACCATCTCGTGTTCGTACC GGTACC GTCCTGGACTTGGACCCGAAGTGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 541)





FLNA_104
TACCATCTCGTGTTCGTACC GGTACC GTAAGTGCCATTGCCGTTGTCCTTG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 542)





FLNA_105
TACCATCTCGTGTTCGTACC GGTACC GTAGGTGGGCTCGTGGGCCTTGAGC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 543)





FLNA_106
TACCATCTCGTGTTCGTACC GGTACC CGAAGTCGATGTCAGCTTCGGCGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 544)





FLNA_107
TACCATCTCGTGTTCGTACC GGTACC ACCATAATGGTGTAGCTGCCAGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 545)





FLNA_108
TACCATCTCGTGTTCGTACC GGTACC AGGGCTCCACCTTGACTCGGATGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 546)





FLNA_109
TACCATCTCGTGTTCGTACC GGTACC CACCAGTGCGACTGAGGCCAGGGCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 547)





FLNA_110
TACCATCTCGTGTTCGTACC GGTACC ATGTCCACATCTCGCACTGCATCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 548)





FLNA_111
TACCATCTCGTGTTCGTACC GGTACC CCCTGCTGGACAGGCGTGTACTTGA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 549)





FLNA_112
TACCATCTCGTGTTCGTACC GGTACC AAAGGGCTCTTAGGGATGGGATCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 550)





FLNA_113
TACCATCTCGTGTTCGTACC GGTACC AGGCCAGACACCTTGATCTTGCTGA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 551)





FLNA_114
TACCATCTCGTGTTCGTACC GGTACC CCCTTTGATTTGACTGTGAACTCCT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 552)





FLNA_115
TACCATCTCGTGTTCGTACC GGTACC ACCTCATAGGGCCCTTCCTCACGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 553)





FLNA_116
TACCATCTCGTGTTCGTACC GGTACC TGGTGTCGATGGTGAAGCGGGCGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 554)





FLNA_117
TACCATCTCGTGTTCGTACC GGTACC GGGAACCACGTGGGCCTTGAATGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 555)





FLNA_118
TACCATCTCGTGTTCGTACC GGTACC TCCACTTGGAATTGGCCCACCTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 556)





FLNA_119
TACCATCTCGTGTTCGTACC GGTACC GGATGTACACCTCGGCCGGAAGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 557)





FLNA_120
TACCATCTCGTGTTCGTACC GGTACC TACTTGATGGTGACGGTGTAGGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 558)





FLNA_121
TACCATCTCGTGTTCGTACC GGTACC ACCGCAGGTTCCACCTGCAGCTTGC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 559)





FLNA_122
TACCATCTCGTGTTCGTACC GGTACC AAGACACCCTGGCCCTCAATACCAG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 560)





FLNA_123
TACCATCTCGTGTTCGTACC GGTACC CCGGTCTGTGTCAGAGCCCGGGCGT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 561)





FLNA_124
TACCATCTCGTGTTCGTACC GGTACC AGGTCTCCGTCAGGTTGCCTGAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 562)





FLNA_125
TACCATCTCGTGTTCGTACC GGTACC CCTCGTAAGGCGTGTACTCCACTTT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 563)





FLNA_126
TACCATCTCGTGTTCGTACC GGTACC TGCAGGACATCTTGGCCTCGGAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 564)





FLNA_127
TACCATCTCGTGTTCGTACC GGTACC TGCCAGCCTCATAAGGGATGTACTC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 565)





FLNA_128
TACCATCTCGTGTTCGTACC GGTACC TGAAAGGACTGCCTGGCACTTGATG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 566)





FLNA_129
TACCATCTCGTGTTCGTACC GGTACC CGGGCCCAGAGCACTTGACCTTGGA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 567)





FLNA_130
TACCATCTCGTGTTCGTACC GGTACC CCCTTGCACTTTGACCTGCAATGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 568)





FLNA_131
TACCATCTCGTGTTCGTACC GGTACC CTGGGTGCCATCAGCGTTGTCTACC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 569)





FLNA_132
TACCATCTCGTGTTCGTACC GGTACC TAGGCAGCACCTTGACCTTGAAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 570)





FLNA_133
TACCATCTCGTGTTCGTACC GGTACC GCACGCCAGTGGTGTTGAGCCCGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 571)





FLNA_134
TACCATCTCGTGTTCGTACC GGTACC ATCTGGACAGCCAGCAGGCCCTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 572)





FLNA_135
TACCATCTCGTGTTCGTACC GGTACC CCGTCATGGTTGTCTTGGATGTGTG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 573)





FLNA_136
TACCATCTCGTGTTCGTACC GGTACC TCCACAGTGATCACCGTCTCCTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 574)





FLNA_137
TACCATCTCGTGTTCGTACC GGTACC CCATCAGGCGTGCACACGGTGCACG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 575)





FLNA_138
TACCATCTCGTGTTCGTACC GGTACC CAGATGACGTATTTGCCCGGCTGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 576)





FLNA_139
TACCATCTCGTGTTCGTACC GGTACC TTGCCTGAGGGCATCCGAACCTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 577)





FLNA_140
TACCATCTCGTGTTCGTACC GGTACC TACCGCACGGTCACGGTGCCGTCTT TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 578)





FLNA_141
TACCATCTCGTGTTCGTACC GGTACC CGTAATCCACATAGAACTGCAAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 579)





FLNA_142
TACCATCTCGTGTTCGTACC GGTACC TGGCAGGCTTGTTCACTACTCCATG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 580)





FLNA_143
TACCATCTCGTGTTCGTACC GGTACC GCCCTCAATGGCCAGAGACAGGCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 581)





