The present invention relates generally to the field of communication system, method and apparatus in wireless network or wireless sensor network. More specifically, the present invention relates to a communication system that involves the control of a plurality of end nodes, such as the control of electronic shelf labels (ESL), personal locating tags, or LED lighting devices.
Current system design of wireless network or wireless sensor network with regard to the control of a plurality of end nodes (end devices) involves several considerations. To begin with, a network topology usually needs to be well designed to accommodate the activities of at least 16000 end nodes. Following the point mentioned above, the network topology needs to be well designed to cover all the areas that end nodes locate. Moreover, the end nodes usually use battery as main power, so the system design needs to save as much power of the end nodes as possible.
Another important point is that, since all the devices in the network topology equip the receiving and transmitting functions, the system needs to be well designed to decrease the overall transmission time, especially in the situation that a large amount of end nodes cost much transmission time more than expected. Also, a simple receiving mechanism design of the system should be able to arrange adequate routing paths to help upper nodes receive the data from lower nodes, such as end nodes. Last but not least, the system needs to be well designed to acknowledge whether all the lower nodes successfully transmit the data in an expectable management time, so that the back-end management system can effectively manage in some application fields, such as hypermarket management or warehouse management.
Regarding the aforementioned considerations, ZigBee is a specification for a suite of high level communication protocols using small, low-power digital radios based on an IEEE 802.15.4. Zigbee utilizes single frequency of 2.4 GHz and accommodate at most 65,536 nodes (devices), with the communication range of each node reaching 100 m in an open space. In addition, Zigbee adopts CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance).
However, in one aspect of data transmission, CSMA/CA cannot estimate the transmission time and may have the problem of hidden node collision. In another aspect of data transmission, the receiving mechanism is complex for the coordinator to plan the network, such as C-skip mechanism. Therefore, Zigbee is not suitable for estimating single transaction time (an expectable management time for successfully transmitting the data), and the end nodes keep consuming more power.
In view of the above, what is needed is to design a communication system, method and apparatus to effectively manage transaction time and to save more battery power of end nodes.
The invention provides a wireless network system, a method and a router to decrease power consumption of a plurality of end devices by utilizing null beacon transmission.
In one embodiment, the wireless network system divides a round period into at least a first period and a second period, each of the periods having multiple time slots. The system comprises: an access point having a first communication module, wherein the first communication module wirelessly transmits downlink data and receives uplink data; a plurality of routers, each having a second communication module, wherein the second communication module (1) wirelessly receives the downlink data from the access point and transmits the uplink data to the access point and (2) wirelessly transmits the downlink data and receives the uplink data; and a plurality of end devices, each having a third communication module, wherein the third communication module wirelessly receives the downlink data from one of the plurality of routers and transmits the uplink data to the same one of the plurality of routers, wherein an internal network is formed by the access point, the plurality of routers and the plurality of end devices, with the access point being a parent node of the routers and each of the routers being a parent node of a subgroups of the plurality of end devices, forming a two-layer tree network topology, wherein the access point broadcasts an AP beacon to the plurality of routers during the first period, wherein if any router fails to receive the AP beacon in the first period, the router will broadcast a null beacon to the router's end devices in the first period, and thus the router's end devices will sleep during the second period after receiving the null beacon.
In one embodiment, the method to decrease power consumption of a plurality of end devices in a wireless network system divides a round period into at least a first period and a second period, each of the periods having multiple time slots, wherein the wireless network system is formed by an access point, a plurality of routers and a plurality of end devices, with the access point being a parent node of the plurality of routers and each of the plurality of routers being a parent node of a subgroup of the plurality of end devices, forming a two-layer tree network topology. The method comprises: a) wirelessly broadcasting a null beacon from one of the routers to the router's end devices in the first period if the router fails receive an AP beacon from the access point in the first period; and b) configuring the router's end devices to sleep during the second period after the router's end devices receive the null beacon from the router.
