Nucleic acids for detecting Aspergillus species and other filamentous fungi

Information

  • Patent Grant
  • 6372430
  • Patent Number
    6,372,430
  • Date Filed
    Tuesday, June 27, 2000
    24 years ago
  • Date Issued
    Tuesday, April 16, 2002
    22 years ago
Abstract
Nucleic acids for detecting Aspergillus species and other filamentous fungi are provided. Unique internal transcribed space 2 coding regions permit the development of nucleic acid probes specific for five different species of Aspergillus, three species of Fusarium, four species of Mucor, two species of Penecillium, five species of Rhizopus, one species of Rhizomucor, as well as probes for Absidia corymbifer, Cunninghamella elagans, Pseudallescheria boydii, and Sporothrix schenkii. Methods are disclosed for the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizomucor, absidia, Cunninghaemella, Pseudallescheria or Sporthrix in a subject. Furthermore, genus-specific probes are also provided for Aspergillus, Fusarium and Mucor, in addition to an all-fungus nucleic acid probe.
Description




TECHNICAL FIELD




This application relates in general to the field of diagnostic microbiology. In particular, the invention relates to the species-specific detection of Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella,


Pseudallescheria boydii


(


Scedosporium apiospermum


), and Sporothrix species.




BACKGROUND OF THE INVENTION




In recent years, chemotherapy for hematological malignancies, and high-dose corticosteroid treatment for organ transplant recipients, along with the spread of AIDS, have greatly increased the number of immunocompromised patients (1, 12, 14, 43). Saprophytic filamentous fungi, such as Aspergillus, Rhizopus, and Mucor species, found in the environment and considered to be of low virulence, are now responsible for an increasing number of infections in the immunocompromised host (17, 20, 43). In addition, these infections are often fulminant and rapidly fatal in immunocompromised patients (7, 11, 12, 20, 44). Morbidity and mortality is extremely high; for example, aspergillosis has a mortality rate of approximately 90% (8, 11).




To complicate matters, diagnosis is difficult and symptoms are often non-specific (18, 27, 29, 42, 44). Antibody-based tests can be unreliable due to the depressed or variable immune responses of immunocompromised patents (2, 9, 18, 46). Antigen detection tests developed to date have fallen short of the desired sensitivity (2, 9, 38). Radiographic evidence can be non-specific and inconclusive (5, 29, 36), although some progress in diagnosis has been made with the advent of computerized tomography (40). However, definitive diagnosis still requires either a positive blood or tissue culture or histopathological confirmation (3, 21). An added complication is that the invasive procedures necessary to obtain biopsy materials are often not recommended in thrombocytopenic patient populations (37, 41).




Even when cultures of blood, lung or rhinocerebral tissues are positive, morphological and biochemical identification of filamentous fungi can require several days for adequate growth and sporulation to occur, delaying targeted drug therapy. Some atypical isolates may never sporulate, making identification even more difficult (23). When histopathology is performed on tissue biopsy sections, the morphological similarities of the various filamentous fungi in tissue make differentiation difficult (16). Fluorescent antibody staining of histopathological tissue sections is not specific unless cross-reactive epitopes are absorbed out which can make the resultant antibody reactions weak (14, 19). Therapeutic choices vary (7, 41, 44) making a test to rapidly and specifically identify filamentous fungi urgently needed for the implementation of appropriately targeted therapy. Early and accurate diagnosis and treatment can decrease morbidity and increase the chances for patient survival (6, 27, 39). Furthermore, identification of filamentous fungi to at least the species level would be epidemiologically useful (24, 31, 43, 47).




PCR-based methods of detection, which show promise as rapid, sensitive means to diagnose infections, have been used in the identification of DNA from Candida species (13, 15, 30) and some other fungi, particularly Aspergillus species (31, 33, 45). However, most of these tests are only genus-specific (28, 38) or are directed to detect only single-copy genes (4, 35). Others have designed probes to detect multi-copy genes so as to increase test sensitivity (31, 33) but in doing so have lost test specificity because they have used highly conserved genes, which detect one or a few species but which are also plagued with cross-reactivities to human, fungal or even viral DNA (25, 31, 33).




Therefore, it is an object of the invention to provide improved materials and methods for detecting and differentiating Aspergillus and other filamentous fungal species in the clinical and laboratory settings.




SUMMARY OF THE INVENTION




The present invention relates to nucleic acids for detecting Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria (Scedosporium), and Sporothrix species. Unique internal transcribed spacer 2 coding regions permit the development of probes specific for five different Aspergillus species,


A. flavus, A. fumigatus, A. niger, A. terreus


, and


A. nidulans


. The invention thereby provides methods for the species-specific detection and diagnosis of Aspergillus infection in a subject. In addition, species probes have been developed for three Fusarium, four Mucor, two Penicillium, five Rhizopus and one Rhizomucor species, as well as probes for


Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii


(


Scedosporium apiospermum


), and


Sporothrix schenckii


. Generic probes for Aspergillus, Fusarium, and Mucor species have also been developed.




These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.




DETAILED DESCRIPTION OF THE INVENTION




This invention provides a simple, rapid, and useful method for differentiating filamentous fungal species from each other and from other medically important fungi. This invention enables a rapid, simple and useful method to isolate fungal DNA from host samples, and to apply the species- and genus-specific probes for the diagnosis of a disease. Ultimately, these probes can be used for in situ hybridization or in situ PCR diagnostics so that the morphology of host tissue, and microorganisms, remain intact.




The invention provides nucleic acids containing regions of specificity for five Aspergillus, three Fusarium, four Mucor, two Penicillium, five Rhizopus and one Rhizomucor species as well as probes for


Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii


(


Scedosporium apiospremum


), and


Sporothrix schenckii


. These nucleic acids are from the internal transcribed spacer 2 (“ITS2”) region of ribosomal deoxyribonucleic acid (rDNA) of the genome of the aforementioned filamentous fungi. The ITS2 region is located between the 5.8S rDNA region and the 28S rDNA region.




In particular, the invention provides nucleic acids from


Aspergillus flavus


(SEQ ID NO:1),


Aspergillus fumigatus


(SEQ ID NO:2),


Aspergillus niger


(SEQ ID NO:3),


Aspergillus terreus


(SEQ ID NO:4),


Aspergillus nidulans


(SEQ ID NO:5),


Fusarium solani


(SEQ ID NO:6),


Fusarium moniliforme


(SEQ ID NO:7),


Mucor rouxii


(SEQ ID NO:8),


Mucor racemosus


(SEQ ID NO:9),


Mucor plumbeus


(SEQ ID NO: 10),


Mucor indicus


(SEQ ID NO:11),


Mucor circinilloides f. circinelloides


(SEQ ID NO:12),


Rhizopus oryzae


(SEQ ID NO:13 and NO:14),


Rhizopus microsportis


(SEQ ID NO:15 and 16),


Rhizopus circinans


(SEQ ID NO:17 and 18).


Rhizopus stolonifer


(SEQ ID NO:19),


Rhizomucor pusillus


(SEQ ID NO:20),


Absidia corymbifera


(SEQ ID NO:21 and 22),


Cunninghamella elegans


(SEQ ID NO:23),


Pseudallescheria boydii


(teleomorph of


Scedosporium apiospermum


) (SEQ ID NO:24, 25, 26, and 27),


Penicillium notatum


(SEQ ID NO:28), and


Sporothrix schenkii


(SEQ ID NO:29). These sequences can be used to identify and distinguish the respective species of Aspergillus, Fusariunm, Mucor, Rhizopus, and Penicillium, and identify and distinguish these species from each other and from


Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii


(


Scedosporium apiospermum


), and


Sporothrix schenkii.






Furthermore, the invention provides isolated nucleic acid probes derived from GenBank nucleic acid sequences (for


Penicillium marneffei


and


Fusarium oxysporum


only) or from the above nucleic acid sequences which may be used as species-specific identifiers of


Aspergillus flavus


(SEQ ID NO:30 and 31),


Aspergillus fumigatus


(SEQ ID NO:32),


Aspergillus niger


(SEQ ID NO:33),


Aspergillus terreus


(SEQ ID NO:34),


Aspergillus nidulans


(SEQ ID NO:35),


Mucor rouxii


(SEQ ID NO:36),


Mucor plumbeus


(SEQ ID NO:37),


Mucor indicus


(SEQ ID NO:38),


Mucor circinilloides f. circinelloides


(SEQ ID NO:39),


Mucor racemosus


(SEQ ID NO:40),


Rhizopus oryzae


(SEQ ID NO:41),


Rhizopus circinans


(SEQ ID NO:42),


Rhizomucor pusillus


(SEQ ID NO:43),


Rhizopus stolonifer


(SEQ ID NO:44),


Pseudallescheria boydii


(


Scedosporium apiospermumn


)(SEQ ID NO:45),


Penicillium notatum


(SEQ ID NO:46),


Penicillium marneffei


(SEQ ID NO:47 and 48),


Fusarium moniliforme


(SEQ ID NO:49),


Fusarium oxysporum


(SEQ ID NO:50),


Fusarium solani


(SEQ ID NO:51),


Cunninghamella elegans


(SEQ ID NO:52, 53, and 54),


Absidia corymbifera


(SEQ ID NO:55),


Sporothrix schenkii


(SEQ ID NO:56), and


Rhizopus microsporus


(SEQ ID NO:57). Such probes can be used to selectively hybridize with samples containing nucleic acids from species of Aspergillus, Fusarium, Mucor, Rhizopus (or Rhizomucor), Penicillium, or from


Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii


(


Scedosporium apiospermum


), and


Sporothrix schenkii


. These fungi can be detected after polymerase chain reaction or ligase chain reaction amplification of fungal DNA and specific probing of amplified DNA with DNA probes labeled with digoxigenin, reacted with anti-digoxigenin antibodies labeled with horseradish peroxidase and a colorimetric substrate, for example. Additional probes can routinely be derived from the sequences given in SEQ ID NOs: 1-29, which are specific for the respective species. Therefore, the probes shown in SEQ ID NOs:30-57 are only provided as examples of the species-specific probes that can be derived from SEQ ID NOs: 1-29.




Generic probes for Aspergillus (SEQ ID NO:58), Fusarium, (SEQ ID NO:59) and Mucor (SEQ ID NO:60) species have also been developed to identify all members of their respective species which are listed above as well as an all-fungus biotinylated probe (SEQ ID NO:61) to capture all species-specific and generic probes listed above for their detection.




By “isolated” is meant nucleic acid free from at least some of the components with which it naturally occurs. By “selective” or “selectively” is meant a sequence which does not hybridize with other nucleic acids to prevent adequate determination of an Aspergillus, Fusarium, Mucor, Penicillium, Rhizopus or Rhizomucor genus or species or of


Absidia corymbifera, Cunninghamella elegans, Pseudallescheria boydii


(


Scedosporium apiospermum


), or


Sporothrix schenckii


species.




The hybridizing nucleic acid should have at least 70% complementarity with the segment of the nucleic acid to which it hybridizes. As used herein to describe nucleic acids, the term “selectively hybridizes” excludes the occasional randomly hybridizing nucleic acids and thus has the same meaning as “specifically hybridizing”. The selectively hybridizing nucleic acids of the invention can have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, and 99% complementarity with the segment of the sequence to which it hybridizes.




The invention contemplates sequences, probes and primers which selectively hybridize to the complementary, or opposite, strand of DNA as those specifically provided herein. Specific hybridization with nucleic acid can occur with minor modifications or substitutions in the nucleic acid, so long as functional species-specific or genus-specific hybridization capability is maintained. By “probe” is meant nucleic acid sequences that can be used as probes or primers for selective hybridization with complementary nucleic acid sequences for their detection or amplification, which probes can vary in length from about 5 to 100 nucleotides, or preferably from about 10 to 50 nucleotides, or most preferably about 18 nucleotides. The invention provides isolated nucleic acids that selectively hybridize with the species-specific nucleic acids under stringent conditions and should have at least 5 nucleotides complementary to the sequence of interest. See generally, Maniatis (26).




If used as primers, the invention provides compositions including at least two nucleic acids which hybridize with different regions so as to amplify a desired region. Depending on the length of the probe or primer, target region can range between 70% complementary bases and full complementarity and still hybridize under stringent conditions. For example, for the purpose of diagnosing the presence of the Aspergillus, the degree of complementarity between the hybridizing nucleic acid (probe or primer) and the sequence to which it hybridizes (e.g., Aspergillus DNA from a sample) is at least enough to distinguish hybridization with a nucleic acid from other yeasts and filamentous fungi. The invention provides examples of nucleic acids unique to each filamentous fungus in the listed sequences so that the degree of complementarity required to distinguish selectively hybridizing from nonselectively hybridizing nucleic acids under stringent conditions can be clearly determined for each nucleic acid.