FLNA_144
TACCATCTCGTGTTCGTACC GGTACC TACTTGACTAGAATGCTGTAGTCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 582)





FLNA_145
TACCATCTCGTGTTCGTACC GGTACC GATCCGTCTCTGAGATGTTGATGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 583)





FLNA_146
TACCATCTCGTGTTCGTACC GGTACC AACAGGGCTCCTCCCGGCCCGAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 584)





FLNA_147
TACCATCTCGTGTTCGTACC GGTACC GAGACCCGAACACGACTGGCATCCC TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 585)





FLNA_148
TACCATCTCGTGTTCGTACC GGTACC TCAATGATAAACTCTGCAGGCTCAA TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 586)





FLNA_149
TACCATCTCGTGTTCGTACC GGTACC TGATGTAGTTGCCTGGCTCTGTGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 587)





FLNA_150
TACCATCTCGTGTTCGTACC GGTACC CGCCTGTCACCTTCACAGAGAAGGG TAT ATTTAACCG AATTC



GTGGTGAGTAGCGGAACGAA (SEQ ID NO: 588)










FLNA split probe bridge sequence








Name
Bridge sequence





FLNA_bridge
ATTGTAAAGCGTGAGAAA GGTAATGGGCGGTTAAAT ATTGTAAAGCGTGAGAAA (SEQ ID NO: 589)










FLNA split probe readout sequence








Name
Readout sequence









Cy5_Readout
/5Cy5/TTTCTCACGCTTTACAAT (SEQ ID NO: 590)

















TABLE 10







Reference FKPM values for AML12, mouse kidney, liver, frontal cortex and ovary for


the 317 genes in the split library.