In one embodiment, the router in a wireless network system divides a round period into at least a first period and a second period, each of the periods having multiple time slots. The router comprises: a communication module wirelessly communicating with an access point and a plurality of end devices, wherein the communication module (1) broadcasts a router beacon to the end devices in the first period if the router receives an AP beacon from the access point in the first period and (2) broadcast a null beacon to the end devices in the first period if the router fails to receive the AP beacon from the access point in the first period; a memory; and a control module electrically connecting to the communication module and the memory, wherein the control module is configure to buffer downlink data and uplink data in the memory.
It should be understood, however, that this summary may not contain all aspects and embodiments of the present invention, that this summary is not meant to be limiting or restrictive in any manner, and that the invention as disclosed herein will be understood by one of ordinary skill in the art to encompass obvious improvements and modifications thereto.
The accompanying drawings illustrate one or more embodiments of the invention and together with the written description, serve to explain the principles of the invention. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, and wherein:
a˜4d are a series of diagrams illustrating various frame formats utilized in the network topology according to one embodiment of the present invention;
a is a timing diagram of multiple beacon transmission according to one embodiment of the present invention;
b is a timing diagram of multiple beacon transmission according to another embodiment of the present invention;
a˜8b are a series of timing diagrams that illustrate wake-up duration and calibration of an ED based on multiple beacon transmission according to one embodiment of the present invention.
a˜10d are a series of schematic illustration of TDMA mechanism for downlink transmission in dual frequencies according to one embodiment of the present invention;
In accordance with common practice, the various described features are not drawn to scale and are drawn to emphasize features relevant to the present disclosure. Like reference characters denote like elements throughout the figures and text.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” or “has” and/or “having” when used herein, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the term “and/or” includes any and all combinations of one or more of the associated listed items. It will also be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, parts and/or sections, these elements, components, regions, parts and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, part or section from another element, component, region, layer or section. Thus, a first element, component, region, part or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
A time-slotted wireless communication method and system that utilizes dual frequencies to effectively manage transaction time and to reduce power consumption of end nodes is described herein.
Network Topology
In the aforementioned network topology, AP is able to connect with the network topology with the Internet and is able to transmit the data from the internal network to the Internet/back-end management system or from the Internet/back-end management system to the internal network. For example, in a electronic shelf label system, the back-end management system may transmit a large amount of data (such as prices of the merchandise items) to the internal network, and AP is responsible for collecting the data, in a way of buffer, and then transmit the data to the lower nodes, Routers 1˜N, step by step in different time slots. The reason why AP can be a buffer is that, usually the transmission rate of Internet is higher than that of the internal network. In addition, AP is able to transmit AP Beacon and let all the lower nodes in Layer 1, such as Routers 1˜N or a repeater, to know the existence of the internal network and identify the internal network afterwards. Moreover, AP Beacon arranges that, in each of the time slots, AP should transmit the data to a specific lower node in Layer 1 (such as one of Routers 1˜N or a repeater) or receive the data transmitted from a specific lower node in Layer 1.
In the aforementioned network topology, Routers 1˜N are able to transmit the downlink data from AP to EDs and receive the uplink data from EDs to AP. In addition, Routers 1˜N are able to handle the activities of scan and join process when the internal network is initially formed. Also, Routers 1˜N are able to transmit Router Beacon and let all the lower nodes in Layer 2, such as EDs, to know the existence of the internal network and identify the internal network afterwards. Specifically, EDs 101˜10n are the lower nodes of Router 1, and EDs 201˜20n are the lower nodes of Router 2, EDs N01˜N0n are the lower nodes of Router N, etc. In addition, Router Beacon arranges that, in each of the time slots, a specific router should transmit the data to a specific lower node in Layer 2 (such as transmitting the data from Router 2 to ED 201) or receive the data transmitted from a specific lower node in Layer 2. Each router will create its own router beacon.
In the aforementioned network topology, each of the EDs is able to receive Router Beacon from their parent router and wakes up to transmit or receive the data in certain time slots corresponding to the indication of Router Beacon.