Alternatively, the nucleic acid probes can be designed to have homology with nucleotide sequences present in more than one species of the fungi listed above. Such a nucleic acid probe can be used to selectively identify a group of species such as the generic probes listed for Aspergillus (SEQ ID NO:58), Fusarium (SEQ ID NO:59), and Mucor (SEQ ID NO:60) as well as all fungi listed (SEQ ID NO:61). Additionally, the invention provides that the nucleic acids can be used to differentiate the filamentous fungi listed in general from other filamentous fungi and yeasts, such as Candida species. Such a determination is clinically significant, since therapies for these infections differ.




The invention further provides methods of using the nucleic acids to detect and identify the presence of the filamentous fungi listed, or particular species thereof. The method involves the steps of obtaining a sample suspected of containing filamentous fungi. The sample may be taken from an individual, such as blood, saliva, lung lavage fluids, vaginal mucosa, tissues, etc., or taken from the environment. The filamentous fungal cells can then be lysed, and the DNA extracted and precipitated. The DNA is preferably amplified using universal primers derived from the internal transcribed spacer regions, 18S, 5.8S and 28S regions of the filamentous fungal rDNA. Examples of such universal primers are shown below as ITS1 (SEQ ID NO:62), ITS3 (SEQ ID NO:63), ITS4 (SEQ ID NO:64). Detection of filamentous fungal DNA is achieved by hybridizing the amplified DNA with a species-specific probe that selectively hybridizes with the DNA. Detection of hybridization is indicative of the presence of the particular genus (for generic probes) or species (for species probes) of filamentous fungus.




Preferably, detection of nucleic acid (e.g. probes or primers) hybridization can be facilitated by the use of detectable moieties. For example, the species-specific or generic probes can be labeled with digoxigenin, and an all-fungus probe, such as described in SEQ ID NO:61, can be labeled with biotin and used in a streptavidin-coated microtiter plate assay. Other detectable moieties include radioactive labeling, enzyme labeling, and fluorescent labeling, for example.











The invention further contemplates a kit containing one or more species-specific probes, which can be used for the detection of particular filamentous fungal species and genera in a sample. Such a kit can also contain the appropriate reagents for hybridizing the probe to the sample and detecting bound probe. The invention may be further demonstrated by the following non-limiting examples.




EXAMPLES




In this example, PCR assay employing universal, fungus-specific primers and a simple, rapid EIA-based format for amplicon detection were used.




Extraction of Filamentous Fungal DNA




A mechanical disruption method was used to obtain DNA from filamentous fungal species and an enzymatic disruption method described previously (13) was used to obtain DNA from yeasts. Filamentous fungi were grown for 4 to 5 days on Sabouraud dextrose agar slants (BBL, division of Becton Dickinson, Cockeysville, Md.) at 35° C. Two slants were then washed by vigorously pipeting 5 mls of 0.01 M potassium phosphate buffered saline (PBS) onto the surface of each slant and the washes were transferred to 500 ml Erlenmeyer flasks containing 250 ml of Sabouraud dextrose broth (BBL). Flasks were then incubated for 4 to 5 days on a rotary shaker (140 rpm) at ambient temperature. Growth was then harvested by vacuum filtration through a sterile Whatman #1 filter paper which had been placed into a sterile Buchner funnel attached to a 2 L side-arm flask. The resultant cellular mat was washed on the filtration apparatus three times with sterile distilled water, removed from the filter paper by gentle scraping with a rubber policeman, and placed into a sterile Petri plate which was then sealed with parafilm and frozen at −20° C. until used.




Just prior to use, a portion of the frozen cellular mat, equal in size to a quarter, was removed and placed into a cold mortar (6″ diameter). Liquid nitrogen was added to cover the mat which was then ground into a powder with a pestle. Additional liquid nitrogen was added as needed to keep the mat frozen during grinding.




DNA was then purified using proteinase K and RNase treatment, multiple phenol extractions, and ethanol precipitation by conventional means (26).




PCR amplification




The fungus-specific, universal primer pair ITS3 (5′-GCA TCG ATG AAG AAC GCA GC-3′) (SEQ ID NO:63) and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) (SEQ ID NO:64) was used to amplify a portion of the 5.8S rDNA region, the entire ITS2 region, and a portion of the 28S rDNA region for each species as previously described (13, 34). DNA sequencing used this primer pair and also the fungus-specific, universal primer pair ITS1 (5′-TCC GTA GGT GAA CCT GCG G-3′) (SEQ ID NO: 62) and ITS4 to amplify a portion of the 18S rDNA region, the entire 5.8S region, the entire ITS1 and ITS2 regions, and a portion of the 28S rDNA region.




A DNA reagent kit (TaKaRa Biomedicals, Shiga, Japan) was used for PCR amplification of genomic DNA. PCR was performed using 2 μl of test sample in a total PCR reaction volume of 100 μl consisting of 10 μl of 10×Ex Tag buffer, 2.5 mM each of dATP, dGTP, dCTP, and dTTP, in 8 μl 0.2 μM of each primer, and 0.5 U of TaKaRa Ex Tag DNA polymerase. Thirty cycles of amplification were performed in a Perkin-Elmer 9600 thermal cycler (Emeryville, Calif.) after initial denaturation of DNA at 95° C. for 5 minutes. Each cycle consisted of a denaturation step at 95° C. for 30 seconds, an annealing step at 58° C. for 30 seconds, and an extension step at 72° C. for 1 minute. A final extension at 72° C. for 5 minutes followed the last cycle. After amplification, samples were stored at −20° C. until used.












TABLE 1











Synthetic Universal Oligonucleotides Used in PCR






and Hybridization Analyses













Primers




Nucleotide Sequence




Chemistry






or Probes




(5′ to 3′)




and Location









ITS3




GCA TCG ATG AAG




5.85 rDNA universal 5′







AAC GCA GC




primer







(SEQ ID NO:63)






ITS4




TCC TCC GCT TAT




28S rDNA universal 3′







TGA TAT GC




primer







(SEQ ID NO:64)






ITSI




TCC GTA GGT GAA




185 rDNA universal 5′







CCT GCG G




primer







(SEQ ID NO:62)














DNA Sequencing




Primary DNA amplifications were conducted as described above. The aqueous phase of the primary PCR reaction was purified using QIAquick Spin Columns (Quiagen, Chatsworth, Calif.). DNA was eluted from each column with 50 μl of heat-sterilized Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0).




Purified DNA was labeled using a dye terminator cycle sequencing kit (ABI PRISM, Perkin Elmer, Foster City, Calif.). One mix was made for each of the primers so that sequencing could be performed in both the forward and reverse directions. The reaction volume (20 μl) contained 9.5 μl Terminator Premix, 2 μl (1 ng) DNA template, 1 μl primer (3.2 pmol) and 7.5 μl heat-sterilized distilled H


2


O. The mixture was then placed into a pre-heated (96° C.) Perkin Elmer 9600 thermal cycler for 25 cycles of 96° C. for 10 seconds, 50° C. for 5 seconds, 60° C. for 4 minutes. The PCR product was then purified before sequencing using CentriSep spin columns (Princeton Separations, Adelphia, N.J.). DNA was then vacuum dried, resuspended in 6 μl of formamide-EDTA (5 μl deionized formamide plus 1 μl 50 mM EDTA, pH 8.0), and denatured for 2 min at 90° C. prior to sequencing using an automated capillary DNA sequencer (ABI Systems, Model 373, Bethesda, Md.).




The sequencing results were as follows:






Aspergillus flavus


5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.













(SEQ ID NO:1)














GCTGCCCATC AAGCACGGC TTGTGTGTTG GGTCGTCGTC















CCCTCTCCGG GGGGGACGGG CCCCAAAGGC AGCGGCGGCA















CCGCGTCCGA TCCTCGAGCG TATGGGGCTT TGTCACCCGC















TCTGTAGGCC CGGCCGGCGC TTGCCGAACG CAAATCAATC















TTTTTCCAGG TTGACCTCGG ATCAGGTAGG GATACCCGCT















GAACTTCAA













Aspergillus fumigatus


5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.












(SEQ ID NO:2)











AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA













AGAACGCAGC GAAATGCGAT AACTAATGTG AATTGCAGAA













TTCAGTGAAT CATCGAGTCT TTGAACGCAC ATTGCGCCCC













CTGGTATTCC GGGGGGCATG CCTGTCCGAG CGTCATTGCT













GCCCATCAAG CACGGCTTGT GTGTTGGGCC CCCGTCCCCC













TCTCCCGGGG GACGGGCCCG AAAGGCAGCG GCGGCACCGC













GTCCGGTCCT CGAGCGTATG GGGCTTGTCA CCTGCTCTGT













AGGCCCGGCC GGCGCCAGCC GACACCCAAC TTTATTTTTC













TAAGGTTGAC CTCGGATCAG GTAGGGATAC CCGCTGAACT TAAA













Aspergillus niger


5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.












(SEQ ID NO:3)











AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA













AGAACGCAGC GAAATGCGAT AACTAATGTG AATTGCAGAA













TTCAGTGAAT CATCGAGTCT TTGAACGCAC ATTGCGCCCC













CTGGTATTCC GGGGGGCATG CCTGTCCGAG CGTCATTGCT













GCCCTCAAGC ACGGCTTGTG TGTTGGGTCG CCGTCCCCCT













CTCCCGGGGG ACGGGCCCGA AAGGCAGCGG CGGCACCGCG













TCCGATCCTC GAGCGTATGG GGCTTTGTCA CCTGCTCTGT













AGGCCCGGCC GGCGCCTGCC GACGTTATCC AACCATTTTT













TTCCAGGTTG ACCTCGGATC AGGTAGGGAT ACCCGCTGAA CTTAA













Aspergillus terreus


5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.













(SEQ ID NO:4)














AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA















AGAACGCAGC GAAATGCGAT AACTAATGTG AATTGCAGAA















TTCAGTGAAT CATCGAGTCT TTGAACGCAC ATTGCGCCCC















CTGGTATTCC GGGGGGGCAT GCCTGTCCGA GCGTCATTGC















TGCCCTCAAG CCCGGCTTGT GTGTTGGGCC CTCGTCCCCC















GGCTCCCGGG GGACGGGCCC GAAAGGCAGC GGCGGCACCG















CGTCCGGTCC TCGAGCGTAT GGGGCTTCGT CTTCCGCTCC















GTAGGCCCGG CCGGCGCCCG CCGAACGCAT TTATTTGCAA















CTTGTTTTTT TTTCCAGGTT GACCTCGGAT CAGGT













Aspergillus nidulans


5.8S ribosomal RNA gene, partial sequence, internal transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial sequence.












(SEQ ID NO:5)











AAACTTTCAA CAATGGATCT CTTGGTTCCG GCATCGATGA













AGAACGCAGC GAACTGCGAT AAGTAATGTG AATTGCAGAA













TTCAGTGAAT CATCGAGTCT TTGAACGCAC ATTGCGCCCC













CTGGCATTCC GGGGGGCATG CCTGTCCGAG CGTCATTGCT













GCCCTCAAGC CCGGCTTGTG TGTTGGGTCG TCGTCCCCCC













CCCCGGGGGA CGGGCCCGAA AGGCAGCGGC GGCACCGGTC













CGGTCCTCGA GCGTATGGGG CTTGGTCACC CGCTCGATTA













GGGCCGGCCG GGCGCCAGCC GGCGTCTCCA ACCTTATCTT













TCTCAGGTTG ACCTCGGATC AGGTAGGGAT ACCCGCTGAA CTTAA













Fusarium solani


(strain ATCC62877) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:6)














GAAAATGCGA TAAGTAATGT GAATTGCAGA ATTCAGTGAA















TCATCGAATC TTTGAACGCA CATTGCGCCC GCCAGTATTC















TGGCGGGCAT GCCTGTTCGA GCGTCATTAC AACCCTCAGG















CCCCCGGGCC TGGCGTTGGG GATCGGCGGA AGCCCCCTGC















GGGCACAACG CCGTCCCCCA AATACAGTGG CGGTCCCGCC















GCAGCTTCCA TTGCGTAGTA GCTAACACCT CGCAACTGGA















GAGCGGCGCG GCCACGCCGT AAAACACCCA ACTTCTGAAT















GTTGACCTCG AATCAGGTAG GAATACCCGC TGAACTTAA













Fusarium moniliforme


(strain ATCC38519) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:7)