Reference FPKM for 317-genes split library


















Frontal



Gene name
Transcript ID
AML-12
Kidney
Liver
Cortex
Ovary
















Blank1

0
0
0
0
0


Blank2

0
0
0
0
0


Blank3

0
0
0
0
0


Blank4

0
0
0
0
0


Blank5

0
0
0
0
0


Blank6

0
0
0
0
0


Blank7

0
0
0
0
0


Blank8

0
0
0
0
0


Ppfia2
ENSMUST00000029404.11
0.15192
0.04
0.02
15.425
0.02


Kif5a
ENSMUST00000099172.3
0.068099
1.295
1.235
342.67
3.45


Camk4
ENSMUST00000042868.4
0.16044
0.035
0.005
10.56
0.035


Cenpe
ENSMUST00000062893.7
18.8485
0.045
0.01
0.2
0.185


Akap6
ENSMUST00000095737.3
0.032227
0.14
0.025
15.605
0.365


Kif1a
ENSMUST00000171796.3
0.089827
0.64
0.07
120.305
4.315


Ptprz1
ENSMUST00000090568.3
0.061093
0.06
0.01
35.63
1.46


Ccdc177
ENSMUST00000073251.6
0
0
0.005
2.39
0.105


Mki67
ENSMUST00000033310.7
37.822
0.135
0.03
0.235
1.435


Map1a
ENSMUST00000094639.5
0.035225
0.4
0.035
82.56
3.655


Hmcn2
ENSMUST00000113532.4
0.01155
0.18
0.01
0.155
7.08


Brip1
ENSMUST00000044423.3
12.0383
0.26
0.115
0.025
0.13


Aspm
ENSMUST00000053364.10
15.0238
0.02
0.01
0.07
0.755


Kntc1
ENSMUST00000031366.7
19.5018
0.115
0.015
0.11
0.885


Myof
ENSMUST00000041475.10
154.2339
4.67
0.15
0.97
4.735


Myom2
ENSMUST00000033842.3
0.081423
4.555
0.04
0.045
0.125


Ahnak
ENSMUST00000092956.2
236.0856
6.225
0.805
2.77
8.6


Cacna1e
ENSMUST00000187541.2
1.3159
0.065
0.02
18.545
0.19


Zfp831
ENSMUST00000059452.5
0.013624
0.105
0.04
2.68
0.03


Rims3
ENSMUST00000071093.4
0.16167
0.18
0.335
23.255
1.04


Adamts2
ENSMUST00000040523.8
0.14825
3.165
1.51
0.775
71.525


Dzank1
ENSMUST00000081982.7
1.0306
0.935
0.045
30.275
1.17


Pik3c2a
ENSMUST00000170430.1
74.0708
2.65
0.875
3.015
0.835


Prune2
ENSMUST00000087689.4
0.17921
0.13
0.005
9.47
0.86


Myh11
ENSMUST00000090287.3
0.003366
4.365
0.26
2.175
57.02


Nat8l
ENSMUST00000056355.8
0.016113
3.56
0.03
58.45
4.895


Myo5c
ENSMUST00000036555.6
38.7977
2.195
0.02
0.34
3.21


Erc2
ENSMUST00000090302.5
0.18012
0.805
0.74
17.365
0.085


Brca2
ENSMUST00000044620.7
6.4182
0.125
0.065
0.415
0.31


Tspan7
ENSMUST00000115526.1
19.8019
48.37
15.395
741.31
24.435


Col6a6
ENSMUST00000098441.5
0.008119
0.135
0.03
0.09
1.71


Atp1a2
ENSMUST00000085913.6
1.116
14.055
0.195
185.775
17.37


Galnt15
ENSMUST00000022460.6
0.050628
1.6
0.315
0.57
16.08


Trabd2b
ENSMUST00000094894.3
0.02677
18.39
0.06
0.555
2.84


Smchd1
ENSMUST00000127430.1
34.3279
1.195
0.345
3.54
1.165


Mysm1
ENSMUST00000075872.3
16.725
0.43
0.24
2.415
0.24


Spag17
ENSMUST00000164539.1
0.024643
0
0.005
0.01
0.21


Dock10
ENSMUST00000077946.7
0.20537
1.57
0.38
14.565
0.565


Srgap3
ENSMUST00000088373.6
0.73845
3.225
0.725
49.765
5.47


Atr
ENSMUST00000034980.7
18.0366
0.92
0.4
1.74
0.57


Armcx4
ENSMUST00000124226.2
0.043819
0.505
0.11
6.98
0.87


Tnxb
ENSMUST00000087399.4
0.054933
4.07
1.98
0.635
36.685


Utp20
ENSMUST00000004470.7
33.4202
1.94
0.87
2.585
1.655


Gas2l3
ENSMUST00000099374.4
9.6628
0.11
0.22
0.47
1.325


Veph1
ENSMUST00000029419.7
0.93919
3.83
0.02
0.04
0.055


Col4a4
ENSMUST00000087050.6
0.072728
17.545
0.055
0.125
4.8


Ly75
ENSMUST00000112533.3
7.5712
0.325
0.375
0.44
0.43


Hivep2
ENSMUST00000187083.2
1.2425
2.81
0.98
37.99
3.995


Myh7b
ENSMUST00000092995.5
0.14153
0.015
0.005
0.905
0.08


Map3k9
ENSMUST00000035987.7
0.014592
1.37
0.015
7.035
0.565


Foxo1
ENSMUST00000053764.6
0.23454
8.175
4.485
3.645
77.605


Ntrk2
ENSMUST00000079828.5
0.20646
1.97
2.285
70.06
13.32


Scn10a
ENSMUST00000084787.5
0.010614
0
0.005
0.05
0.24


Flnc
ENSMUST00000090474.6
5.9856
0.85
0.03
0.22
21.62


Pygo1
ENSMUST00000038489.5
0.051895
0.17
0.145
5.09
1.16


Pask
ENSMUST00000027493.3
8.6466
0.3
0.225
0.56
1.425


Sptbn2
ENSMUST00000008991.6
0.12332
6.575
8.4
78.255
1.355


Ksr2
ENSMUST00000180430.1
0.10047
0.99
0.04
3.68
0.1


Slk
ENSMUST00000026043.7
81.5086
5.51
2.59
11.565
3.79


Sptlc2
ENSMUST00000021424.4
58.8505
6.77
1.565
3.6
5.75


Nup210l
ENSMUST00000029548.4
1.483
0.075
0.01
0.165
0.27


Mrc2
ENSMUST00000100335.5
0.23292
13.505
0.49
2.135
40.645


Utp14b
ENSMUST00000053760.7
11.6554
0.325
0.555
2.755
0.265


Notch3
ENSMUST00000087723.3
0.18334
8.185
0.87
3.265
34.575


Cand1
ENSMUST00000020315.8
86.0633
5.045
3.075
12.2
8.135


Col6a5
ENSMUST00000190193.2
0.004947
0.16
0.06
0.12
1.075


Sdk2
ENSMUST00000041627.9
0.074561
0.255
0.05
2.91
0.725


Lgr6
ENSMUST00000044828.9
0.60692
0.33
0.015
8.17
19.76


Prtg
ENSMUST00000055535.8