In the aforementioned network topology, Layer 1 adopts a first frequency to connect AP with Routers 1˜N, and Layer 2 adopts a second frequency to connect Routers 1˜N with their own lower nodes, such as Router 1 connected with EDs 101˜10n. The first frequency and the second frequency (hereinafter referred to as dual frequencies) belong to the same band of 900 MHz, with one ranging from 902˜915 MHz and the other ranging from 916˜927 MHz. It should be noticed that the band of 900 MHz ranges from 902 MHz to 928 MHz. One advantage of the adoption of the band of 900 MHz is that the communication range of 900 MHz is 400 m, longer than the communication range of 2.4 GHz, 100 m (Zigbee utilizes 2.4 GHz). Thus, the communication range of each of the devices in the internal network is 400 m, and the whole area coverage becomes much larger than the area coverage of Zigbee, if both of the internal network and Zigbee have the same amount of devices. In addition, the adoption of the band of 900 MHz can be replaced by the band of 400 MHz or 800 MHz. Also, it should be noticed that the band of 400 MHz ranges from 433.05 MHz to 434.79 MHz and the band of 800 MHz ranges from 866 MHz to 868 MHz. Another advantage is that the adoption of dual frequencies can improve system performance, doubling the transmission rate of the internal network. More details are described in the following paragraphs of
Time-Slotted Mechanism
In,
Period II is the duration for child nodes to mainly receive data transmitted from the parent nodes. Specifically, Period II utilizes the concept of TDMA (Time Division Multiple Access) to mainly transmit the downlink data from AP to the routers or from each of the routers to its EDs, with each time slot only assigned to a specific child node to receive the downlink data transmitted from its parent node in each layer. For example, if Slot 4 is assigned for AP to transmit the downlink data to Router 1, other routers cannot use Slot 4 to receive the downlink data from AP. The adoption of TDMA in downlink transmission of Period II is suitable for the internal network to transmit the downlink data from AP to the routers or from each of the routers to the router's EDs, especially when the length of the downlink data is long and the amount of the downlink data is large. For example, in an ESL system, the information of the downlink data may include the barcodes, prices, names, logos, figures of the merchandise items and thus each ESL usually needs at least 2400 Bytes to update the information on its display.
Though Period II utilizes the concept of TDMA to mainly transmit the downlink data from AP to the routers or from each of the routers to its EDs, Period II is able to transmit the uplink data to AP from the routers or to each of the routers from the router's EDs if some time slots in Period II need not to be used to transmit the downlink data. Under this condition, Period II utilizes the concept of CSMA/CA to transmit the uplink data.
Period III is duration for child nodes to transmit the uplink data to the parent nodes, and Period III utilizes the concept of CSMA/CA to transmit the uplink data to AP from the routers or to each of the routers from the router's EDs. For example, referring to
In Round Period, the number of the time slots in each of Period I, Period II and Period III is adjustable respectively. For example, in an ESL system, the total time slots of Round Period can be 127, and Period I may have 2˜5 time slots for beacon broadcasting. As to Period II and Period III, Period II may have 2˜40 time slots and Period III can have the remaining time slots.