AAATGCGATA AGTAATGTGA ATTGCAAAAT TCAGTGAATC















ATCGAATCTT TGAACGCACA TTGCGCCCGC CAGTATTCTG















GCGGGCATGC CTGTTCGAGC GTCATTTCAA CCCTCAAGCC















CCCGGGTTTG GTGTTGGGGA TCGGCAAGCC CTTGCGGCAA















GCCGGCCCCG AAATCTAGTG GCGGTCTCGC TGCAGCTTCC















ATTGCGTAGT AGTAAAACCC TCGCAACTGG TACGCGGCGC















GGCCAAGCCG TTAAACCCCC AACTTCTGAA TGTTGACCTC















GGATCAGGTA GGAATACCCG CTGAACTTAA













Mucor rouxii


(strain ATCC24905) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:8)














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCAAC TTGCGCTCAT TGGTATTCCA















ATGAGCACGC CTGTTTCAGT ATCAAAACAA ACCCTCTATC















CAGCATTTTG TTGAATAGGA ATACTGAGAG TCTCTTGATC















TATTCTGATC TCGAACCTCT TGAAATGTAC AAAGGCCTGA















TCTTGTTTAA ATGCCTGAAC TTTTTTTTAA TATAAAGAGA















AGCTCTTGCG GTAAACTGTG CTGGGGCCTC CCAAATAATA















CTCTTTTTAA ATTTGATCTG AAATCAGGCG GGATTACCCG















CTGAACTTAA













Mucor racemosus


(strain ATCC22365) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:9)














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCAAC TTGCGCTCAT TGGTATTCCA















ATGAGCACGC CTGTTTCAGT ATCAAAACAA ACCCTCTATC















CAACTTTTGT TGTATAGGAT TATTGGGGGC CTCTCGATCT















GTATAGATCT TGAAATCCCT GAAATTTACT AAGGCCTGAA















CTTGTTTAAA TGCCTGAACT TTTTTTTAAT ATAAAGGAAA















GCTCTTGTAA TTGACTTTGA TGGGGCCTCC CAAATAAATC















TCTTTTAAAT TTGATCTGAA ATCAGGCGGG ATTACCCGCT















GAACTTAA













Mucor plumbeus


(strain ATCC4740) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:10)














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCAAC TTGCGCTCAT TGGTATTCCA















ATGAGCACGC CTGTTTCAGT ATCAAAACAA ACCCTCTATC















CAACTTTTGT TGTATAGGAT TATTGGGGGC CTCTCGATCT















GTATAGATCT TGAAACCCTT GAAATTTACT AAGGCCTGAA















CTTGTTTAAT GCCTGAACTT TTTTTTAATA TAAAGGAAAG















CTCTTGTAAT TGACTTTGAT GGGGCCTCCC AAATAAATCT















TTTTTAAATT TGATCTGAAA TCAGGTGGGA TTACCCGCTG















AACTTAA













Mucor indicus


(strain ATCC4857) internal transcribed spacer 2 and adjacent regions.













(SEQ ID NO:11)














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCATC TTGCACTCAA TGGTATTCCA















TTGAGTACGC CTGTTTCAGT ATCAAAAAC AACCCTTATT















CAAAATTCTT TTTTTGAATA GATATGAGTG TAGCAACCTT















ACAAGTTGAG ACATTTTAAA TAAAGTCAGG CCATATCGTG















GATTGAGTGC CGATACTTTT TTAATTTTGA AAAGGTAAAG















CATGTTGATG TCCGCTTTTT GGGCCTCCCA AATAACTTTT















TAAACTTGAT CTGAAATCAG GTGGGATTAC CCGCTGAACT















TAA













Mucor circinelloides f. circinelloides


(strain ATCC1209B) internal transcribed spacer 2 and adjacent regions.














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCAAC TTGCGCTCAT TGGTATTCCA















ATGAGCACGC CTGTTTCAGT ATCAAAACAA ACCCTCTATC















CAACATTTTT GTTGAATAGG ATGACTGAGA GTCTCTTGAT















CTATTCTGAT CTCGAAGCTC TTGAAATGTA CAAAGGCCTG















ATCTTGTTTG AATGCCTGAA CTTTTTTTTA ATATAAAGAG















AAGCTCTTGC GGTAAACTGT GCTGGGGCCT CCCAAATAAC















ACATCTTTAA ATTTGATCTG AAATCAGGT GGGACTACCC















GCTGAACTT AA (SEQ ID NO:12)













Rhizopus oryzae


(strain ATCC34965) internal transcribed spacer 2 and adjacent regions.














AGTGCGATAA CTAGTGTGAA TTGCATATTC AGTGAATCAT















CGAGTCTTTG AACGCAGCTT GCACTCTATG GTTTTTCTAT















AGAGTACGCC TGCTTCAGTA TCATCACAAA CCCACACATA















ACATTTGTTT ATGTGGTGAT GGGTCGCATC GCTGTTTTAT















TACAGTGAGC ACCTAAAATG TGTGTGATTT TCTGTCTGGC















TTGCTAGGCA GGAATATTAC GCTGGTCTCA GGATCTTTTT















TTTTGGTTCG CCCAGGAAGT AAAGTACAAG AGTATAATCC















AGTAACTTTC AAACTATGAT CTGAAGTCAG GTGGGATTAC















CCGCTGAACT TAA (SEQ ID NO:13)













Rhizopus oryzae


(strain ATCC11886) internal transcribed spacer 2 and adjacent regions.














AGTGCGATAA CTAGTGTGAA TTGCATATTC AGTGAATCAT















CGAGTCTTTG AACGCAGCTT GCACTCTATG GTTTTTCTAT















AGAGTACGCC TGCTTCAGTA TCATCACAAA CCCACACATA















ACATTTGTTT ATGTGGTAAT GGGTCGCATC GCTGTTTTAT















TACAGTGAGC ACCTAAAATG TGTGTGATTT TCTGTCTGGC















TTGCTAGGCA GGAATATTAC GCTGGTCTCA GGATCTTTTT















CTTTGGTTCG CCCAGGAAGT AAAGTACAAG AGTATAATCC















AGCAACTTTC AAACTATGAT CTGAAGTCAG GTGGGATTAC















CCGCTGAACT TAA (SEQ ID NO:14)













Rhizopus microsporus


(strain ATCC14056) internal transcribed spacer 2 and adjacent regions.














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCGTGAATCA















TCGAGTCTTT GAACGCAGCT TGCACTCTAT GGATCTTCTA















TAGAGTACGC TTGCTTCAGT ATCATAACCA ACCCACACAT















AAAATTTATT TTATGTGGTG ATGGACAAGC TCGGTTAAAT















TTAATTATTA TACCGATTGT CTAAAATACA GCCTCTTTGT















AATTTTCATT AAATTACGAA CTACCTAGCC ATCGTGCTTT















TTTGGTCCAA CCAAAAAACA TATAATCTAG GGGTTCTGCT















AGCCAGCAGA TATTTTAATG ATCTTTAACT ATGATCTGAA















GTCAAGTGGG ACTACCCGCT GAACTTAA (SEQ ID NO:15)













Rhizopus microsporus


(strain ATCC12276) internal transcribed spacer 2 and adjacent regions.












AAAGTGCGAT AACTAGTGTG AATTGCATAT TCGTGAATCA













TCGAGTCTTT GAACGCAGCT TGCACTCTAT GGATCTTCTA













TAGAGTACGC TTGCTTCAGT ATCATAACCA ACCCACACAT













AAAATTTATT TTATGTGGTG ATGGACAAGC TCGGTTAAAT













TTAATTATTA TACCGATTGT CTAAAATACA GCCTCTTTGT













AATTTTCATT AAATTACGAA CTACCTAGCC ATCGTGCTTT













TTTGGTCCAA CCAAAAAACA TATAATCTAG GGGTTCTGCT













AGCCAGCAAA TATTTTAATG ATCTTTAACC TATGATCTGA













AGTCAAGTGG GACTACCCGC TGAACTTAA (SEQ ID NO:16)













Rhizopus circinans


(strain ATCC34106) internal transcribed spacer 2 and adjacent regions.














AAATTGCGAT AACTAGTGTG AATTGCATTT TCAGTGAATC















ATCGAGTCTT TGAACGCAT CTTGCGCTCT TGGGATTCTT















CCCTAGAGCA CACTTGCTTC AGTATCATAA CAAAACCCTC















ACCTAATATT TTTTTTTTTT AAAAAAAAAA TATTAGAGTG















GTATTGGGGT CTCTTTGGTA ATTCTTTGTA ATTATAAAAG















TACCCTTAAA TGTCATAAAC AGGTTAGCTT TAGCTTGCCT















TTAAAGATCT TCTTAGGGTA TCATTACTTT TCGTAAATCT















TTAATAGGCC TGTCACATAA TTCTACCCTT AAATTTCTTA















AACCTTGATC TGAAGTCAAG TGGGAGTACC CGCTGAACTT AA















(SEQ ID NO:17)













Rhizopus circinans


(strain ATCC34101) internal transcribed spacer 2 and adjacent regions.














AAATTGCGAT AACTAGTGTG AATTGCATTT TCAGTGAATC















ATCGAGTCTT TGAACGCATC TTGCGCTCTT GGGATTCTTC















CCTAGAGCAC ACTTGCTTCA GTATCATAAC AAAACCCTCA















CCTAATATTT TTTTTTAAAA AAAAAAAATA TTAGAGTGGT















ATTGGGGTCT CTTTGGTAAT TCTTTGTAAT TATAAAAGTA















CCCTTAAATG TCATAAACAG GTTAGCTTTA GCTTGCCTTT















AAAGATCTTC TTAGGGTATC ATTACTTTTC GTAAATCTTT















AATAGGCCTG TCACATAATT CTACCCTTAA ATTTCTTAAA















CCTTGATCTG AAGTCAAGTG GGAGTACCCG CTGAACTTAA















(SEQ ID NO:18)













Rhizous stolonifer


(strains ATCC14037 and 6227A) internal transcribed spacer 2 and adjacent regions.














AAAGTGCGAT AACTAGTGTG AATTGCATAT TCAGTGAATC















ATCGAGTCTT TGAACGCAAC TTGCACTCTA TGGTTTTCCG















TAAAGTACGC TTGCTTCAGT ATCATAAAGA CCCCATCCTG















ATTATTATTT TTTTATTAAA ATAATTAATT TTGGAGATAA















TAAAAATGAG GCTCTTTCTT TTCTTTTTTT TTTTTTTAAA















AAAAAGGGGG GGAAAGGGTC TTTTAAAATG GGCAAATTCT















GGGTTTTTTA CTAAACCTGA ACTCCCCCCA AAAATTCAAA















AAAAAAAAAA TGGGTTTTAC CAAATTTTTT TTTTTTTTCT















CCTTTTTGTG TAGTTAATAC TCTATTAAAT TTATTTACTT















GGTATTATAA CGATTATGCA AGAAGGGAGA GAACAAAGAA















TAATGAAAGA GAGTTTTTAA ATAAATTCTT TTTTCATTTT















TTCAATCAAT GATCTGAAGT CAAGTGGGAT TACCCGCTGA















ACTTAA (SEQ ID NO:19)













Rhizomucor pusillus


(strain ATCC36606) internal transcribed spacer 2 and adjacent regions.












AAATTGCGAA AAGTAATGCG ATCTGCAGCC TTTGCGAATC













ATCGAATTCT CGAACGCACC TTGCACCCTT TGGTTCATCC













ATTGGGTACG TCTAGTTCAG TATCTTTATT AACCCCTAAA













GGTTTATTTT TTGATAAATC TTTGGATTTG CGGTGCTGAT













GGATTTTCAT CCGTTCAAGC TACCCGAACA ATTTGTATGT













TGTTGACCCT TGATATTTCC TTGAGGGCTT GCATTGGTAT













CTAATTTTTT ACCAGTGTGC TTCGAGATGA TCAAGTATAA













AGGTCAATCA ACCACAAATA AATTTCAACT ATGGATCTGA













ACTTAGATGG GATTACCCGC TGAACTTAA (SEQ ID NO:20)













Absidia corymbifera


(strain ATCC46774) internal transcribed spacer 2 and adjacent regions.














AAAGTGCGAT AATTATTGCG ACTTGCATTC ATAGCGAATC















ATCGAGTTCT CGAACGCATC TTGCGCCTAG TAGTCAATCT















ACTAGGCACA GTTGTTTCAG TATCTGCAAC TACCAATCAG















TTCAACTTGG TTCTTTGAAC CTAAGCGAGC TGGAAATGGG















CTTGTGTTGA TGGCATTCAG TTGCTGTCAT GGCCTTAAAT















ACATTTAGTC CTAGGCAATT GGCTTTAGTC ATTTGCCGGA















TGTAGACTCT AGAGTGCCTG AGGAGCAACG ACTTGGTTAG















TGAGTTCATA ATTCCAAGTC AATCAGTCTC TTCTTGAACT















AGGTCTTAAT CTTTATGGAC TAGTGAGAGG ATCTAACTTG















GGTCTTCTCT TAAAACAAAC TCACATCTAG ATCTGAAATC















AACTGAGATC ACCCGCTGAA CTTAA (SEQ ID NO:21)













Absidia corymbifera


(strain ATCC46773) internal transcribed spacer 2 and adjacent regions.