0.028414
0.035
0.005
0.54
0.15


Dnah1
ENSMUST00000048603.7
0.069171
0.08
0.015
0.68
1.895


Zbtb41
ENSMUST00000039867.8
23.8026
2.995
0.885
3.395
1.465


Fbxo32
ENSMUST00000022986.6
1.2279
0.83
0.175
2.49
11.72


Caskin1
ENSMUST00000024958.7
0.091806
0.175
0.055
32.07
18.57


Zfp26
ENSMUST00000159569.3
19.7889
1.11
0.645
4.835
1.185


Cacna1c
ENSMUST00000186889.2
0.071178
0.47
0.025
10.03
4.625


Heatr1
ENSMUST00000059270.8
27.1337
1.79
1.335
3.25
3.395


Col4a6
ENSMUST00000101205.2
1.1748
0.905
0.01
0.275
5.41


Hspg2
ENSMUST00000030547.10
0.97227
10.445
2.14
0.975
37.47


Kpnb1
ENSMUST00000001479.4
193.7558
13.28
9.59
25.755
22.54


Zfyve16
ENSMUST00000022217.8
12.7013
1.315
0.375
2.515
0.885


Myh10
ENSMUST00000102611.5
1.1369
3.245
0.36
24
5.585


Slc4a7
ENSMUST00000057015.6
20.3773
0.735
0.57
5.095
2.165


Grik3
ENSMUST00000030676.7
0.030225
0.06
0.01
15.785
10.89


Rnf150
ENSMUST00000078525.5
0.13519
0.845
0.115
5.98
1.535


Sdk1
ENSMUST00000085774.6
0.017245
0.435
0.085
1.43
4.22


Ythdc2
ENSMUST00000037763.7
12.1174
0.545
0.375
4.255
0.365


Il17rd
ENSMUST00000035336.3
0.23613
2.01
0.1
0.84
7.02


Synm
ENSMUST00000074233.6
0.21727
0.41
0.035
4.135
8.365


Dnah11
ENSMUST00000084806.6
0.021572
0.315
0.06
2.335
0.68


Flna
ENSMUST00000114299.3
173.0184
37.345
5.2
21.145
470.345


Fry
ENSMUST00000087204.5
0.62454
2.6
0.145
13.31
2.815


Cacna1a
ENSMUST00000121390.3
4.1076
0.545
0.21
20.9
5.36


Chst2
ENSMUST00000036267.7
0.06983
1.705
0.29
15.45
6.065


Psd3
ENSMUST00000038959.11
18.5113
1.065
2.1
46.12
1.5


Gpr161
ENSMUST00000111450.2
0.43661
0.91
0.09
1.915
6.81


Plxnd1
ENSMUST00000015511.10
3.4124
30.905
10.29
15.525
144.685


Rsf1
ENSMUST00000042399.9
12.4442
0.82
0.275
4.82
0.79


Slc38a1
ENSMUST00000100262.2
0.95264
1.315
0.265
26.725
14.9


Cacna2d1
ENSMUST00000039370.9
20.2413
0.61
0.05
32.18
2.805


Ppl
ENSMUST00000035672.3
17.2285
2.04
2.3
0.085
2.15


Trove2
ENSMUST00000159879.1
13.2001
1.315
0.155
5.505
0.845


Sox11
ENSMUST00000079063.6
7.5783
0.04
0.005
4.92
0.81


Mlxip
ENSMUST00000068237.7
1.539
9.295
2.63
6.43
42.29


Pkd1l3
ENSMUST00000109242.3
0.23261
0.015
0.005
0.09
0.025


Igsf10
ENSMUST00000039419.7
0.008606
0.32
0.145
0.4
1.785


Eif5b
ENSMUST00000027252.7
17.3736
1.9
1.325
4.695
0.705


Nid1
ENSMUST00000005532.7
1.1068
28.78
4.265
4.25
65.63


Alms1
ENSMUST00000072018.5
4.1423
0.32
0.095
1.265
0.715


Csmd1
ENSMUST00000082104.6
0.092488
0.15
0.005
1.875
1.59


Zfp516
ENSMUST00000171238.3
3.3071
3.195
1.31
3.74
22.735


Shroom3
ENSMUST00000113054.4
0.7962
10.415
2.085
0.715
24.465


Ddr2
ENSMUST00000194690.1
0.31682
5.51
0.755
2.17
14.56


Bend4
ENSMUST00000169190.1
0.038403
0.135
0.08
1.435
1.93


Sned1
ENSMUST00000062202.9
0.83901
4.685
3.3
2.385
24.19


Piezo1
ENSMUST00000067252.9
6.7555
24.03
2.055
1.71
50.425


Adamts17
ENSMUST00000098382.5
0.033952
0.095
0.025
0.94
0.775


Rttn
ENSMUST00000023828.7
4.6342
0.675
0.175
0.925
0.97


Trpm2
ENSMUST00000105401.4
0.55543
0.11
0.215
1.705
0.035


Arhgap31
ENSMUST00000023487.4
0.91672
3.49
0.75
4.68
15.86


Mkl2
ENSMUST00000149359.1
1.6283
3.385
2.515
26.125
6.69


Scn4a
ENSMUST00000021056.7
0.073875
0.4
0.02
0.02
0.14


Col7a1
ENSMUST00000026740.5
5.4853
0.285
0.025
1.33
2.5


Tnpo1
ENSMUST00000109401.3
86.9988
13.99
6.765
13.755
13.565


Adam19
ENSMUST00000011400.7
0.050168
1.81
0.465
3.72
8.965


Plxna3
ENSMUST00000004326.3
1.2799
1.27
0.315
7.82
12.95


Gpr179
ENSMUST00000093942.4
0.030874
0.045
0.005
0.14
0.295


Pkdrej
ENSMUST00000064370.4
0.006604
0.03
0.01
0.2
0.24


Mylk
ENSMUST00000023538.8
3.0176
20.63
12.18
3.11
74.695


Trim33
ENSMUST00000029444.8
20.9992
2.555
1.065
6.2
3.585


Pcdhb22
ENSMUST00000192409.1
0.11783
0.965
0.23
2.755
5.28


Pten
ENSMUST00000013807.7
73.0409
6.86
8.685
24.82
2.76


Pappa
ENSMUST00000084501.3
0.02177
0.825
0.01
0.19
0.795


Plxna1
ENSMUST00000163139.3
17.1436
17.79
4.15
11.83
79.48


Fancm
ENSMUST00000058889.4
5.6309
0.49
0.3
1.845
1.15


Arhgef28
ENSMUST00000109426.1
35.2521
10.59
0.005
4.455
12.16


Tmc3
ENSMUST00000039317.9
0.010088
0.51
0.06
0.045
0.22


Plxnc1
ENSMUST00000099337.3
0.11454
0.335
1.7
6.29
12.095


Reps2
ENSMUST00000112334.3
0.041798
2.75
2.3
11.375
0.78


Nin
ENSMUST00000085314.5
10.9574
0.995
0.23
6.64
1.835


Pdzd8
ENSMUST00000099274.2
34.8986
2.835
2.64
7.24
9.765


Pcdhb19
ENSMUST00000059571.6
0.080284
0.17
0.02
0.985
0.94


Tmem2
ENSMUST00000096194.4
18.6815