Network Scan/Join Process
In Layer 2, the ED starts passively searches Router Beacon without sending packets to trigger its parent node to transmit data. Namely, the ED is scanning Router Beacon. After scanning Router Beacon, the ED transmits join request to the router in an assigned time slot of Period III, and the assigned time slot is assigned according to the payload of Router Beacon. After receiving join request, the router sends ACK packet to the ED. Then, the router selects a Device ID to transmit back to the ED, and this action represents join response. After receiving join response, the ED sends ACK packages to the router, and the router transmit link status to inform AP of the successful connection between the router and the ED. After receiving link status, the AP sends ACK packets to the router. More details of the Router ID and the Device ID are described in the following paragraphs of
Frame Formats
a˜4d are a series of diagrams illustrating various frame formats utilized in the network topology according to one embodiment of the present invention. Referring to
Referring to
Referring to
In addition, Destination ID of Normal Frame is able to adopt the format of Network ID, instead. Similarly, Source ID of Normal Frame is able to adopt the format of Network ID, instead. If Destination ID and/or Source ID adopt the format of Network ID, the network ID is assigned uniquely to a router or an ED by its parent node, AP or a router. In normal frame transmission, the use of Network ID has better transmission rate than the use of MAC Address because Network ID is shorter than MAC Address. The network ID should be chosen randomly to prevent collision when the EDs recover from disconnected state. More details of Network ID are described in the following paragraphs of
Referring to
There are at least 7 fields in Beacon Frame: Frame Control, Sequence Number, Source Address, Tree ID, Connection Ticket, Router ID, and Beacon Payload. Frame Control, Sequence Number and Source Address of Beacon Frame are the same as those of Control Frame. Tree ID and Connection Ticket of Beacon Frame are the same as those of Normal Frame. Router ID of Beacon Frame is used to let the child node receiving the beacon calculates the offset of a slice time (a time shift in the time slot). More details of Router ID and the calculation of the slice time are described in the following paragraphs of
As to Beacon Payload of Beacon Frame, there are at least 6 fields in Beacon Payload Profile ID, Beacon Slot, Total Slot, Slot Info, Current Slot Number, and Downlink Slot Assignment. The field of Profile ID defines the application field, so that the router or the ED will not join the network of different application fields. The field of Beacon Slot indicates the type of the device that transmits the beacon. For example, 000 can be defined as the AP, 001 can be defined as the router, and 010 can be defined as the repeater. In addition, the field of Beacon Slot also indicates the number of time slots that Period I of
Referring to
Network ID
Beacon Transmission
Δd1 and Δd2 is determined by the length of Beacon Frame and the transmission rate. For example, if the internal network adopts 900 MHz to transmit data, the transmission rate is 250K bits/s. Hence, for a beacon bringing 60˜120 Bytes, it takes 1˜5 ms to finish the transmission of the beacon, meaning that Δd1 and Δd2 range from 1 ms to 5 ms. Thus, to avoid collision of the router beacons in the second frequency of Layer II, the interval ΔT1, ΔT2, ΔT3, ΔT4 . . . ΔTn needs to be larger than at least 5 ms, meaning that ΔT (ΔT1, ΔT2 . . . ) needs to be larger than Δd (A d1 and Δd2). Specifically, ΔT1, ΔT2, ΔT3, ΔT4 . . . can be defined as the same fixed interval, which can be referred to as Slice Time. Moreover, ΔT1 is adjustable according to the initial set up of the device, and ΔT2, ΔT3, ΔT4 . . . can still be defined as the same fixed interval, Slice Time. In the aspect of accumulated duration of Router Beacon, the duration of ΔTd of Router Beacon 600n is the sum of ΔT1, ΔT2, ΔT3 . . . ΔTn. The start point of ΔTd is the start point of Round Period, and the end point of ΔTd is the end of Router Beacon 600n.
In
Multiple Beacon Transmission
a is a timing diagram of multiple beacon transmission according to one embodiment of the present invention. Referring to
Regarding the mechanism of multiple beacon transmission, in each time slot of Period I, each router broadcasts a specific beacon to its child EDs. For example, Router Beacons 6001, 6001′, 6001″ are broadcasted from Router 1 to its child EDs, ED 101˜10n, in Period I. If Router Beacon 600n, 600n′, and 600n″ represent the router beacons transmitted by Router N, the main difference of Beacon Payload among Router Beacon 600n, 600n′, 600n″ is the field of Current Slot Number, which is used to identify the time slot that a router beacon of Router N is broadcasted in Period I. The fields of Downlink Slot Assignment in each of Router Beacons 600n, 600n′, 600n″ are all the same, and Router Beacons 600n, 600n′, 600n″ are used to assign each of the time slots in Period II to a specific ED of Router N. For example, Router Beacons 6001, 6001′, 6001″ may indicate that, ED 103 should wake up to receive the downlink data from Router 1 in the first slot of Period II, and ED 107 should wake up to receive the downlink data from Router 1 in the second slot of Period II . . . etc. In addition, Router Beacons 6001, 6001′, 6001″ may indicate that, the third slot of Period II is used to let the child EDs of Router 1 transmit the uplink data to Router 1 through CSMA/CA.