AAAGTGCGAT AATTATTGCG ACTTGCATTC ATAGTGAATC















ATCGAGTTCT TGAACGCATC TTGCGCCTAG TAGTCAATCT















ACTAGGCACA GTTGTTTCAG TATCTGCATC CACCAATCAA















CTTAACCTTT TGTGTTGAGT TGGAACTGGG CTTCTAGTTG















ATGGCATTTA GTTGCTGTCA TGGCCTTAAA TCAATGTCCT















AGGTGTTAGA ACATCTAACA CCGGATGGAA ACTTTAGAGC















GCTTTAAGAG CAGCTTGGTT AGTGAGTTCA ATAATTCCAA















GCATTAAGTC TTTTAATGAA CTAGCTTTTC TATCTATGGG















ACACTACTTG GAGAAATCCA AGTAACCTTT AAACTCCCAT















TTAGATCTGA AATCAACTGA GACCACCCGC TGAACTTAA















(SEQ ID NO:22)













Cunninghamella elegans


(strain ATCC42113) internal transcribed spacer 2 and adjacent regions.














AAATCGCGAT ATGTAATGTG ACTGCCTATA GTGAATCATC















AAATCTTTGA AACGCATCTT GCACCTTATG GTATTCCATA















AGGTACGTCT GTTTCAGTAC CACTAATAAA TCTCTCTCTA















TCCTTGATGA TAGAAAAAAA AAAAATAATT TTTACTGGGC















CCGGGGAATC CTTTTTTTTT TTTAATAAAA AGGACCAATT















TTGGCCCAAA AAAAAGGGTT GAACTTTTTT TACCAGATCT















TGCATCTAGT AAAAACCTAG TCGGCTTTAA TAGATTTTTA















TTTTCTATTA AGTTTATAGC CATTCTTATA TTTTTTAAAA















TCTTGGCCTG AAATCAGATG GGATACCCGC TGAACTTAA















(SEQ ID NO:23)













Pseudallescheria boydii


(strain ATCC44328) internal transcribed spacer 2 and adjacent regions (teleomorph of


Scedosporium apiospennum


).














AAATGCGATA AGTAATGTAA ATTGCAAAAT TCAGTGAATC















ATCGAATCTT TGAAACGCAC ATTGCGCCCG GCAGTAATCT















GCCGGGCATG CCTGTCCGAG CGTCATTTCA ACCCTCGAAC















CTCCGTTTC CTTAGGGAAG CCTAGGGTCG GTGTTGGGGC















GCTACGGCAA GTCCTCGCAA CCCCCGTAGG CCCTGAAATA















CAGTGGCGGT CCCGCCGCGG TTGCCTTCTG CGTAGTAAGT















CTCTTTTGCA AGCTCGCATT GGGTCCCGGC GGAGGCCTGC















CGTCAAACCA CCTAACAACT CCAGATGGTT TGACCTCGGA















TCAGGTAGGG TTACCCGCTG AACTTAA (SEQ ID NO:24)













Pseudallescheria boydii


(strain ATCC36282) internal transcribed spacer 2 and adjacent regions (teleomorph of


Scedosporium apiospermum


).














GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAAT















CATCGAATCT TTGAAACGCA CATTGCGCCC GGCAGTAATC















TGCCGGGCAT GCCTGTCCGA GCGTCATTTC AACCCTCGAA















CCTCCGTTTC CTCAGGGAAG CTCAGGGTCG GTGTTGGGGC















GCTACGGCAA GTCTTCGCAA CCCTCCGTAG GCCCTGAAAT















ACAGTGGCGG TCCCGCCGCG GTTGCCTTCT GCGTAGAAGT















CTCTTTTGCA AGCTCGCATT GGGTCCCGGC GGAGGCCTGC















CGTCAAACCA CCTATAACTC CAAATGGTTT GACCTCGGAT















CAGGTAGGGT TACCCGCTGA ACTTAA (SEQ ID NO:25)













Scedosporium apiospermum


(strain ATCC64215) internal transcribed spacer 2 and adjacent regions.














GAAATGCGAT AAGTAATGTG AATTGCAGAA TTCAGTGAATC















ATCGAATCTT TGAACGCACA TTGCGCCCGG CAGTAATCTG















CCGGGCATGC CTGTCCGAGC GTCATTTCAA CCCTCGAACC















TCCGTTTCCT CAGGGAAGCT CAGGGTCGGT GTTGGGGCGC















TACGGCGAGT CTTCGCGACC CTCCGTAGGC CCTGAAATAC















AGTGGCGGTC CCGCCGCGGT TGCCTTCTGC GTAGTAAGTC















TCTTTTGCAA GCTCGCATTG GGTCCCGGCG GAGGCCTGCC















GTCAAACCAC CTATAACTCC AGATGGTTTG ACCTCGGATC















AGGTAGGTAC CCGCTGAACT TAA (SEQ ID NO:26)













Scedosporium apiospermum


(strain ATCC46173) internal transcribed spacer 2 and adjacent regions.














AAATGCGATA AGTAATGTGA ATTGCAGAAT TCAGTGAATC















ATCGAATCTT TGAACGCACA TTGCGCCCGG CAGTAATCTG















CCGGGCATGC CTGTCCGAGC GTCATTTCAA CCCTCGAACC















TCCGTTTCCT CAGGGAAGCT CAGGGTCGGT GTTGGGGCGC















TACGGCGAGT CTTCGCGACC CTCCGTAGGC CCTGAAATAC















AGTGGCGGTC CCGCCGCGGT TGCCTTCTGC GTAGTAAGTC















TCTTTTGCAA GCTCGCATTG GGTCCCGGCG GAGGCCTGCC















GTCAAACCAC CTATAACTCC AGATGGTTTG ACCTCGGATC















AGGTAGGTAC CCGCTGAACT TAA (SEQ ID NO:27)













Penicillium notatum


(strain ATCC10108) internal transcribed spacer 2 and adjacent regions.












AAATGCGATA CGTAATGTGA ATTGCAAATT CAGTGAATCA













TCGAGTCTT TGAACGCACA TTGCGCCCCC TGGTATTCCG













GGGGGCATGC CTGTCCGAGC GTCATTGCTG CCCTCAAGCA













CGGCTTGTGT GTTGGGCCCC GTCCTCCGAT CCCGGGGGAC













GGGCCCGAAA GGCAGCGGCG GCACCGCGTC CGGTCCTCGA













GCGTATGGGG CTTTGTCACC CGCTCTGTAG GCCCGGCCGG













CGCTTGCCGA TCAACCCAAA TTTTTATCCA GGTTGACCTC













GGATCAGGTA GGGATACCCG CTGAACTTAA (SEQ ID NO:28)













Sporothrix schenckii


(strain ATCC14284) internal transcribed spacer 2 and adjacent regions.














GAAATGCGAT ACTAATGTGA ATTGCAGAAT TCAGCGAACC















ATCGAATCTT TGAACGCACA TTGCGCCCGC CAGCATTCTG















GCGGGCATGC CTGTCCGAGC GTCATTTCCC CCCTCACGCG















CCCCGTTGCG CGCTGGTGTT GGGGCGCCCT CCGCCTGGCG















GGGGGCCCCC GAAAGCGAGT GGCGGGCCCT GTGGAAGGCT















CCGAGCGCAG TACCGAACGC ATGTTCTCCC CTCGCTCCGG















AGGCCCCCCA GGCGCCCTGC CGGTGAAAAC GCGCATGACG















CGCAGCTCTT TTTACAAGGT TGACCTCGGA TCAGGTGAGG




2















ATACCCGCTG ACTTAA (SEQ ID NO:29)











Contamination Precautions




Precautions were taken to avoid possible contamination of PCR samples by following the guidelines of Fujita and Kwok (13, 22). All buffers and distilled water used for PCR assays were autoclaved and fresh PCR reagents were aliquoted prior to use. Physical separation of laboratory areas used to prepare PCR assays and to analyze PCR products, and the use of aerosol-resistant pipette tips, reduced possible cross-contamination of samples by aerosols. Appropriate negative controls were included in each test run, including controls omitting either the primer or the DNA template during PCR assays.




Agarose gel Electrophoresis




Gel electrophoresis was conducted in TBE buffer (0.1 M Tris, 0.09 M boric acid, 1 mM EDTA, pH 8.4) at 80 V for 1 to 2 hours using gels composed of 1% (w/vol) agarose (International Technologies, New Haven, Conn.) and 1% (w/vol) NuSieve agar (FMC Bioproducts, Rockland, Me.). Gels were stained with 0.5 μg of ethidium bromide (EtBr) per ml of distilled H


2


O for 10 minutes followed by three serial washes for 10 minutes each with distilled H


2


O.




Microtitration Plate Enzyme Immunoassay for the Detection of PCR Products




Amplicons were detected using species-specific and genus probes labeled with digoxigenin and an all-filamentous fungal probe labeled with biotin in a streptavidin-coated microtiter plate format (13, 34). Ten μl of PCR product was added to each 1.5 ml Eppendorf tube. Single-stranded DNA was then prepared by heating the tubes at 95° C. for 5 minutes and cooling immediately on ice. Two-tenths of a ml of hybridization solution [4×SSC (saline sodium citrate buffer, 0.6 M NaCl, 0.06 M trisodium citrate, pH 7.0) containing 20 mM Hepes, 2 mM EDTA, and 0.15% (vol/vol) Tween 20] supplemented with 50 ng/ml each of the all-Aspergillus biotinylated probe and a species-specific digoxigenin-labeled probe was added to each tube containing denatured PCR product. Tubes were mixed by inversion and placed in a water bath at 37° C. to allow probes to anneal to PCR product DNA. After 1 hour, 100 μl of each sample was added to duplicate wells of a commercially prepared streptavidin-coated microtitration plate (Boehringer Mannheim, Indianapolis, Ind.). The plate was incubated at ambient temperature for 1 hour with shaking, using a microtitration plate shaker (manufactured for Dynatech by CLTI, Middletown, N.Y.). Plates were washed 6 times with 0.01 M potassium phosphate buffered saline, pH 7.2, containing 0.05% Tween 20 (PBST). Each well then received 100 μl of horseradish peroxidase-conjugated, anti-digoxigenin Fab fragment (Boehringer Mannheim) diluted 1:1000 in hybridization buffer. After incubation at ambient temperature for 30 minutes with shaking, the plate was washed 6 times with PBST. One hundred μl of a mixture of one volume of 3, 3′, 5, 5′-tetramethyl benzidine peroxidase substrate (Kirkegaard and Perry Laboratories, Inc., Gaithersberg, Md.) and one volume of peroxidase solution (Kirkegaard and Perry Laboratories) was added to each well and the plate was placed at ambient temperature for 10 minutes for color development. The A


650


nm of each well was determined with a microtitration plate reader (UV Max, Molecular Devices, Inc., Menlo Park, Calif.). The absorbance value for the reagent blank, where DNA was absent but replaced with distilled H


2


O, was subtracted from each test sample.




Statistical Analysis




The Student's t test was used to determine differences between sample means. Means are expressed as the mean plus or minus the standard error from the mean. Differences were considered significant when P<0.05.




The following probes were used to detect and distinguish each species.












