1. Field of the Invention
The present invention relates to a numerical controller having a plurality of command systems for controlling a machine having a plurality of spindles.
2. Description of the Related Art
It is a well-known technique to control a machine (e.g., machine tool) having a plurality of spindles by a numerical controller having a plurality of command systems (hereinafter also referred to simply as “systems”). In making this control, it is necessary to specify a correspondence between each command system and a spindle that is controlled by the command system (control-controlled correspondence). According to the prior art technique, the designation of the spindle to be controlled by each command system is selected in accordance with a program command for each system. More specifically, program commands such as the following methods 1 and 2 are used for the specification.
(Method 1): A spindle as a control object is specified with an identifier attached to a program command (S-code command). A technique of this type is described in, for example, JP 62-293307A.
For example, identifiers P1 and P2 for discriminating two spindles 1 and 2 are added to program commands related to spindle operations in the following manner:
If S100 and S200 are codes for the systems 1 and 2, respectively, the spindles 1 and 2 are controlled (e.g., in speed) by the systems 1 and 2, respectively, in response to the aforesaid program commands.
(Method 2): A program command (M-code command) that specifies a spindle as a control object by its identifier is applied before program commands related to spindle operations, and each system selects a spindle. Techniques of this type are described in, for example, JP 9-73308A and JP 2843568B.
For example, the two spindles 1 and 2 are discriminated by the identifiers P1 and P2, respectively, and the following program commands are successively added to a statement for the system 1 (or system 2):
If S100 and S200 are codes for the systems 1 and 2, respectively, the spindles 1 and 2 are controlled (e.g., in speed) by the systems 1 and 2, respectively, in response to the aforesaid program commands.
In changing the correspondence between the systems 1 and 2 and the spindles 1 and 2, the following program commands are added:
According to these prior art techniques, the controlling-controlled correspondence between each command system and each spindle is selected or specified depending on the program commands, basically. In a conventional case where n number (n is 2 or a greater positive integer, the same applies to the following) of command systems and n number of spindles are used, as shown in
According to a method where a spindle is selected for each system in response to a program command, as in the cases of the prior art techniques, the program must be prepared in consideration of the spindle to be selected as the control object, so that the program preparation entails a heavy burden.
The present invention provides a numerical controller of multi-command system for controlling a machine with a plurality of spindles, which does not require to take account of which spindle each command system controls in preparing the program, so that a burden in preparing the program is reduced.
A numerical controller of the present invention has a plurality of command systems for controlling a machine having a plurality of spindles. The numerical controller comprises: signal input means for inputting an external signal indicating which of the plurality of spindles to be controlled by each of the plurality of command systems; and selecting means for selecting one of the plurality of spindles to which a command for spindle control outputted from each of the command systems is to be transmitted according to the external signal inputted by the signal input means.
The machine controlled by the numerical controller may comprises a machine tool. In this case, at least one of the command systems may control a tool which is driven by an axis other than the spindles and that position and/or posture of at least one of the tool and a workpiece may be altered with change of the external signal inputted by the signal input means.
In preparing a program for use in controlling the machine having the plurality of spindles by the numerical controller having the plurality of command systems, correspondence between the command systems and the spindles to be controlled by the command systems need not be taken into consideration to reduce the burden in preparing the program.
a and 4b are views showing a case where the position of a tool or a workpiece to be machined is changed in accordance with switching of the correspondence between the command systems and the spindles, in which
a and 5b are tables showing switching of the command system-spindle correspondence caused by state change from
a and 6b are views showing another case where the position of a tool or a workpiece to be machined is changed in accordance with switching of the command system-spindle correspondence, in which
a and 7b are tables showing switching of the command system-spindle correspondence caused by state change from
Specifically, the numerical controller has a system program for generally controlling the entire system unit, a program that contains commands or the like for controlling the n number of spindles and the other axes (hereinafter referred to simply as “program”), and a memory that stores various parameters and the like. Each command system includes a PC (programmable controller) and performs a spindle control process, spindle feedback process, servo control processes for the other axes, etc. in accordance with the program.