b is a timing diagram of multiple beacon transmission according to another embodiment of the present invention. Referring to
Wake-Up Duration of ED Based on Multiple Beacon Transmission
a˜8b are timing diagrams that illustrate wake-up duration and calibration of an ED based on multiple beacon transmission according to one embodiment of the present invention. Referring to
Referring to
Therefore, referring to
Calibration of Wake-Up Duration
In
In a normal condition, the hardware of the ED will try to decrease the duration of Tset until the ED reaches the best set up of the duration of Tset. However, in the aforementioned cases, if Twake<(Tset+Slot Time) or Twake<(Tset+(N−1)×Slot Time), duration of Tset will be increased, so that the ED will not miss the corresponding router beacon, such as Router Beacon 7001 in Slot 1, in the next round period. The range of Tset can be set from 2 ms to 6 ms in some application fields, such as an ESL system. Therefore, the ED is able to self-calibrate through the above comparison and restore the router beacon in the next round period without scan and join process of the internal network.
Null Beacon Transmission
As mentioned in
Connection Ticket Based on Null Beacon Transmission
In another aspect, if AP Beacon 8000 is lost due to the restart of the AP, and AP Beacon 9000 is broadcasted by the AP and received by its child routers, the routers will check the field of connection ticket of AP Beacon 9000. If the value of connection ticket of AP Beacon 9000 is that of AP Beacon 8000 plus 1 or is different from that of AP Beacon 8000, the child routers will know that the AP has restarted, and the child routers need to rejoin the internal network. If the routers rejoin the internal network again, their child EDs will need to rejoin as well because the EDs need to be synchronized with the new timing of the internal network. Thus, before the routers confirm that they do need to rejoin the internal network, their child EDs will only receive null beacons broadcasted by their parent routers. More details of rejoin process of the routers can be referred to the description of
TDMA Mechanism for Downlink Transmission in Dual Frequencies
a˜10d are schematic illustration of TDMA mechanism for downlink transmission in dual frequencies according to one embodiment of the present invention. To clearly illustrate the mechanism,
In
After receiving the first AP Beacon, Router 1 runs Router Slot Assignment algorithm (more details can be referred to the description of
Similarly, after receiving the first AP Beacon, Router 2 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {fe, 0, 0, 0, fe, 0, fe, fe, 0, 0}, indicating that Router 2 is able to receive the downlink data from AP in Slots 5, 6, 7, 9, 12 and 13 according to the assignment of 0 and is able to receive the uplink data from ED 201 in Slots 4, 8, 10, and 11 according to the assignment of fe. Also, after receiving the first AP Beacon, Router 3 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {0, fe, fe, 0, fe, 0, fe, 0, fe, 0}, indicating that Router 3 is able to receive the downlink data from AP in Slots 4, 7, 9, 11, and 13 according to the assignment of 0 and is able to receive the uplink data from ED 301 in Slots 5, 6, 8, 10 and 12 according to the assignment of fe.
The above router beacons produced by each of Routers 1˜3 are able to transmitted in Slot 1, with each of the router beacons spaced by a slice time ΔT (the concept can be referred to the description of
Referring to
Referring to
After receiving the second AP Beacon, Router 1 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {D1, D1, 0, 0, 0, fe, fe, 0, fe, 0}, indicating that Router 1 needs to transmit the downlink data received from AP to ED 101 in Slots 4 and 5, and thus ED 101 needs to wake up in Slots 4 and 5. It should be noticed that, Router 1 is able to have a pluralities of EDs, and it can decide which ED should receive the downlink data from Router 1 based on D1 in Downlink Slot Assignment of the first AP Beacon.