3.865
1.69
3.035
3.18


Lrrk2
ENSMUST00000060642.6
3.1741
6.29
0.115
1.6
0.62


Flrt2
ENSMUST00000057324.3
0.65841
1.185
0.06
5.69
5.1


Nvl
ENSMUST00000027797.8
20.151
2.045
1.285
7.545
3.97


Myo9a
ENSMUST00000135298.3
7.5305
1.775
0.16
7.275
0.625


Fat4
ENSMUST00000061260.7
0.010693
0.915
0.15
1.27
2.79


Mllt4
ENSMUST00000139666.3
50.9298
7.65
3.3
16.61
9.3


Celsr1
ENSMUST00000016172.7
0.34221
5.835
3.21
0.645
16.14


Map4
ENSMUST00000035055.10
14.1386
15.42
6.95
90.515
26.885


Dock6
ENSMUST00000034728.7
0.43807
15.03
6.03
5.69
40.735


Spon1
ENSMUST00000046687.11
0.3401
11.85
0.195
15.68
26.4


Spag9
ENSMUST00000041956.9
25.645
8.915
3.555
52.235
4.53


Sh3pxd2b
ENSMUST00000038753.5
6.3427
2.135
0.15
4.8
14.915


1700020l14Rik
ENSMUST00000153581.1
13.632
10.41
6
52.255
6.02


Gm29666
ENSMUST00000189185.1
0.87292
0.16
0.045
0.97
0.14


Abca4
ENSMUST00000013995.8
2.2317
0.895
0.01
0.245
1.095


Golga4
ENSMUST00000084820.4
23.0089
5.2
1.635
10.11
2.39


Nhsl2
ENSMUST00000101339.6
0.90199
2.235
0.195
4.555
7.66


Tnrc18
ENSMUST00000151477.3
6.6458
9.085
4.195
6.745
36.665


Dnah8
ENSMUST00000170651.1
0.017458
0.055
0.015
0.065
0.185


Xirp1
ENSMUST00000111635.2
0.004795
0.315
0.075
0.02
0.115


Ptprm
ENSMUST00000037974.8
0.68155
4.66
0.39
11.16
5.88


RP23-383N15.1
ENSMUST00000192800.1
0
0.22
0.045
0.405
0.105


Mgam
ENSMUST00000071535.6
0.10509
8.81
11.215
0.095
0.065


Zfp334
ENSMUST00000103084.3
0.92428
0.66
0.325
4.01
4.58


Scn7a
ENSMUST00000042792.6
0.015723
0.605
0.015
0.48
0.755


Trpm6
ENSMUST00000040489.7
0.32383
1.085
0.055
0.12
0.725


2410089E03Rik
ENSMUST00000110617.1
9.8956
1.585
0.4
7.21
2.75


Polr1a
ENSMUST00000055296.8
35.0729
5.115
4.13
5.105
16.61


Dennd3
ENSMUST00000043414.7
2.2845
13.92
1.71
2.145
5.565


Abcc2
ENSMUST00000026208.5
13.3131
49.305
93.46
0.1
0.18


Cgnl1
ENSMUST00000072899.4
24.2009
47.5
7.815
3.565
6.01


Stab2
ENSMUST00000035288.10
0.055239
8.34
12.26
0.06
1.08


Akap11
ENSMUST00000022593.5
11.8471
4.295
1.945
21.08
2.875


Notch4
ENSMUST00000015612.9
1.1254
6.89
0.885
1.2
7.75


Ppm1I
ENSMUST00000029355.8
2.7363
2.245
1.43
12.14
3.625


Wdr90
ENSMUST00000079461.10
7.4088
2.07
1.625
1.115
12.305


Edaradd
ENSMUST00000179308.1
0.031618
0.265
0.02
0.19
0.07


Kcnq1ot1
ENSMUST00000185789.1
1.1162
0.16
0.085
0.76
0.265


RP24-338G10.1
ENSMUST00000193744.1
0
0.03
0.03
0.105
0.165


Crb2
ENSMUST00000050372.7
3.488
1.565
0.025
0.655
3.175


Arhgef10
ENSMUST00000084207.7
4.1728
4.565
0.61
9
16.8


lrs1
ENSMUST00000069799.2
2.5152
4.195
5.59
3.65
22.515


Crocc
ENSMUST00000102491.5
2.2642
5.925
0.335
10.785
13.925


Ehbp1l1
ENSMUST00000049295.10
14.4396
6.89
2.62
5.335
29.7


Ogt
ENSMUST00000044475.4
32.7175
21.29
9.1
102.26
32.17


Thsd7a
ENSMUST00000046121.8
3.4074
1.505
0.06
3.64
0.825


Dsp
ENSMUST00000124830.1
15.592
2.745
4.145
0.14
5.005


Daam2
ENSMUST00000057610.6
0.34713
10.75
0.975
15.99
12.57


Sestd1
ENSMUST00000102660.3
5.9251
20.865
0.375
11.73
7.215


Sart1
ENSMUST00000044207.4
20.3807
3.475
2.065
8.89
5.43


Dab2ip
ENSMUST00000145698.3
3.0777
19.31
5.265
27.27
49.775


Ago4
ENSMUST00000084289.4
0.35746
0.59
0.5
2.635
0.745


Fgd5
ENSMUST00000089334.4
0.088143
3.385
0.73
0.96
3.86


Pla2r1
ENSMUST00000112525.4
0.4315
1.62
0.25
0.095
0.97


Arfgef1
ENSMUST00000088615.6
22.058
6.265
2.855
11.25
2.435


Onecut2
ENSMUST00000175965.4
3.8344
0
4.59
0.155
0.77


Tbc1d32
ENSMUST00000099739.3
3.6428
1.145
0.4
1.815
0.515


Dpy19l4
ENSMUST00000084892.7
10.0448
2.995
1.12
5.315
1.42


Myom3
ENSMUST00000105854.1
0.24026
0.305
0.05
0.005
0.105


Gpr116
ENSMUST00000113599.1
0.17574
12.39
2.08
4.765
6.35


Tjp1
ENSMUST00000032729.6
42.1997
10.51
3.99
15.84
14.075


Plcb2
ENSMUST00000102524.3
0.045128
0.67
0.31
0.38
1.44


Aldh1l2
ENSMUST00000020497.9
0.34242
0.51
0.03
1.015
0.435


Arhgef5
ENSMUST00000031750.9
30.2495
17.605
5.43
0.89
9.855


Helz2
ENSMUST00000108831.3
1.5309
7.51
31.34
0.85
18.125


Kif21a
ENSMUST00000088614.7
7.6264
6.515
3.035
21.525
4.02


ltpr1
ENSMUST00000032192.6
6.1055
24.87
3.49
36.325
13.06


Rassf4
ENSMUST00000035842.4
0.27494
1.765
1.17
3.4
6.09


Abca3
ENSMUST00000079594.7
13.9371
125.74
48.585
17.55
20.73


Nipbl
ENSMUST00000052965.6
11.5482
2.985
1.35
4.99
3


Wdr7
ENSMUST00000072726.5
6.4182
3.8
2.795
16.735
3.345


Phlpp2
ENSMUST00000179721.3
1.4244
3.86
0.66
8.22
6.53


Zbtb1
ENSMUST00000042779.3
4.2827
0.9
0.445
1.55
2.02


Tmed8