A command (e.g., command for specifying revolutions per second) for controlling “spindles controlled by command systems” written in the program need not be loaded with information on “a spindle controlled by the command system concerned,” which is required by the prior art method 1. Unlike the case of the prior art method 2, moreover, a command for the spindle to be controlled is not issued in advance. In the present invention, external signal input means and a selecting/switching section are provided so that a signal indicative of the correspondence between each command system and the spindle controlled by the command system is inputted from the external signal input means to the selecting/switching section. The selecting/switching section is furnished with software that selects the spindle as a destination of the command for the control of the spindle outputted by each command system in accordance with the input signal. Further, the external signal input means may possibly be formed of an operation panel of the numerical controller, a device that receives a signal from any other machining section and outputs the signal to the numerical controller, etc.
If the command for the spindle control outputted by a system i (i=1, 2 . . . n) is given by Si for the sake of convenience, the destination of the command Si is selected by the selecting/switching section in accordance with a switching signal (selection signal) inputted from the external signal input means. If a signal to switch the spindle to be controlled by the system 1 from a spindle n to a spindle 1 is inputted, in the illustrated example, a command Sn for spindle control outputted by a system n is switched from a state in which it is transmitted to the spindle n (more specifically, “control section of the spindle n,” the same applies to the following) over to a state in which it is transmitted to the spindle 1 (control section of the spindle 1.).
If a signal section for a system 1 is given by “#0=1, #1=0, #2=0,” for example, therefore, the system 1 is ready to control the spindle 1, and a command S1 is transmitted to the spindle 1. If the signal section is given by “#0=1, #1=0, #2=1,” the system 1 is ready to control a spindle 5, and the command S1 is transmitted to the spindle 5. The same applies to the other systems. If a signal section for a system 3 is given by “#0=1, #1=0, #2=0,” for example, the system 3 is ready to control the spindle 1, and a command S3 is transmitted to the spindle 3. If this signal section is given by “#0=1, #1=1, #2=0,” the system 3 is ready to control a spindle 6, and the command S3 is transmitted to the spindle 6. In some cases, the command systems may not be as many as the spindles. Even in these cases, however, all the command systems and the spindles can be represented in one-to-one relation with signals if the types of signals are increased so as to cover the correspondence between all the command systems and the spindles.
As mentioned before, a typical example of the machine is a machine tool. In the case of the machine tool, some (or all, in some cases) of a plurality of command systems control tools that are not driven by the spindles. In changing the correspondence between the command systems and the spindles, in the control of the machine tool of this type, a machining form may be supposed such that the position of a tool and/or a workpiece to be machined must be changed.
a and 4b show an example of such a case, and more specifically, illustrate a lathe in which workpieces are mounted individually on six spindles as they are rotated. Numeral 1 denotes a turret-type base that is provided with the six spindles 1 to 6. It can be rotated by an axis (not a spindle) that is controlled in any of the systems of the numerical controller. As shown in
The states shown in
Specifically, the above output is made when the signal state shown in
If the change of the correspondence between the systems and the spindles shown in
a and 6b show another case where the position of a tool or a workpiece to be machined is changed in accordance with the change of the correspondence between the command systems and the spindles. In this example, a drilling device 5 that is fitted with a drill (tool) 6 is mounted on a base 4 so as to be shiftable between a reference posture shown in
The posture is changed by rotating a rotary axis for rotating the drilling device 5, and a command for the change is outputted from any of the systems of the numerical controller. Further, the rotation of the drill 6 of the drilling device 5 is driven by an axis (not a spindle) that is controlled by the system 1.
Although the command for the change from the state of
As seen from the illustration of
In
Number | Date | Country | Kind |
---|---|---|---|
281698/2005 | Sep 2005 | JP | national |