In addition, the assignment of {D1, D1, 0, 0, 0, fe, fe, 0, fe, 0} indicates that Router 1 is able to receive the downlink data from AP in Slots 6, 7, 8, 11, and 13 according to the assignment of 0 and is able to receive the uplink data from ED 101 in Slots 9, 10 and 12 according to the assignment of fe.
Similarly, after receiving the second AP Beacon, Router 2 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {0, 0, D2, D2, 0, 0, fe, fe, 0, fe}, indicating that Router 2 needs to transmit the downlink data received from AP to ED 201 in Slots 6 and 7, and thus ED 201 needs to wake up in Slots 6 and 7. It should be noticed that, Router 2 is able to have a pluralities of EDs, and it can decide which ED should receive the downlink data from Router 1 based on D1 in Downlink Slot Assignment of the first AP Beacon.
In addition, the assignment of {0, 0, D2, D2, 0, 0, fe, fe, 0, fe} indicates that Router 2 is able to receive the downlink data from AP in Slots 4, 5, 8, 9, and 12 according to the assignment of 0 and is able to receive the uplink data from ED 201 in Slots 10, 11 and 13 according to the assignment of fe.
Similarly, after receiving the second AP Beacon, Router 3 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {0, 0, fe, 0, fe, fe, 0, 0, fe, 0}, indicating that Router 3 is able to receive the downlink data from AP in Slots 4, 5, 7, 10, 11 and 13 according to the assignment of 0 and is able to receive the uplink data from ED 301 in Slots 6, 8, 9 and 12 according to the assignment of fe. It should be noticed that Router 3 is able to have a pluralities of EDs as well.
Therefore, in Slots 4 and 5 of the second Round Period, AP utilizes the first frequency to transmit the downlink data to Router 3, and Router 1 utilize the second frequency to transmit the downlink data to ED 101, realizing downlink transmission in dual frequencies in Period II and thus improving the transmission rate of the internal network under TDMA mechanism in Period II of Round Period. It should be noticed that, the concept of downlink transmission in dual frequencies under TDMA mechanism remains the same in Period II of Round Period regardless of the number of the routers and that of the EDs.
Referring to
After receiving the third AP Beacon, Router 1 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {0, 0, fe, 0, fe, 0, fe, 0, fe, 0}, indicating that Router 1 is able to receive the downlink data from AP in Slots 4, 5, 7, 9, 11 and 13 according to the assignment of 0 and is able to receive the uplink data from ED 101 in Slots 6, 8, 10 and 12 according to the assignment of fe. Hence, Router 1 receives the downlink data transmitted from AP in Slot 4 of the third Round Period.
Similarly, After receiving the third AP Beacon, Router 2 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {0, 0, 0, 0, fe, 0, fe, fe, 0, fe}, indicating that Router 2 is able to receive the downlink data from AP in Slots 4, 5, 6, 7, 9 and 12 according to the assignment of 0 and is able to receive the uplink data from ED 201 in Slots 8, 10, 11 and 13 according to the assignment of fe. Hence, Router 2 receives the downlink data transmitted from AP in Slot 5 of the third Round Period.
Similarly, after receiving the third AP Beacon, Router 3 runs Router Slot Assignment algorithm to produce its own router beacon which has the assignment of {D3, D3, 0, fe, fe, fe, 0, 0, fe, 0}, indicating that Router 3 needs to transmit the downlink data received from AP to ED 301 in Slots 4 and 5, and thus ED 301 needs to wake up in Slots 4 and 5. It should be noticed that, Router 3 is able to have a pluralities of EDs, and it can decide which ED should receive the downlink data from Router 3 based on D3 in Downlink Slot Assignment of the second AP Beacon.
In addition, the assignment of {D3, D3, 0, fe, fe, fe, 0, 0, fe, 0} indicates that Router 3 is able to receive the downlink data from AP in Slots 6, 10, 11, and 13 according to the assignment of 0 and is able to receive the uplink data from ED 301 in Slots 7, 8, 9 and 12 according to the assignment of fe.