ENSMUST00000037418.5
2.3264
4.05
0.505
8.305
4.08


Cnot1
ENSMUST00000098473.6
45.7584
12.535
8.545
13.015
10.565


Abca9
ENSMUST00000044850.3
0.006076
1.295
0.245
1.165
1.315


Slc12a7
ENSMUST00000017900.7
11.806
57.5
46.195
1.865
112.275


Svil
ENSMUST00000126977.3
8.6685
6.01
6.495
4.39
26.32


Prkaa2
ENSMUST00000030243.7
1.736
14.325
6.605
4.285
0.925


Myo6
ENSMUST00000113268.3
25.014
19.245
2.675
11.75
5.475


Btrc
ENSMUST00000065601.7
7.9632
5.42
2.41
17.965
5.55


Nfia
ENSMUST00000075448.8
1.9953
26.88
21.805
9.09
57.48


Cmah
ENSMUST00000167746.3
5.365
2.69
4.905
0.03
0.045


Abca1
ENSMUST00000030010.3
0.18044
5.2
12.885
6.225
24.35


Osbpl8
ENSMUST00000105275.3
15.1743
7.99
2.105
11.37
2.585


Cdyl2
ENSMUST00000109102.2
0.93834
0.88
0.285
2.095
0.605


Wdfy4
ENSMUST00000130509.4
0.010188
1.575
0.885
0.36
2.06


Plcxd2
ENSMUST00000130481.1
7.246
0.89
13.905
12.515
0.335


4932438A13Rik
ENSMUST00000057272.10
13.0887
5.6
3.495
16.97
3.325


Dennd4a
ENSMUST00000038890.5
2.2408
1.585
2.565
7.945
2


Rnf213
ENSMUST00000093902.7
5.0865
9.635
9.51
3.635
25.88


Thada
ENSMUST00000047524.8
5.4838
2.135
0.905
1.455
3.105


Myo18a
ENSMUST00000000645.8
58.0374
24.075
11.82
19.285
15.54


Arid1a
ENSMUST00000145664.4
2.9113
22.035
12.38
22.855
46.105


Kdm7a
ENSMUST00000002305.8
2.6234
1.37
0.825
5.275
2.585


Acacb
ENSMUST00000102582.3
0.094988
9.805
9.89
0.695
12.765


Szt2
ENSMUST00000075406.7
1.9876
11.305
6.01
12.64
23.78


Itpr2
ENSMUST00000053273.10
2.8832
12.9
3.67
2.51
9.24


Lsm11
ENSMUST00000129820.3
4.8305
1.22
0.93
3.445
5.425


Mlec
ENSMUST00000112121.3
47.8277
118.53
28.07
20.58
55.865


Dock9
ENSMUST00000100299.5
8.1985
15.025
1.25
14.375
14.965


Nedd4l
ENSMUST00000080418.4
9.5737
7.08
2.96
13.655
2.04


Dock8
ENSMUST00000025831.6
0.77808
9.92
6.845
0.57
9.52


Nhsl1
ENSMUST00000037341.9
1.7878
5.875
1.05
4.935
2.615


Ppp2ca
ENSMUST00000020608.2
68.756
19.555
13.075
39.965
26.905


Dicer1
ENSMUST00000041987.6
14.0004
4.275
2.83
7.6
4.7


Gt3c4
ENSMUST00000171404.3
13.4732
3.705
2.995
5.125
5.525


Kmt2c
ENSMUST00000045291.9
4.7035
6.69
3.035
16
8.135


Brwd1
ENSMUST00000113829.3
20.4707
6.315
5.375
25.78
27.745


Nf1
ENSMUST00000071325.4
7.3464
5.055
2.545
14.415
7.08


Macf1
ENSMUST00000097897.6
33.1411
33.89
10.045
69.81
39.905


Rnf217
ENSMUST00000081989.7
5.7943
0.64
1.975
2.135
4.165


Luzp1
ENSMUST00000105849.4
13.8241
7.415
1.975
8.59
6.33


Cdc42bpb
ENSMUST00000041965.3
13.1609
35.79
24.09
34.105
80.285


Utrn
ENSMUST00000076817.4
12.3318
6.415
1.945
5.64
6.86


Ep400
ENSMUST00000112435.4
10.5929
12.095
7.385
10.795
29.565


Sec16a
ENSMUST00000114082.4
10.026
44.96
49.215
11.775
77.965


Dip2c
ENSMUST00000174552.3
4.5092
5.425
2.26
10.925
9.925


Itga4
ENSMUST00000099972.4
0.98389
0.745
0.22
1.455
0.86


Jrk
ENSMUST00000050234.3
3.0198
2.195
0.59
1.61
3.47


Elmsan1
ENSMUST00000110294.1
2.1229
3.835
2.27
3.215
8.14


Edem1
ENSMUST00000089162.3
26.1889
9.995
36.81
3.915
17.59


Son
ENSMUST00000114037.4
42.8623
41.73
30.405
90.75
116.81


Sox6
ENSMUST00000072804.6
1.7896
3.84
1.54
1.915
0.4


Ctif
ENSMUST00000165559.1
0.41227
3.855
6.235
10.86
8.125


Uhrf1bp1l
ENSMUST00000020112.5
14.9405
6.94
5.02
13.115
3.51


Sbf1
ENSMUST00000123791.3
24.207
43.31
30.32
37.735
92.27


Rfx7
ENSMUST00000093820.5
6.3641
3.42
1.79
7.645
3.875


Nbeal2
ENSMUST00000167320.3
22.7269
22.705
6.865
6.845
19.445


Dock4
ENSMUST00000037488.6
3.5462
2.305
3.745
9.67
7.92


Trim56
ENSMUST00000054384.5
5.4775
7.035
3.405
0.875
7.93


Dync1h1
ENSMUST00000018851.9
31.0827
20.345
7.335
34.97
30.03


Crebbp
ENSMUST00000023165.7
3.0552
10.25
5.13
12.09
15.08


Gm20342
ENSMUST00000185480.1
0.47756
0.995
0.375
1.425
1.04


Fign
ENSMUST00000131615.4
0.16505
1.48
1.08
0.455
0.885


Baz2a
ENSMUST00000170054.4
2.8055
12.265
7.03
13.83
18.38


Parp14
ENSMUST00000042665.8
0.34536
2.465
2.58
0.805
1.85


AU022252
ENSMUST00000141112.1
6.2459
3.7
10.075
3.765
2.62


Als2cl
ENSMUST00000155014.1
19.0563
9.665
9.545
1.675
12.565


Prdm15
ENSMUST00000095849.5
4.6767
1.93
1.36
3.86
4.475


Med12
ENSMUST00000117706.3
5.8026
6.195
3.095
6.785
11.99


Polr2a
ENSMUST00000058470.11
3.9096
17.89
6.765
12.235
15.215


Amer1
ENSMUST00000084535.5
0.99038
1.025
0.605
1.385
2.12


Prrc2c
ENSMUST00000182660.3
24.3771
14.05
6.365
21.175
21.51


Setd1b
ENSMUST00000163030.4
0.43086
4.095
4.36
4.635
6.965


Aars
ENSMUST00000034441.7
70.6912
17.64
35.415