TABLE 2











Probe Sequences














5′ to 3′








OLIGONUCLEOTIDE






PROBES




SEQUENCE









Generic Biotin Probe




5′ end-labeled biontinylated








probe







5.8S region of rDNA






B-58




GAA TCA TCG A(AG)T CTT




SEQ ID NO 61







TGA ACG






Digoxigenin-probe




5′ end-labeled digoxigenin probe







ITS2 region of rDNA






Aspergillus species








A. flavus 22






GCA AAT CAA TCT TTT TCC




SEQ ID NO 30








A. flavus 23






GAA CGC AAA TCA ATC TTT




SEQ ID NO 31








A. fumigatus






CCG ACA CCC ATC TTT ATT




SEQ ID NO 32








A. niger






GAC GTT ATC CAA CCA TTT




SEQ ID NO 33








A. nidulans






GGC GTC TCC AAC CTT ATC




SEQ ID NO 35








A. terreus






GCA TTT ATT TGC AAC TTG




SEQ ID NO 34






Fusarium species








F. moniliforme






TCT AGT GAC GGT CTC GCT




SEQ ID NO 49








F. oxysporum






CGT TAA TTC GCG TTC CTC




SEQ ID NO 50








F. solani






CTA ACA CCT CGC AAC TGG




SEQ ID NO 51







AGA






Mucor species








M. circinelloides






AAC ATT TTT GTG AAT AGG




SEQ ID NO 39







ATG








M. indicus






CGT GGA TTG AGT GCC GAT




SEQ ID NO 38








M. plumbeus






GAA ACC CTT GAA ATT




SEQ ID NO 37








M. rouxii






GAA TAG GAA TAC TGA GAG




SEQ ID NO 36








M. racemosus






GAA ATC CCT GAA ATT




SEQ ID NO 40






Penicillium species








Penicillium marneffei


1




GGG TTG GTC ACC ACC ATA




SEQ ID NO 47








Penicillium marneffei


2




TGG TCA CCA CCA TAT TTA




SEQ ID NO 48








Penicillium notatum






GAT CAA CCC AAA TTT TTA




SEQ ID NO 46






Rhizopus species








R. circinans






CTT AGG GTA TCA TTA CTT




SEQ ID NO 42








R. microsporus






CAT ATA ATC TAG GGG TTC




SEQ ID NO 57








R. oryzae






GAG TAT AAT CCA G(CT)A




SEQ ID NO 41







ACT








R. stolonifer






CTT GGT ATT ATA ACG ATT




SEQ ID NO 44








Rhizomucor pusillus






TCC TTG AGG GCT TGC ATT




SEQ ID NO 43






Other Genera








Absidia corymbifera






GTT GCT GTC ATG GCC TTA




SEQ ID NO 55








Cunninghamella elegans 4






TAG TCG GCT TTA ATA GAT




SEQ ID NO 52








Cunninghamella elegans 5






TAT TAA GTT TAT AGC CAT




SEQ ID NO 53








Cunninghamella elegans 6






TAA GTt TAT AGC CAT TCT




SEQ ID NO 54








Pseudallescheria boydii






AAG TCT CTT TTG CAA GCT




SEQ ID NO 45








Sporothrix schoenckii






GAC GCG CAG CTC TTT TTA




SEQ ID NO 56






Genus Probes






G-ASPERGILLUS




CCT CGA GCG TAT GGG GCT




SEQ ID NO 58






G-FUSARIUM




CCC AAC TTC TGA ATG TTG




SEQ ID NO 59






G-MUCOR




(AC)TG GGG CCT CCC AAA




SEQ ID NO 60







TAA














Species-specific probes to the ITS2 region of rDNA for


Aspergillus fumigatus


(SEQ ID NO:32),


A. flavus


(SEQ ID NO:31),


A. niger


(SEQ ID NO:33),


A. terreus


(SEQ ID NO:34), and


A. nidulans


(SEQ ID NO:35) correctly identified each of the respective species (P<0.001), and gave no false-positive reactions with Rhizopus, Mucor, Fusarium, Penicillium, or Candida species. The


A. flavus


probe also recognized


A. oryzae


, which belongs to the


A. flavus


group. Identification time was reduced from a mean of 5 days by conventional methods to 8 hours.












TABLE 3











Aspergillus Probes
















Fungus






A. fumigatus








A. nidulans








A. niger








A. terreus








A. flavus













A. fumigatus






2.197 ±




0.002




0.000




0.001




0.001






(n = 6)




0.187








A. nidulans






0.001




1.315 ±




0.002




0.000




0.001






(n = 3)





0.464








A. niger






0.000




0.000




1.242 ±




0.001




0.003






(n = 5)






0.471








A. terreus






0.001




0.000




0.001




1.603 ±




0.001






(n = 4)







0.378








A. flavus






0.001




0.001




0.000




0.001




2.043 ±






(n = 6)








0.390








A. oryzae






0.001




0.002




0.001




0.001




2.445 ±






(n = 2)








0.106








A. parasitica






0.001




0.002




0.002




0.002




0.051






(n = 1)








A. clavus






0.005




0.005




0.006




0.005




0.003






(n = 1)








C. albicans






0.002




0.001




0.002




0.000




0.000






(n = 1)








C. parasilosis






0.001




0.002




0.002




0.002




0.001






(n = 1)








C. glabrata






0.001




0.003




0.001




0.001




0.005






(n = 1)








C. krusei






0.002




0.002




0.002




0.001




0.001






(n = 1)








C. tropicalis






0.002




0.002




0.001




0.000




0.001






(n = 1)








F. moniliforme






0.003




0.003




0.001




0.001




0.001






(n = 1)








F. solani






0.006




0.002




0.001




0.000




0.001






(n = I)








R. oryzae






0.001




0.001




0.001




0.001




0.001






(n = 1)








M. racemosus






0.001




0.002




0.005




0.002




0.000






(n = 1)








P. notatum






0.001




0.002




0.002




0.002




0.000






(n = 1)






Avg ± SD




0.001 ±




0.001 ±




0.000 ±




0.000 ±




0.002 ±






negative




0.002




0.001




0.002




0.002




0.010






controls














Species-specific probes to the ITS2 region of rDNA for


Fusarium oxysporum, F. solani


, and


F. moniliforme


, correctly identified each of the respective species (P<0.001), and gave no false-positive reactions with Blastomyces, Apophysomyces, Candida, Aspergillus, Mucor, Penecillium, Rhizopus, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria, Sporothrix, or Neosartorya. Empty boxes in Table 4 represent zero probe reactivity.












TABLE 4











Fusarium Probes



















Generic






Fungus






F. oxysporum








F. solani








F. moniliforme






Fusarium











F. oxysporum






1.40 ±






1.76 ±






(n = 3)




0.13






0.27








F. solani







1.57 ±





1.35 ±






(n = 5)





0.07





0.28








F. moniliforme








1.40 ±




1.34 ±






(n = 2)




0.01




0.91






Negative control








A. fumigatus










A. flavus










A. niger










A. nidulans










A. terreus










A. parasiticus










A. clavatus










P. marneffei







0.01




0.01








P. notatum






0.01




0.01




0.01








Rhizopus oryzae







0.03




0.01








Rhizopus microsporus







0.01




0.01








Rhizopus circinans







0.01




0.01








Rhizopus stolonifer






0.01




0.01








Rhizomucor pusillus






0.03




0.02








M. racemosus










M. circinelloides










M. rouxii










M. plumbeus










M. indicus










Absidia corymbifera







0.01




0.01








Cunninghamella elegans







0.01




0.02








P. boydii






0.02








Sporothrix schenckii







0.01




0.01








C. albicans










C. tropicalis










C. krusei










C. parasilosis










C. glabrata










Neosartorya fischeri







0.01








Blastomyces dermatitidis










Apophysomyces elegans








Average of negative controls




0.001 ±




0.005 ±




0.004 ±







0.002




0.01




0.006














Species-specific probes to various other zygomyces are presented in Table 5, showing correct identification of each species and no false positives. The exceptions are that the


M. circinelloides


probe hybridized with the


M. rouxii


DNA and the


M. plumbeus


probe hybridized with the


M. racemosus


DNA. However, the


M. rouxii


probe did not hybridize with


M. circinelloides


DNA, nor did the


M. racemosus


probe hybridize with


M. plumbeus


DNA. Therefore, by a process of elimination, each species can be correctly identified. Empty boxes in Table 5 represent zero probe reactivity.












TABLE 5











Zygomyces Probes
























D-probes

















FUNGUS




RORY




RMIC




RCIR




RSTOL




RPUS




MRACE




MCIR




MRX




MPLUM




MIND




ABS




CUN











R. oryzae






1.50 ±







0.01













(n = 5)




0.48








R. microsporus







0.96 ±






(n = 5)





0.61








R. circinans








1.56 ±






(n = 3)






0.19








R. stolonifer









2.53 ±






0.01






(n = 5)







0.07








Rhizomucor pusillus










1.10 ±






(n = 2)








0.68








M. racemosus









0.01





2.02 ±






0.29 ±






(n = 6)









0.34






0.52








M. circinelloides












1.63 ±




0.01




0.02






(n = 3)










0.37








M. rouxii












1.77




0.76






(n = 1)








M. plumbeus














2.14 ±






(n = 2)












0.25








M. indicus







0.01











1.70 ±






(n = 1)













0.04








Absidia corymbifera










0.01







0.01





1.61 ±






(n = 2)














0.08








Cunninhamella







0.01













2.26 ±








elegans

















0.03






(n = 2)






Negative control








A. fumigatus














0.01




0.02








A. flavus










0.01








0.05








A. niger













0.01








A. nidulans














0.01




0.01








A. terreus






0.01








A. parasiticus










0.01








0.03








A. clavatus















0.02








P. marneffei








0.01








P. notatum















0.03








F. oxysporum













0.01








F. solani










F. moniliforme






0.01






0.01







0.01





0.01








P. boydii






0.02








Sporothrix schenckii










C. albicans










C. tropicalis










C. krusei










C. parasilosis










C. glabrata










Neosartorya fischeri








0.01








Blastomyces










dermatifidis










Apophysomyces










elegans








Average




0.001 ±




0.001 ±




0.000 ±




0.000 ±




0.001 ±




0.001 ±




0.001 ±




0.001 ±




0.003 ±




0.005 ±




0.001 ±







.004




0.02




0.002




0.003




0.003




0.002




0.002




0.003




0.005




0.01




0.001














Species-specific probes to various other fungi are presented in Table 6, showing correct identification of each species and no false positives. Empty boxes in Table 6 represent zero probe reactivity.












TABLE 6











Pseudallescheria and Sporothrix Probes





















Sporothrix








Fungus






P. boydii








P. marneffei








P. notatum








schenckii













P. boydii






1.65 ±









(n = 4)




0.48








P. marneffei






0.01




1.24 ±






(n = 3)





0.12








P. notatum








1.93 ±






(n = 3)






0.25








Sporothrix schenckii






0.01






1.94 ±






(n = 3)







0.25






Negative control








A. fumigatus






0.01








A. flavus










A. niger










A. nidulans










A. terreus










A. parasiticus










A. clavatus








0.11








F. oxysporum







0.10








F. solani







0.14








F. moniliforme







0.08








R. oryzae






0.01








R. microsporus






0.01








R. circinans






0.01








R. stolonifer






0.01








Rhizomucor pusilus










M. racemosus







0.04








M. circinelloides






0.01




0.09








M. rouxii






0.01








M. plumbeus







0.05








M. indicus










Absidia corymbifera






0.01








Cunninghamela bertholietiae






0.01








C. albicans










C. tropicalis







0.02








C. krusei










C. parasilosis










C. glabrata










Neosatorya pseudofischeri







0.03








Blastomyces dermatitidis






0.01








Apophysomyces elegans






0.01






Average Negative Controls




0.004 ±




0.013 ±




0.002 ±




0.001 ±







0.002




0.03




0.019




0.002














All of the references mentioned in this Specification are hereby incorporated by reference in their entirety.




References




1. Ampel, N. M. 1996. Emerging disease issues and fungal pathogens associated with HIV infection. Emerg. Infec. Dis. 2:109-116.




2. Andriole, V. T. 1996. Aspergillus infections: problems in diagnosis and treatment. Infect. Agents and Dis. 5:47-54.




3. Andriole, V. T. 1993. Infections with Aspergillus species. Clin. Infec. Dis. 17 Suppl 2:S481-S486.




4. Bir, N., A. Paliwal, K. Muralidhar, P. Reddy, and P. U. Sarma. 1995. A rapid method for the isolation of genomic DNA from


Aspergillus fumigatus


. Prep. Biochem. 25:171-181.




5. Blum, U., M. Windfuhr, C. Buitrago-Tellez, G. Sigmund, E. W. Herbst, and M. Langer. 1994. Invasive pulmonary aspergillosis. MRI, CT, and plain radiographic findings and their contribution for early diagnosis. Chest 106:1156-1161.




6. Caillot, D., O. Casasnovas, A. Bernard, J. F. Couaillier, C. Durand, B. Cuisenier, E. Solary, F. Piard, T. Petrella, A. Bonnin, G. Couaillault, M. Dumas, and H. Guy, 1997. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J. Clin. Oncol. 15:139-147.




7. Denning, D. W. Therapeutic outcome in invasive aspergillosis. Clin. Infect. Dis. 23:608-615.




8. Denning, D. W. Diagnosis and management of invasive aspergillosis. Curr. Clin. Topics Inf. Dis. 16:277-299.




9. de Repentigny, L., L. Kaufman, G. T. Cole, D. Kruse, J. P. Latge, and R. C. Matthews. 1994. Immunodiagnosis of invasive fungal infections. J. Med. Vet. Mycol. 32 Suppl 1239-252.




10. Dupont, B., D. W. Denning, D. Marriott, A. Sugar, M. A. Viviani, and T. Sirisanthana. 1994. Mycoses in AIDS patients. J. Med. Vet. Mycol. 32 Suppl 1:221-239.