Therefore, in Slots 4 and 5 of the second Round Period, AP utilizes the first frequency to transmit the downlink data to Routers 1 and 2, and Router 3 utilize the second frequency to transmit the downlink data to ED 301, realizing downlink transmission in dual frequencies in Period II and thus improving the transmission rate of the internal network under TDMA mechanism in Period II of Round Period.
CDMA/CA Mechanism for Uplink Transmission in Dual Frequencies
In
Router Slot Assignment Algorithm
Thus, to decide each element in the field of Downlink Slot Assignment of Router Beacon for the present Round Period,
If BcnLast[i] is not equal to RID, the process will go directly to Step 1102. In step 1102, if BcnThis[i] is equal to RID, MyDnlinkSlot[i] will be set to be equal to 0 in Step 1103. Namely, if AP transmits the downlink data to a specific router in a specific time slot in Period II of the present Round Period, the child EDs of the specific router can only sleep and cannot transmit the uplink data to the specific router in the specific time slot. In the aforementioned specific time slot, the specific router works in the first frequency. For example, in
If BcnThis[i] is not equal to RID, the process will go directly to Step 1104. In step 1104, if BcnThis[i] is equal to 0, MyDnlinkSlot[i] will be set to be equal to 0 in Step 1105. Namely, in the present Round Period, if MyDnlinkSlot[i] is equal to 0, the child EDs of a specific router cannot transmit the uplink data to the specific router in the ith time slot of Period II of the present Round Period. In the aforementioned case, AP may transmit the downlink data to one of the other routers in the first frequency, so the specific router may work in the second frequency and does not allow uplink transmission from its child EDs.
If BcnThis[i] is not equal to 0, the process will go directly to Step 1106. In step 1106, MyDnlinkSlot[i] will be randomly set to be equal to 0 or 0xfe. Namely, there is 50% opportunity for the specific router to transmit the downlink data to one of its child EDs or receive the uplink data from one of its child EDs, in the ith time slot of Period II of the present Round Period.
ESL System Utilizing Time-Slotted Wireless Communication in Dual Frequencies
A plurality of EDs 1251 typically display prices of corresponding merchandise items on store shelves and are typically attached to a rail along the leading edge of the shelves. Other than price, the information on the display of an ED may include the barcode, name, logo, figure of the corresponding merchandise. ED 1251 includes control module 1253, communication module 1255, memory 1257, LED 1259, power source 1261, button 1263, driver 1265, and display 1267.
Control module 1253 controls operation of ED 1251. Control module 1253 receives messages from ESL management system 1205 (or portable ESL management system 1207) and executes commands in the messages. Control module 1253 sends responses to ESL management system 1205 (or portable ESL management system 1207). Control module 1253 controls display 1267 by driver 1265. Display 1267 may be a liquid crystal display (LCD) or a non-volatile display. Control module 1253 controls storage of display data in memory 1257. Specifically, Control module 1253 is configured to buffer downlink data in memory 1257. Also, Control module 1253 can be configured to buffer uplink data in memory 1257. Memory 1257 stores display and other information, and SRAM may be one type of Memory 1257. Button 1263 provides input of customer service that can be defined in different scenarios, and there may be at least one button 1263 on ED 1251. Once button 1263 is pressed, ESL management system 1205 will get the corresponding messages from ED 1251. LED is controlled by control module 1253 and is used to reflect any possible errors on ED 1251. Power source 1261 is used to provide power to all the modules and components in ED 1251.
Communication module 1255 receives the downlink data from Router 1231 or transmits the uplink data to Router 1231 in the second frequency. In addition, communication module 1255 utilizes TDMA to receive the downlink data and utilizes CDMA/CA to transmit the uplink data under time-slotted mechanism.
A plurality of Routers 1231 are typically placed around store shelves and are used to build downlink and uplink channels between AP 1231 and a plurality of EDs 1251. ED 1251 includes control module 1233, communication module 1235, memory 1237, LED 1239, power source 1241, and button 1243.