25.155
33.645


Rapgef1
ENSMUST00000102872.6
8.902
23.235
16.515
30.53
39.895


Kif13a
ENSMUST00000056978.7
4.8551
4.675
1.84
3.495
6.69


Irgq
ENSMUST00000049020.7
4.0891
9.435
8.965
18.785
14.635


Ep300
ENSMUST00000068387.6
6.7401
11.735
4.805
8.765
15.095


Rc3h1
ENSMUST00000161609.3
12.3175
8.205
4.565
4.415
10.83


Abhd2
ENSMUST00000037315.8
54.3027
18.115
49.21
15.365
32.57


Usp36
ENSMUST00000106296.4
4.8823
4.755
4.495
6.93
11.825


Aim1
ENSMUST00000020017.8
3.1261
2.185
1.94
0.835
1.015


Impg2
ENSMUST00000069936.7
0.12107
0.105
0.17
0.215
0.04


Dock5
ENSMUST00000039135.4
2.3545
2.985
1.965
0.84
3.74


Dcaf5
ENSMUST00000054145.6
5.2977
9.62
11.82
16.135
19.975


Rprd2
ENSMUST00000090791.3
5.7879
4.5
2.295
6.405
5.69


Spg11
ENSMUST00000036450.7
5.166
3.78
2.47
3.825
6.405


Smg7
ENSMUST00000043560.10
11.9726
18.295
6.955
16.41
14.7


Wdr81
ENSMUST00000173320.3
6.61
10.725
14.17
5.59
15.5


F8
ENSMUST00000033539.8
1.036
1.03
0.725
0.255
0.87


Atxn1l
ENSMUST00000093162.3
6.9561
9.77
4.06
6.12
9.485


Ubn1
ENSMUST00000052449.5
8.431
10.295
5.455
9.415
14.125


Nav2
ENSMUST00000064395.8
2.7094
8.87
10.075
11.265
8.795


Rnf169
ENSMUST00000080817.4
7.4291
3.135
3.975
5.865
3.705


Atg2b
ENSMUST00000041055.7
7.2585
4.42
3.16
6.6
5.605


Qser1
ENSMUST00000117237.1
2.0168
2.665
1.34
2.645
2.585


Arhgef12
ENSMUST00000165665.3
20.3522
24.855
13.04
24.395
15.285


Letm1
ENSMUST00000005431.5
21.2177
24.655
14.625
14.805
12.795


Larp1
ENSMUST00000178636.1
14.0446
20.295
24.67
18.37
28.09


Arhgap35
ENSMUST00000075845.6
17.0046
15.72
14.565
19.845
25.1


Zfyve26
ENSMUST00000021547.6
3.9207
4.605
4.46
3.245
6.19


Prpf8
ENSMUST00000018449.6
51.1044
52.23
41.555
36.85
65.435


Nr6a1
ENSMUST00000112877.3
2.2584
1.3
2.1
1.94
2.25








Claims
  • 1. A pair of non-naturally occurring nucleic acid probes for detecting a polynucleotide analyte, comprising: i. a first nucleic acid probe comprising: a) a first probe binding arm that is complementary to a first probe target region of a bridge probe; andb) a first polynucleotide analyte binding arm that is complementary to a first analyte target region of a polynucleotide analyte, andii. a second nucleic acid probe comprising: a) a second probe binding arm that is complementary to a second probe target region of the bridge probe; wherein the first probe target region is located downstream of the second probe target region on the bridge probe, andb) a second polynucleotide analyte binding arm that is complementary to a second analyte target region of the polynucleotide analyte, wherein the second analyte target region is located downstream of the first analyte target region on the polynucleotide analyte,
  • 2. The pair of non-naturally occurring nucleic acid probes of claim 1, wherein the polynucleotide analyte binding arm in the first and/or second nucleic acid probe consists of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides.
  • 3. The pair of non-naturally occurring nucleic acid probes of claim 1 or 2, wherein the probe binding arm in the first and/or second nucleic acid probes consists of 9 or 10 nucleotides.
  • 4. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 3, wherein the probe binding arm in the first and/or second nucleic acid probes comprises an identification portion for binding to a unique bridge probe.
  • 5. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 4, wherein the first and second nucleic acid probes comprise a linker positioned between the probe binding arm and the polynucleotide analyte binding arm.
  • 6. The pair of non-naturally occurring nucleic acid probes of claim 5, wherein the linker consists of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 nucleobases.
  • 7. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 6, wherein the bridge probe is a readout probe that is coupled or conjugated to a label (such as a fluorescent label).
  • 8. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 6, wherein the bridge probe is detected via hybridization to a readout probe that is conjugated to a label (such as a fluorescent label).
  • 9. The pair of non-naturally occurring nucleic acid probes of claim 8, wherein the readout probe hybridizes to a terminal region of the bridge probe.
  • 10. The pair of non-naturally occurring nucleic acid probes of claim 8, wherein the readout probe hybridizes to a central region of the bridge probe.