11. Fisher, B. D., D. Armstrong, B. Yu, and J. W. M. Gold. 1981. Invasive aspergillosis: progress in early diagnosis and treatment. Am. J. Med. 71:571-577.




12. Fridkin, S. K. and W. R. Jarvis. 1996. Epidemiology of nosocomial fungal infections. Clin. Microbiol. Rev. 9:499-511.




13. Fujita, S-I., B. A. Lasker, T. J. Lott, E. Reiss, and C. J. Morrison. 1995. Micro titration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood. J. Clin. Microbiol. 33:962-967.




14. Gordon, M. A., E. W. Lapa, and J. Kane. 1977. Modified indirect fluorescent antibody test for aspergillosis. J. Clin. Microbiol. 6:161-165.




15. Holmes, A. R., R. D. Cannon, M. G. Shepard, and H. F. Jenkinson. 1994. Detection of


Candida albicans


and other yeast in blood by PCR. J. Clin. Microbiol. 32:228-231.




16. Hung, C. C., S. C. Chang, P. C. Yang, W. C. Hseigh. 1994. Invasive pulmonary pseudallescheriasis with direct invasion of the thoracic spine in an immunocompromised patient. Eur. J. Clin. Microbiol. Infect. Dis. 13:749-751.




17. Kappe, R., and H. P. Seeliger. 1993. Serodiagnosis of deep-seated fungal infections. Curr. Topics Med. Mycol. 5:247-280.




18. Kappe, R., A. Schulze-Berge, H. G. Sonntag. 1996. Evaluation of eight antibody tests and one antigen test for the diagnosis of invasive aspergillosis. Mycoses 39:13-23.




19. Kaufman and Reiss, Manual of Clinical Microbiology.




20. Kremery, V., Jr., E. Kunova, Z. Jesenska, J. Trupi, S. Spanik, J. Mardiak, M. Studena, and E. Kukuckova. 1996. Invasive mold infections in cancer patients: 5 years' experience with Aspergillus, Mucor, Fusarium and Acremonium infections. Supportive Care in Cancer 4:39-45.




21. Khoo, S. H., and D. W. Denning. 1994. Invasive aspergillosis in patients with AIDS. Clin. Infect. Dis 19 Suppl 1: S41-S48.




22. Kwok, S., and R. Higuichi. 1989. Avoiding false positives with PCR. Nature (London) 339:237-238.




23. Larone, D. H. Medically Important Fungi: A Guide to Identification. 3rd ed. ASM Press, Washington, D. C. 1995.




24. Leenders, A., A. van Belkum, S. Janssen, S. de Marie, J. Kluytmans, J. Wielenga, B. Lowenberg, and H. Verbrugh. Molecular epidemiology of apparent outbreak of invasive aspergillosis in a hematology ward. J. Clin. Microbiol. 34:345-351.




25. Makimura, K., S. Y. Murayama, H. Yamaguchi. 1994. Specific detection of Aspergillus and Penicillium species from respiratory specimens by polymerase chain reaction (PCR). Jap. J. Med. Sci. Biol. 47:141-156.




26. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.




27. Martino, P., and C. Girmenia. 1993. Diagnosis and treatment of invasive fungal infections in cancer patients. Supportive Care in Cancer. 1:240-244.




28. Melchers, W. J., P. E. Verweij, P. van den Hurk, A. van Belkum, B. E. De Pauw, J. A. Hoogkamp-Korstanje, and J. F. Meis. 1994. General primer-mediated PCR for detection of Aspergillus species. J. Clin. Microbiol. 32:1710-1717.




29. Miller, W. T. J., G. J. Sals, I. Frank, W. B. Gefter, M. Aronchick, W. T. Miller. 1994. Pulmonary aspergillosis patients with AIDS. Clinical and radiographic correlations. Chest 105:37-44.




30. Miyakawa, Y., T. Mabuchi, and Y. Fukazawa. 1993. New method for detection of Candida albicans in human blood by polymerase chain reaction. J. Clin. Microbiol. 31:3344-3347.




31. Montone, K. T., and L. A. Litzky. 1995. Rapid method for detection of Aspergillus 5S ribosomal RNA using a genus-specific oligonucleotide probe. J. Clin. Microbiol. 103:48-51.




32. Rogers, T. R., K. A. Haynes, and R. A. Barnes. 1990. Value of antigen detection in predicting invasive asperaillosis. Lancet 336:1210-1213.




33. Sandhu, G. S., B. C. Kline, L. Stockman, and G. D. Roberts,. 1995. Molecular probes for diagnosis of fungal infections. J. Clin. Microbiol. 33:2913-2919.




34. Shin, J. H., F. S. Nolte, and C. J. Morrison. 1997. Rapid identification of Candida species in blood cultures using a clinically useful PCR method. J. Clin. Microbiol. in press.




35. Tang, C. M., D. W. Holden, A. Aufauvre-Brown, and J. Cohen. The detection of Aspergillus spp. by the polymerase chain reaction and its evaluation in bronchoalveolar lavage fluid. Amer. Rev. Respir. Dis 148:1313-1317.




36. Thompson, B. H., W. Stanford, J. R. Galvin, and Y. Kurlhara. 1995. Varied radiologic appearances of pulmonary aspergillosis. Radiographics 15:1273-1284.




37. Tierney, Jr. L. M. Aspergillosis. In Current Medical Diagnosis and Treatment. 33rd ed. Norwalk, Conn.: Appleton and Lange, 1994.




38. Verweij, P. E., J. P. Latge, A. J. Rijs, W. J. Melchers, B. E. De Pauw, J. A. Hoogkamp-Korstanje, and J. F. Mels. 1995. Comparison of antigen detection and PCR assay using bronchoalveolar lavage fluid for diagnosing invasive pulmonary aspergillosis in patients receiving treatment for hematological malignancies. J. Clin. Microbiol. 33:3150-3153.




39. von Eiff, M., N. Roos, R. Schulten, M. Hesse, M. Zuhisdorf, and J. van de Loo. 1995. Pulmonary aspergillosis: early diagnosis improves survival. Respiration 62:341-347.




40. von Eiff, M., N. Roos, W. Fegeler, C. von Eiff, R. Schulten, M. Hesse, M. Zuhisdorf, and J. van de Loo. 1996. Hospital acquired Candida and Aspergillus pneumonia-diagnostic approaches and clinical findings. J. Hosp. Infect. 32:17-28.




41. Walsh, T. J. 1993. Management of immunocompromised patients with evidence of an invasive mycosis. Hemat. Oncol. Clin. N. Amer. 7:1003-1026.




42. Walsh, T. J., C. Gonzalez, C. A. Lyman, S. J. Chanock, and P. A. Pizzo. 1996. Invasive fungal infections in children: recent advances in diagnosis and treatment. Adv. Ped. Inf. Dis. 11:187-290.




43. Walsh, T. J., B. De Pauw, E. Anaissle, and P. Martino. 1994. Recent advances in the epidemiology, prevention, and treatment of invasive fungal infections in neutropenic patients. J. Med. Vet. Mycol. 32 Supp 1:33-51.




44. Warnock, D. W. 1995. Fungal complications of transplantation: diagnosis, treatment, and prevention. J. Antimicrob. Chemother. 36 Suppl B:73-90.




45. Yamakami, Y., A. Hashimoto, I. Tokimatsu, and M. Nasu. 1996. PCR detection of DNA specific for Aspergillus species in serum of patients with invasive aspergillosis. J. Clin. Microbiol. 34:2464-2468.




46. Young, R. C., and J. E. Bennett. 1971. Invasive aspergillosis: absence of detectable antibody response. Am. Rev. Respir. Dis 104:710-716.




47. Zervos, M. J. and J. A. Vasquez. 1996. DNA analysis in the study of fungal infections in the immunocompromised host. Clin. Lab. Med. 16:73-88.







61




1


208


DNA


Aspergillus flavus



1
gctgcccatc aagcacggct tgtgtgttgg gtcgtcgtcc cctctccggg ggggacgggc 60
cccaaaggca gcggcggcac cgcgtccgat cctcgagcgt atggggcttt gtcacccgct 120
ctgtaggccc ggccggcgct tgccgaacgc aaatcaatct ttttccaggt tgacctcgga 180
tcaggtaggg atacccgctg aacttcaa 208




2


364


DNA


Aspergillus fumigatus



2
aaactttcaa caatggatct cttggttccg gcatcgatga agaacgcagc gaaatgcgat 60
aactaatgtg aattgcagaa ttcagtgaat catcgagtct ttgaacgcac attgcgcccc 120
ctggtattcc ggggggcatg cctgtccgag cgtcattgct gcccatcaag cacggcttgt 180
gtgttgggcc cccgtccccc tctcccgggg gacgggcccg aaaggcagcg gcggcaccgc 240
gtccggtcct cgagcgtatg gggcttgtca cctgctctgt aggcccggcc ggcgccagcc 300
gacacccaac tttatttttc taaggttgac ctcggatcag gtagggatac ccgctgaact 360
taaa 364




3


365


DNA


Aspergillus niger



3
aaactttcaa caatggatct cttggttccg gcatcgatga agaacgcagc gaaatgcgat 60
aactaatgtg aattgcagaa ttcagtgaat catcgagtct ttgaacgcac attgcgcccc 120
ctggtattcc ggggggcatg cctgtccgag cgtcattgct gccctcaagc acggcttgtg 180
tgttgggtcg ccgtccccct ctcccggggg acgggcccga aaggcagcgg cggcaccgcg 240
tccgatcctc gagcgtatgg ggctttgtca cctgctctgt aggcccggcc ggcgcctgcc 300
gacgttatcc aaccattttt ttccaggttg acctcggatc aggtagggat acccgctgaa 360
cttaa 365




4


355


DNA


Aspergillus terreus



4
aaactttcaa caatggatct cttggttccg gcatcgatga agaacgcagc gaaatgcgat 60
aactaatgtg aattgcagaa ttcagtgaat catcgagtct ttgaacgcac attgcgcccc 120
ctggtattcc gggggggcat gcctgtccga gcgtcattgc tgccctcaag cccggcttgt 180
gtgttgggcc ctcgtccccc ggctcccggg ggacgggccc gaaaggcagc ggcggcaccg 240
cgtccggtcc tcgagcgtat ggggcttcgt cttccgctcc gtaggcccgg ccggcgcccg 300
ccgaacgcat ttatttgcaa cttgtttttt tttccaggtt gacctcggat caggt 355




5


365


DNA


Aspergillus nidulans



5
aaactttcaa caatggatct cttggttccg gcatcgatga agaacgcagc gaactgcgat 60
aagtaatgtg aattgcagaa ttcagtgaat catcgagtct ttgaacgcac attgcgcccc 120
ctggcattcc ggggggcatg cctgtccgag cgtcattgct gccctcaagc ccggcttgtg 180
tgttgggtcg tcgtcccccc ccccggggga cgggcccgaa aggcagcggc ggcaccggtc 240
cggtcctcga gcgtatgggg cttggtcacc cgctcgatta gggccggccg ggcgccagcc 300
ggcgtctcca accttatctt tctcaggttg acctcggatc aggtagggat acccgctgaa 360
cttaa 365




6


319


DNA


Fusarium solani



6
gaaaatgcga taagtaatgt gaattgcaga attcagtgaa tcatcgaatc tttgaacgca 60
cattgcgccc gccagtattc tggcgggcat gcctgttcga gcgtcattac aaccctcagg 120
cccccgggcc tggcgttggg gatcggcgga agccccctgc gggcacaacg ccgtccccca 180
aatacagtgg cggtcccgcc gcagcttcca ttgcgtagta gctaacacct cgcaactgga 240
gagcggcgcg gccacgccgt aaaacaccca acttctgaat gttgacctcg aatcaggtag 300
gaatacccgc tgaacttaa 319




7


310


DNA


Fusarium moniliforme



7
aaatgcgata agtaatgtga attgcaaaat tcagtgaatc atcgaatctt tgaacgcaca 60
ttgcgcccgc cagtattctg gcgggcatgc ctgttcgagc gtcatttcaa ccctcaagcc 120
cccgggtttg gtgttgggga tcggcaagcc cttgcggcaa gccggccccg aaatctagtg 180
gcggtctcgc tgcagcttcc attgcgtagt agtaaaaccc tcgcaactgg tacgcggcgc 240
ggccaagccg ttaaaccccc aacttctgaa tgttgacctc ggatcaggta ggaatacccg 300
ctgaacttaa 310