Control module 1233 controls operation of Router 1231 and controls storage of data in memory 1237. Specifically, Control module 1233 is configured to buffer the downlink data and the uplink data in memory 1237. Memory 1237 stores display and other information. Button 1243 provides input of management service that can be defined in different scenarios, and there may be at least one button 1243 on Router 1231. LED 1239 is controlled by control module 1233 and is used to reflect any possible errors on Router 1231. Power source 1241 is used to provide power to all the modules and components in Router 1231.
Communication module 1235 receives the downlink data from AP 1211 or transmits the uplink data to AP 1211 in the first frequency, and it also receives the uplink data from ED 1251 or transmits the downlink data to ED 1251 in the second frequency. In addition, communication module 1235 utilizes TDMA to receive and transmit the downlink data and utilizes CDMA/CA to receive and transmit the uplink data under time-slotted mechanism. It should be noticed that communication module 1235 may be only limited to (1) receive the downlink data in the first frequency, (2) transmit the uplink data in the first frequency, (3) receive the uplink data in the second frequency, or (4) transmit the downlink data in the second frequency, in each of the time slots in Period II of Round Period.
AP 1211 is typically placed near the management center in the market and is used to build downlink and uplink channels between the internal network and ESL management system 1205 (or portable ESL management system 1207). AP 1211 includes control module 1213, communication module 1215, memory 1217, LED 1219, power source 1221, and button 1223.
Control module 1213 controls operation of AP 1211 and controls storage of data in memory 1217. Specifically, Control module 1213 is configured to buffer the downlink data in memory 1217. Memory 1217 stores display and other information. Button 1213 provides input of management service that can be defined in different scenarios, and there may be at least one button 1213 on AP 1211. LED 1219 is controlled by control module 1213 and is used to reflect any possible errors on AP 1211. Power source 1221 is used to provide power to all the modules and components in AP 1211.
Communication module 1215 receives the downlink data from ESL Management System 1205 (or portable ESL management system 1207) or transmits the uplink data to ESL Management System 1205 (or portable ESL management system 1207) through the Internet by utilizing WiFi or TCP/IP in wired or wireless way, and it also receives the uplink data from Router 1231 or transmits the downlink data to Router 1231 in the first frequency. Communication module may be formed by different sub-modules handling different communication channels.
In addition, communication module 1215 utilizes TDMA to transmit the downlink data and utilizes CDMA/CA to receive the uplink data under time-slotted mechanism. It should be noticed that communication module 1215 may be only limited to either transmit the downlink data or receive the uplink data in the first frequency in each of the time slots in Period II of Round Period.
Service Daemon 1209 AP 1211 is typically placed near the management center in the market and is used to continuously record all the status in the internal network by using specific software.
ESL Management System 1205 is also typically placed near the management center in the market and is used to manage and update the data of EDs in the internal network. Service Daemon 1209 AP 1211 and ESL Management System 1205 may be integrated into a single management system. In addition, the function of portable ESL management system 1207 is the same as that of ESL Management System 1205. Portable ESL management system 1207 can be realized in many kinds of mobile devices, such as tablet or iPad.
Finally, Database 1203 is used to store the numbers, prices and other information of all the merchandise items, and a POS (point-of-sale) system is able to connect with Database 1203. In
Thus, if Round Period is set up to have 30 time slots, with each slot having 0.5 seconds, each Round Period will be 15 seconds. In this case, Period I is set up to have 3 time slots, Period II is set up to have 25 time slots, and Period III is set up to have 2 time slots. So, based on the above, in a normal case, the internal network is able to finish 25 EDs' information update in 15 seconds, leading to finish 6000 EDs' update in one hour. In a worst case, all target EDs are the child nodes of the same router, and the router can only operation in one transmission direction, leading to finish 3000 EDs'update in one hour.
Previous descriptions are only embodiments of the present invention and are not intended to limit the scope of the present invention. Many variations and modifications according to the claims and specification of the disclosure are still within the scope of the claimed invention. In addition, each of the embodiments and claims does not have to achieve all the advantages or characteristics disclosed. Moreover, the abstract and the title only serve to facilitate searching patent documents and are not intended in any way to limit the scope of the claimed invention.