  • 11. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 10, wherein the first analyte target region is immediately adjacent to the second analyte target region.
  • 12. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 11, wherein the first analyte target region is spaced from the second analyte target region by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleobases.
  • 13. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 12, wherein the first probe target region is immediately adjacent to the second probe target region.
  • 14. The pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 13, wherein the first probe target region is spaced from the second probe target region by no more than 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 nucleobases.
  • 15. A probe system comprising a pair of non-naturally occurring nucleic acid probes of any one of claims 1 to 14.
  • 16. The probe system of claim 15, wherein the probe system further comprises a bridge probe.
  • 17. A method of detecting a polynucleotide analyte in a sample, the method comprising: (a) contacting the sample with a pair of non-naturally occurring nucleic acid probes according to any one of claims 1 to 14 or a probe system of claim 15 or 16; and(b) detecting the polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.
  • 18. A library for detecting two or more polynucleotide analytes in a sample; the library comprising two or more pairs of non-naturally occurring nucleic acid probes according to any one of claims 1 to 14 or a plurality of probe systems according to claim 15 or 16, wherein each pair of nucleic acid probes is specific to each polynucleotide analyte; andwherein each pair of nucleic acid probes is configured to hybridize to a unique bridge probe in the presence of the polynucleotide analyte.
  • 19. A method of detecting two or more polynucleotide analytes in a sample, the method comprising: a) contacting a sample with a library according to claim 18, andb) detecting each polynucleotide analyte based on hybridization to a unique bridge probe in the presence of the polynucleotide analyte.
  • 20. The method of claim 19, wherein the method comprises contacting the sample with a unique bridge probe for each polynucleotide analyte.
  • 21. The method of claim 20, wherein the unique bridge probe comprises a specific tag or barcode sequence.
  • 22. The method of any one of claims 19 to 21, wherein the two or more polynucleotide analytes are detected concurrently based on hybridization to a unique bridge probe for each polynucleotide analyte.
  • 23. The method of any one of claims 19 to 22, wherein the two or more polynucleotide analytes are detected sequentially based on multiple rounds of hybridization to a unique bridge probe for each polynucleotide analyte.
  • 24. The method of any one of claims 19 to 23, wherein the method comprises detecting the unique bridge probe via hybridization to a readout probe that is conjugated to a label.
  • 25. The method of claim 24, wherein the method comprises contacting the sample with a unique readout probe for each polynucleotide analyte.
  • 26. The method of any one of claims 19 to 25, wherein the method comprises removing any bound or unbound bridge and/or readout probe in between detection of each polynucleotide analyte.
  • 27. The method of any one of claims 19 to 26, wherein the method comprises removing any signal from any bound or unbound readout probe in between detection of each polynucleotide analyte.
  • 28. A method of detecting or visualising the expression of one or more polynucleotide analytes in a sample, the method comprising a) contacting a sample with a library according to claim 18, and b) detecting or visualising the one or more polynucleotide analytes based on hybridisation to a unique bridge probe in the presence of the one or more polynucleotide analytes.
  • 29. A kit comprising a pair of non-naturally occurring nucleic acid probes according to any one of claims 1 to 14 or a plurality of probe systems according to claims 15 or 16 or a library according to claim 18.
  • 30. The kit of claim 29, wherein the kit further comprises one or more bridge probes.
Priority Claims (1)
Number Date Country Kind
10202001453Y Feb 2020 SG national
PCT Information
Filing Document Filing Date Country Kind
PCT/SG2020/050353 6/24/2020 WO