8


330


DNA


Mucor rouxii



8
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcaac 60
ttgcgctcat tggtattcca atgagcacgc ctgtttcagt atcaaaacaa accctctatc 120
cagcattttg ttgaatagga atactgagag tctcttgatc tattctgatc tcgaacctct 180
tgaaatgtac aaaggcctga tcttgtttaa atgcctgaac ttttttttaa tataaagaga 240
agctcttgcg gtaaactgtg ctggggcctc ccaaataata ctctttttaa atttgatctg 300
aaatcaggcg ggattacccg ctgaacttaa 330




9


328


DNA


Mucor racemosus



9
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcaac 60
ttgcgctcat tggtattcca atgagcacgc ctgtttcagt atcaaaacaa accctctatc 120
caacttttgt tgtataggat tattgggggc ctctcgatct gtatagatct tgaaatccct 180
gaaatttact aaggcctgaa cttgtttaaa tgcctgaact tttttttaat ataaaggaaa 240
gctcttgtaa ttgactttga tggggcctcc caaataaatc tcttttaaat ttgatctgaa 300
atcaggcggg attacccgct gaacttaa 328




10


327


DNA


Mucor plumbeus



10
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcaac 60
ttgcgctcat tggtattcca atgagcacgc ctgtttcagt atcaaaacaa accctctatc 120
caacttttgt tgtataggat tattgggggc ctctcgatct gtatagatct tgaaaccctt 180
gaaatttact aaggcctgaa cttgtttaat gcctgaactt ttttttaata taaaggaaag 240
ctcttgtaat tgactttgat ggggcctccc aaataaatct tttttaaatt tgatctgaaa 300
tcaggtggga ttacccgctg aacttaa 327




11


322


DNA


Mucor indicus



11
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcatc 60
ttgcactcaa tggtattcca ttgagtacgc ctgtttcagt atcaaaaaca acccttattc 120
aaaattcttt ttttgaatag atatgagtgt agcaacctta caagttgaga cattttaaat 180
aaagtcaggc catatcgtgg attgagtgcc gatacttttt taattttgaa aaggtaaagc 240
atgttgatgt ccgctttttg ggcctcccaa ataacttttt aaacttgatc tgaaatcagg 300
tgggattacc cgctgaactt aa 322




12


330


DNA


Mucor circinelloides f.



12
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcaac 60
ttgcgctcat tggtattcca atgagcacgc ctgtttcagt atcaaaacaa accctctatc 120
caacattttt gttgaatagg atgactgaga gtctcttgat ctattctgat ctcgaagctc 180
ttgaaatgta caaaggcctg atcttgtttg aatgcctgaa ctttttttta atataaagag 240
aagctcttgc ggtaaactgt gctggggcct cccaaataac acatctttaa atttgatctg 300
aaatcaggtg ggactacccg ctgaacttaa 330




13


333


DNA


Rhizopus oryzae



13
agtgcgataa ctagtgtgaa ttgcatattc agtgaatcat cgagtctttg aacgcagctt 60
gcactctatg gtttttctat agagtacgcc tgcttcagta tcatcacaaa cccacacata 120
acatttgttt atgtggtgat gggtcgcatc gctgttttat tacagtgagc acctaaaatg 180
tgtgtgattt tctgtctggc ttgctaggca ggaatattac gctggtctca ggatcttttt 240
ttttggttcg cccaggaagt aaagtacaag agtataatcc agtaactttc aaactatgat 300
ctgaagtcag gtgggattac ccgctgaact taa 333




14


333


DNA


Rhizopus oryzae



14
agtgcgataa ctagtgtgaa ttgcatattc agtgaatcat cgagtctttg aacgcagctt 60
gcactctatg gtttttctat agagtacgcc tgcttcagta tcatcacaaa cccacacata 120
acatttgttt atgtggtaat gggtcgcatc gctgttttat tacagtgagc acctaaaatg 180
tgtgtgattt tctgtctggc ttgctaggca ggaatattac gctggtctca ggatcttttt 240
ctttggttcg cccaggaagt aaagtacaag agtataatcc agcaactttc aaactatgat 300
ctgaagtcag gtgggattac ccgctgaact taa 333




15


348


DNA


Rhizopus microsporus



15
aaagtgcgat aactagtgtg aattgcatat tcgtgaatca tcgagtcttt gaacgcagct 60
tgcactctat ggatcttcta tagagtacgc ttgcttcagt atcataacca acccacacat 120
aaaatttatt ttatgtggtg atggacaagc tcggttaaat ttaattatta taccgattgt 180
ctaaaataca gcctctttgt aattttcatt aaattacgaa ctacctagcc atcgtgcttt 240
tttggtccaa ccaaaaaaca tataatctag gggttctgct agccagcaga tattttaatg 300
atctttaact atgatctgaa gtcaagtggg actacccgct gaacttaa 348




16


349


DNA


Rhizopus microsporus



16
aaagtgcgat aactagtgtg aattgcatat tcgtgaatca tcgagtcttt gaacgcagct 60
tgcactctat ggatcttcta tagagtacgc ttgcttcagt atcataacca acccacacat 120
aaaatttatt ttatgtggtg atggacaagc tcggttaaat ttaattatta taccgattgt 180
ctaaaataca gcctctttgt aattttcatt aaattacgaa ctacctagcc atcgtgcttt 240
tttggtccaa ccaaaaaaca tataatctag gggttctgct agccagcaaa tattttaatg 300
atctttaacc tatgatctga agtcaagtgg gactacccgc tgaacttaa 349




17


361


DNA


Rhizopus circinans



17
aaattgcgat aactagtgtg aattgcattt tcagtgaatc atcgagtctt tgaacgcatc 60
ttgcgctctt gggattcttc cctagagcac acttgcttca gtatcataac aaaaccctca 120
cctaatattt ttttttttta aaaaaaaaat attagagtgg tattggggtc tctttggtaa 180
ttctttgtaa ttataaaagt acccttaaat gtcataaaca ggttagcttt agcttgcctt 240
taaagatctt cttagggtat cattactttt cgtaaatctt taataggcct gtcacataat 300
tctaccctta aatttcttaa accttgatct gaagtcaagt gggagtaccc gctgaactta 360
a 361




18


360


DNA


Rhizopus circinans



18
aaattgcgat aactagtgtg aattgcattt tcagtgaatc atcgagtctt tgaacgcatc 60
ttgcgctctt gggattcttc cctagagcac acttgcttca gtatcataac aaaaccctca 120
cctaatattt ttttttaaaa aaaaaaaata ttagagtggt attggggtct ctttggtaat 180
tctttgtaat tataaaagta cccttaaatg tcataaacag gttagcttta gcttgccttt 240
aaagatcttc ttagggtatc attacttttc gtaaatcttt aataggcctg tcacataatt 300
ctacccttaa atttcttaaa ccttgatctg aagtcaagtg ggagtacccg ctgaacttaa 360




19


486


DNA


Rhizopus stolonifer



19
aaagtgcgat aactagtgtg aattgcatat tcagtgaatc atcgagtctt tgaacgcaac 60
ttgcactcta tggttttccg taaagtacgc ttgcttcagt atcataaaga ccccatcctg 120
attattattt ttttattaaa ataattaatt ttggagataa taaaaatgag gctctttctt 180
ttcttttttt tttttttaaa aaaaaggggg ggaaagggtc ttttaaaatg ggcaaattct 240
gggtttttta ctaaacctga actcccccca aaaattcaaa aaaaaaaaaa tgggttttac 300
caaatttttt ttttttttct cctttttgtg tagttaatac tctattaaat ttatttactt 360
ggtattataa cgattatgca agaagggaga gaacaaagaa taatgaaaga gagtttttaa 420
ataaattctt ttttcatttt ttcaatcaat gatctgaagt caagtgggat tacccgctga 480
acttaa 486




20


349


DNA


Rhizomucor pusillus



20
aaattgcgaa aagtaatgcg atctgcagcc tttgcgaatc atcgaattct cgaacgcacc 60
ttgcaccctt tggttcatcc attgggtacg tctagttcag tatctttatt aacccctaaa 120
ggtttatttt ttgataaatc tttggatttg cggtgctgat ggattttcat ccgttcaagc 180
tacccgaaca atttgtatgt tgttgaccct tgatatttcc ttgagggctt gcattggtat 240
ctaatttttt accagtgtgc ttcgagatga tcaagtataa aggtcaatca accacaaata 300
aatttcaact atggatctga acttagatgg gattacccgc tgaacttaa 349




21


425


DNA


Absidia corymbifera



21
aaagtgcgat aattattgcg acttgcattc atagcgaatc atcgagttct cgaacgcatc 60
ttgcgcctag tagtcaatct actaggcaca gttgtttcag tatctgcaac taccaatcag 120
ttcaacttgg ttctttgaac ctaagcgagc tggaaatggg cttgtgttga tggcattcag 180
ttgctgtcat ggccttaaat acatttagtc ctaggcaatt ggctttagtc atttgccgga 240
tgtagactct agagtgcctg aggagcaacg acttggttag tgagttcata attccaagtc 300
aatcagtctc ttcttgaact aggtcttaat ctttatggac tagtgagagg atctaacttg 360
ggtcttctct taaaacaaac tcacatctag atctgaaatc aactgagatc acccgctgaa 420
cttaa 425




22


399


DNA


Absidia corymbifera



22
aaagtgcgat aattattgcg acttgcattc atagtgaatc atcgagttct tgaacgcatc 60
ttgcgcctag tagtcaatct actaggcaca gttgtttcag tatctgcatc caccaatcaa 120
cttaaccttt tgtgttgagt tggaactggg cttctagttg atggcattta gttgctgtca 180
tggccttaaa tcaatgtcct aggtgttaga acatctaaca ccggatggaa actttagagc 240
gctttaagag cagcttggtt agtgagttca ataattccaa gcattaagtc ttttaatgaa 300
ctagcttttc tatctatggg acactacttg gagaaatcca agtaaccttt aaactcccat 360
ttagatctga aatcaactga gaccacccgc tgaacttaa 399




23


359


DNA


Cunninghamella elegans



23
aaatcgcgat atgtaatgtg actgcctata gtgaatcatc aaatctttga aacgcatctt 60
gcaccttatg gtattccata aggtacgtct gtttcagtac cactaataaa tctctctcta 120
tccttgatga tagaaaaaaa aaaaataatt tttactgggc ccggggaatc cttttttttt 180
tttaataaaa aggaccaatt ttggcccaaa aaaaagggtt gaactttttt taccagatct 240
tgcatctagt aaaaacctag tcggctttaa tagattttta ttttctatta agtttatagc 300
cattcttata ttttttaaaa tcttggcctg aaatcagatg ggatacccgc tgaacttaa 359




24


346


DNA


Pseudallescheria boydii



24
aaatgcgata agtaatgtaa attgcaaaat tcagtgaatc atcgaatctt tgaaacgcac 60
attgcgcccg gcagtaatct gccgggcatg cctgtccgag cgtcatttca accctcgaac 120
ctccgtttcc ttagggaagc ctagggtcgg tgttggggcg ctacggcaag tcctcgcaac 180
ccccgtaggc cctgaaatac agtggcggtc ccgccgcggt tgccttctgc gtagtaagtc 240
tcttttgcaa gctcgcattg ggtcccggcg gaggcctgcc gtcaaaccac ctaacaactc 300
cagatggttt gacctcggat caggtagggt tacccgctga acttaa 346




25


346


DNA


Pseudallescheria boydii



25
gaaatgcgat aagtaatgtg aattgcagaa ttcagtgaat catcgaatct ttgaaacgca 60
cattgcgccc ggcagtaatc tgccgggcat gcctgtccga gcgtcatttc aaccctcgaa 120
cctccgtttc ctcagggaag ctcagggtcg gtgttggggc gctacggcaa gtcttcgcaa 180
ccctccgtag gccctgaaat acagtggcgg tcccgccgcg gttgccttct gcgtagaagt 240
ctcttttgca agctcgcatt gggtcccggc ggaggcctgc cgtcaaacca cctataactc 300
caaatggttt gacctcggat caggtagggt tacccgctga acttaa 346




26


344


DNA


Scedosporium apiospermum



26
gaaatgcgat aagtaatgtg aattgcagaa ttcagtgaat catcgaatct ttgaacgcac 60
attgcgcccg gcagtaatct gccgggcatg cctgtccgag cgtcatttca accctcgaac 120
ctccgtttcc tcagggaagc tcagggtcgg tgttggggcg ctacggcgag tcttcgcgac 180
cctccgtagg ccctgaaata cagtggcggt cccgccgcgg ttgccttctg cgtagtaagt 240
ctcttttgca agctcgcatt gggtcccggc ggaggcctgc cgtcaaacca cctataactc 300
cagatggttt gacctcggat caggtaggta cccgctgaac ttaa 344




27


343


DNA


Scedosporium apiospermum



27
aaatgcgata agtaatgtga attgcagaat tcagtgaatc atcgaatctt tgaacgcaca 60
ttgcgcccgg cagtaatctg ccgggcatgc ctgtccgagc gtcatttcaa ccctcgaacc 120
tccgtttcct cagggaagct cagggtcggt gttggggcgc tacggcgagt cttcgcgacc 180
ctccgtaggc cctgaaatac agtggcggtc ccgccgcggt tgccttctgc gtagtaagtc 240
tcttttgcaa gctcgcattg ggtcccggcg gaggcctgcc gtcaaaccac ctataactcc 300
agatggtttg acctcggatc aggtaggtac ccgctgaact taa 343




28


309


DNA


Penicillium notatum



28
aaatgcgata cgtaatgtga attgcaaatt cagtgaatca tcgagtcttt gaacgcacat 60
tgcgccccct ggtattccgg ggggcatgcc tgtccgagcg tcattgctgc cctcaagcac 120
ggcttgtgtg ttgggccccg tcctccgatc ccgggggacg ggcccgaaag gcagcggcgg 180
caccgcgtcc ggtcctcgag cgtatggggc tttgtcaccc gctctgtagg cccggccggc 240
gcttgccgat caacccaaat ttttatccag gttgacctcg gatcaggtag ggatacccgc 300
tgaacttaa 309




29


336


DNA


Sporothrix schenckii



29
gaaatgcgat actaatgtga attgcagaat tcagcgaacc atcgaatctt tgaacgcaca 60
ttgcgcccgc cagcattctg gcgggcatgc ctgtccgagc gtcatttccc ccctcacgcg 120
ccccgttgcg cgctggtgtt ggggcgccct ccgcctggcg gggggccccc gaaagcgagt 180
ggcgggccct gtggaaggct ccgagcgcag taccgaacgc atgttctccc ctcgctccgg 240
aggcccccca ggcgccctgc cggtgaaaac gcgcatgacg cgcagctctt tttacaaggt 300
tgacctcgga tcaggtgagg atacccgctg acttaa 336




30


18


DNA


Aspergillus flavus



30
gcaaatcaat ctttttcc 18




31


18


DNA


Aspergillus fumigatus



31
gaacgcaaat caatcttt 18




32


18


DNA


Aspergillus fumigatus



32
ccgacaccca tctttatt 18




33


18


DNA


Aspergillus niger



33
gacgttatcc aaccattt 18




34


18


DNA


Aspergillus terreus



34
gcatttattt gcaacttg 18




35


18


DNA


Aspergillus nidulans



35
ggcgtctcca accttatc 18




36


18


DNA


Mucor rouxii



36
gaataggaat actgagag 18




37


15


DNA


Mucor indicus



37
gaaacccttg aaatt 15




38


18


DNA


Mucor indicus



38
cgtggattga gtgccgat 18




39


21


DNA


Mucor circinelloides f.



39
aacatttttg tgaataggat g 21




40


15


DNA


Mucor racemosus



40
gaaatccctg aaatt 15




41


18


DNA


Rhizopus oryzae



41
gagtataatc cagyaact 18




42


18


DNA


Rhizopus circinans



42
cttagggtat cattactt 18




43


18


DNA


Rhizomucor pusillus



43
tccttgaggg cttgcatt 18




44


18


DNA


Rhizopus stolonifer



44
cttggtatta taacgatt 18




45


18


DNA


Pseudallescheria boydii



45
aagtctcttt tgcaagct 18




46


18


DNA


Penicillium notatum



46
gatcaaccca aattttta 18




47


18


DNA


Penicillium marneffei



47
gggttggtca ccaccata 18




48


18


DNA


Penicillium marneffei



48
tggtcaccac catattta 18




49


18


DNA


Fusarium moniliforme



49
tctagtgacg gtctcgct 18




50


18


DNA


Fusarium oxysporum



50
cgttaattcg cgttcctc 18




51


21


DNA


Fusarium solani



51
ctaacacctc gcaactggag a 21




52


18


DNA


Cunninghamella elegans



52
tagtcggctt taatagat 18




53


18


DNA


Cunninghamella elegans



53
tattaagttt atagccat 18




54


18


DNA


Cunninghamella elegans



54
taagtttata gccattct 18




55


18


DNA


Absidia corymbifera



55
gttgctgtca tggcctta 18




56


18


DNA


Sporothrix schenckii



56
gacgcgcagc tcttttta 18




57


18


DNA


Rhizopus microsporus



57
catataatct aggggttc 18




58


18


DNA


Aspergillus sp.



58
cctcgagcgt atggggct 18




59


18


DNA


Fusarium sp.



59
cccaacttct gaatgttg 18




60


18


DNA


Mucor sp.



60
mtggggcctc ccaaataa 18




61


21


DNA


Artificial Sequence




Description of Artificial Sequence B-58 biotin
probe






61
gaatcatcga rtctttgaac g 21






Claims
  • 1. An isolated nucleic acid probe that consists essentially of 10 to 50 consecutive nucleotides for species-specific identification of Aspergillus, wherein the probe selectively hybridizes under stringent conditions to the internal transcribed spacer 2 nucleic acid sequence of one of Aspergillus flavus (SEQ ID NO:1), Aspergillus fumigatus (SEQ ID NO:2), Aspergillus niger (SEQ ID NO:3), Aspergillus terreus (SEQ ID NO:4), or Aspergillus nidulans (SEQ ID NO:5), but does not selectively hybridize under stringent conditions to the internal transcribed spacer 2 region of any other Aspergillus species, nor does it hybridize to the internal transcribed spacer 2 nucleic acid sequence of Fusarium solani (SEQ ID NO:6), Fusarium moniliforme (SEQ ID NO:7), Mucor rouxii (SEQ ID NO:8), Mucor racemosus (SEQ ID NO:9), Mucor plumbeus (SEQ ID NO:10), Mucor indicus (SEQ ID NO:11), Mucor circinilloides f. circinelloides (SEQ ID NO:12), Rhizopus oryzae (SEQ ID NO:13 and NO:14), Rhizopus microsporus (SEQ ID NO:15 and 16), Rhizopus circinans (SEQ ID NO:17 and 18), Rhizopus stolonifer (SEQ ID NO:19), Rhizomucor pusillus (SEQ ID NO:20), Absidia corymbifera (SEQ ID NO:21 and 22), Cunninghamella elegans (SEQ ID NO:23), Pseudallescheria boydii (teleomorph of Scedosporium apiospermum) (SEQ ID NO:24, 25, 26, and 27), Penicillium notatum (SEQ ID NO:28), or Sporothrix schenkii (SEQ ID NO:29).
  • 2. The isolated nucleic acid probe of claim 1 wherein the probe selectively hybridizes with an Aspergillus flavus nucleic acid of SEQ ID NO:1, or a complementary sequence thereof.
  • 3. The isolated nucleic acid probe of claim 1 wherein the probe selectively hybridizes with an Aspergillus fumigatus nucleic acid of SEQ ID NO:2, or a complementary sequence thereof.
  • 4. The isolated nucleic acid probe of claim 1 wherein the probe selectively hybridizes with an Aspergillus niger nucleic acid of SEQ ID NO:3, or a complementary sequence thereof.
  • 5. The isolated nucleic acid probe of claim 1 wherein the probe selectively hybridizes with an Aspergillus terreus nucleic acid of SEQ ID NO:4, or a complementary sequence thereof.
  • 6. The isolated nucleic acid probe of claim 1 wherein the probe selectively hybridizes with an Aspergillus nidulans nucleic acid of SEQ ID NO:5, or a complementary sequence thereof.
  • 7. A method of detecting a species of Aspergillus flavus (SEQ ID NO:1), Aspergillus fumigatus (SEQ ID NO:2), Aspergillus niger SEQ ID NO:3), Aspergillus terreus (SEQ ID NO:4), or Aspergillus nidulans (SEQ ID NO:5) in a sample comprisingcontacting the sample with a nucleic acid probe consisting essentially of 10 to 50 consecutive nucleotides that selectively hybridizes with a nucleic acid having a sequence as set forth as SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, or SEQ ID NO:5, or a complementary sequence thereof; wherein hybridization of the nucleic acid probe with the sample indicates the detection of the Aspergillus species in the sample.
  • 8. The method of claim 7, wherein the probe selectively hybridizes with an Aspergillus flavus nucleic acid of SEQ ID NO:1, or a complementary sequence thereof.
  • 9. The method of claim 7, wherein the probe selectively hybridizes with an Aspergillus fumigatus nucleic acid of SEQ ID NO:2, or a complementary sequence thereof.
  • 10. The method of claim 7, wherein the probe selectively hybridizes with an Aspergillus niger nucleic acid of SEQ ID NO:3, or a complementary sequence thereof.
  • 11. The method of claim 7, wherein the probe selectively hybridizes with an Aspergillus terreus nucleic acid of SEQ ID NO:4, or a complementary sequence thereof.
  • 12. The method of claim 7, wherein the probe selectively hybridizes with an Aspergillus nidulans nucleic acid of SEQ ID NO:5, or a complementary sequence thereof.
  • 13. An isolated nucleic acid probe for identifying a filamentous fungus wherein the probe consists essentially of a nucleic acid having a sequence as set forth as SEQ ID NO:61, or a complementary sequence thereof, respectively.
  • 14. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of a nucleotide sequence having a sequence as set forth as SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, or SEQ ID NO:35.
  • 15. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:30.
  • 16. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:31.
  • 17. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:32.
  • 18. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:33.
  • 19. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:34.
  • 20. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:35.
  • 21. The method of claim 7, wherein the probe consists essentially of a nucleotide sequence as set forth as SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, and SEQ ID NO:34.
  • 22. The method of claim 7, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:30.
  • 23. The method of claim 7, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:31.
  • 24. The method of claim 7, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:32.
  • 25. The method of claim 7, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:33.
  • 26. The method of claim 7, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:34.
  • 27. The isolated nucleic acid probe of claim 1, wherein the probe consists essentially of the nucleotide sequence set forth as SEQ ID NO:35.
  • 28. An isolated nucleic acid comprising a sequence as set forth as SEQ ID NO:1 or SEQ ID NO:2.
  • 29. An isolated nucleic acid consisting essentially of a sequence as set forth as SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO:5.
PRIORITY CLAIM

This application claims priority to PCT/US98/08926, filed May 1, 1998, which claims the benefit of U.S. Provisional Application No. 60/045,400, filed May 2, 1997.

Government Interests

This invention was made in the Centers for Disease Control Mycotic Diseases Laboratories, an agency of the United States Government.

PCT Information
Filing Document Filing Date Country Kind
PCT/US98/08926 WO 00
Publishing Document Publishing Date Country Kind
WO98/50584 11/12/1998 WO A
US Referenced Citations (3)
Number Name Date Kind
5426027 Lott et al. Jun 1995 A
5585238 Ligon et al. Dec 1996 A
5958693 Sanhu et al. Sep 1999 A
Foreign Referenced Citations (1)
Number Date Country
9621741 Jul 1996 WO
Non-Patent Literature Citations (11)
Entry
Geiser et al. Genbank Accession No. L76747, Nov. 1996.*
LoBuglio et al. “Phylogeny and PCr identification of the human pathogenic fungus Penicillium marneffei” J. of Clinical Microbiology, vol. 33, No. 1, p. 85-89, Jan. 1995.*
Geiser et al. Genbank Accession No. L76748, Nov. 1996.*
Geiser et al. Genbank Accession No. L76774, Nov. 1996.*
Borsuk et al. Genbank Accession No. U03521, Feb. 1995.*
Borsuk et al. Genbank Accession No. U03523, Feb. 1995.*
Borsuk et al. Genbank Accession No. U03519, Feb. 1995.*
Kumeda et al. “Single-Strand Conformation polymorphism analysis of PCr-amplfied ribosomal DNA ITS to differentiate species of Aspergillus section flavi” Applied Environ. Microbiology, vol. 62, No. 8, p. 2947-2952, Aug. 1996.*
White et al. “Amplfication and Direct seqeucneing of fungal ribosomal RNA genes for Phylogenetics” PCR Protocols: A guide to Methods and Applications, p. 315-322, Dec. 1989.*
Lu, J-J, et al., “Typing of Pneumocystis carinii Strains with Type-Specific Oligonucleotide Probes Derived from Nucleotide Sequences of Internal Transcribed Spacers of rRna Genes,” J. Clinical Microbiol., vol. 33, No. 11, p. 2973-2977, (Nov. 1995).
Gaskell, G.J. et al., “Analysis of the internal transcribed spacer regions of ribosomal DNA in common airborne allergenic fungi,” Electrophoresis, vol. 18, pp. 1567-1569 (1997).
Provisional Applications (1)
Number Date Country
60/045400 May 1997 US