The present disclosure relates generally to systems for collecting and separating materials and to methods related to replacing removable assemblies of the systems. In particular, the present disclosure relates to harvesters and removable assemblies for collecting and separating various crops, for example tree nuts, from twigs, dirt, dust, and other debris.
Some harvesters presently on the market use various pickup and screening/roller configuration to pick up and separate debris from harvested crop product.
Separation of the debris from the crop at or near the location of harvesting may decrease the weight of the harvested crop and thus the cost of transportation, decrease the cost of disposal of the debris because it may be left in or near the harvesting location, and decrease the likelihood of contamination of the harvested product with the debris during transport. These screening/roller separator assemblies may have a series of rotating spaced parallel shafts, each of which has a series of disks. The screening/roller separator assemblies permit debris to pass downward through spaces between disks, while the harvested crop product remains over the disks and advances out of the screening/roller separator assembly to a collector. U.S. Pat. No. 10,111,385 (the '385 patent), issued on Oct. 30, 2018, the contents of which is hereby incorporated by reference in its entirety and attached hereto as Exhibit A, presents an example of a known harvester.
A problem with known harvesters is the wearing of pickup or separating configuration components. Pickup configurations can include a number of wear components, e.g., brushes, which contact the ground and lift harvest crop product and associated debris into a screening/roller configuration for separation. Pickup configurations also may include flexible belts for driving the rotation of pickup components, and other components that are subject to wear and degradation over time.
Similarly, screening/roller configuration for separation can include a number of wear components, e.g., disks, which contact the harvest crop and associated debris and wear as the associated debris separated from the harvest crop passes downward. It is time consuming to replace such components, e.g., belt, disks, brushes, wear parts, when the components break, become jammed, or otherwise require service or replacement. And service and replacement often requires taking a harvester out of commission for long periods of time, reducing the overall efficiency of the harvest.
In one aspect of the present disclosure, a nut harvester is provided with a removable assembly that may be replaced in the field. In another aspect of the present disclosure, a method of replacing a removable assembly in the field is provided.
An exemplary nut harvester of the present invention includes a removable pickup assembly and a removable separator assembly that may be removed from the nut harvester by decoupling a motor mounted to the respective assembly for driving one of the shafts of the assemblies, and removing the respective assembly from the nut harvester. A replacement pickup assembly and/or separator assembly may be placed into the place of the removed pickup assembly and/or separator assembly, removably connected to the body frame of the nut harvester and coupled with the motor. Such replacement mechanism and method provides an easy and simple way to replace in the field a removable pickup assembly and/or a removable separator assembly of a nut harvester.
In one feature of the disclosure, a nut harvester is described having a body frame and at least one removable assembly. In another feature of the disclosure, a removable assembly is a removeable pickup assembly. In another feature of the disclosure, a removable assembly is a removeable separator assembly. In yet another feature of the disclosure, a removable pickup assembly includes a pickup assembly drive shaft, a pickup assembly idle shaft, a belt wrapped around the pickup assembly drive shaft and the pickup assembly idle shaft, and a stretcher assembly providing tension and support to the pickup assembly drive shaft and the pickup assembly idle shaft.
In one feature of the disclosure, a stretcher assembly includes a stretcher assembly side plate adapted for mounting the pickup assembly drive shaft and the pickup assembly idle shaft to the stretcher assembly side plate. In another feature of the disclosure, a stretcher assembly includes a closed bracket attached to the stretcher assembly side plate and to which the pickup assembly idle shaft is secured via an idle shaft bearing block. In another feature of the disclosure, a stretcher assembly includes an open bracket attached to the stretcher assembly side plate and to which the pickup assembly drive shaft is secured via a drive shaft bearing block. In yet another feature of the disclosure, a stretcher assembly includes a stretcher rod penetrating a closed bracket and attached to an open bracket. In another aspect of the disclosure, a stretcher assembly includes a stretcher nut adapted to engage the stretcher rod such that rotation of the stretcher rod adjusts the distance between the closed bracket and the open bracket to adjust the tension between the pickup assembly idle shaft and the pickup assembly drive shaft.
In one feature of the disclosure, a nut harvester includes a pickup assembly motor. In another aspect of the disclosure, a pickup assembly motor is a pickup assembly hydraulic motor. In one aspect of the disclosure, a pickup assembly torque arm is connected to a pickup assembly motor and the pickup assembly torque arm includes a pickup assembly torque arm slot. In yet another aspect of the disclosure, a pickup assembly torque arm includes a pickup assembly torque arm mounting end attached to a pickup assembly motor, and a pickup assembly torque arm slot end in which a pickup assembly torque arm slot is formed. In one aspect of the disclosure, an opening of the pickup assembly torque arm slot is wider than a size of a pickup assembly torque arm pin inserted into the pickup assembly torque arm slot. In another aspect of the disclosure, a pickup assembly torque arm slot is elongated to tolerate a movement of the pickup assembly motor with respect to the pickup assembly torque arm pin. In another aspect of the disclosure, a pickup assembly motor coupler couples the pickup assembly motor to the pickup assembly drive shaft.
In one aspect of the disclosure, a removable separator assembly includes a separator assembly side plate, a separator assembly drive shaft, and at least one separator assembly shaft. In another aspect of the disclosure, a removable separator assembly includes at least two disks mounted on each of at least two separator assembly shafts. In yet another aspect of the disclosure, a separator assembly motor is included. In one aspect of the disclosure, a separator assembly motor is a separator assembly hydraulic motor. In another feature of the disclosure, a nut harvester includes a separator assembly torque arm connected to a separator assembly motor, the separator assembly torque arm including a separator assembly torque arm slot. In another aspect of the disclosure, a separator assembly torque arm includes a separator assembly torque arm mounting end attached to a separator assembly motor. In another aspect of the disclosure a separator assembly torque arm includes a separator assembly torque arm slot end in which a separator assembly torque arm slot is formed. In another aspect of the disclosure, an opening of a separator assembly torque arm slot is wider than a size of a separator assembly torque arm pin inserted into the separator assembly torque arm slot.
In one aspect of the disclosure, a separator assembly torque arm slot is elongated to tolerate a movement of the separator assembly motor with respect to a roller assembly torque arm pin. In another aspect of the disclosure, a nut harvester includes a separator assembly motor coupler coupling a separator assembly motor to a separator assembly drive shaft. In another aspect of the disclosure, a nut harvester includes a removable separator assembly. In yet another aspect of the disclosure, a nut harvester includes a body frame, the body frame including a pickup assembly support on which a removable pickup assembly is adapted to rest, and a mounting rail, where the mounting rail includes an inclined slot adapted to receive a removable pickup assembly; and, the pickup assembly torque arm pin. In yet another aspect of the disclosure, a frame includes a mounting ear to which a stretcher assembly is removably mounted and a mounting slot to which an attachment surface formed on a separator assembly side plate is removably mounted. In another aspect of the disclosure, a nut harvester includes a separator assembly torque arm pin for insertion into a separator assembly torque arm.
In one aspect of the disclosure, a method of replacing a removable assembly of a nut harvester is disclosed. In one aspect of the disclosure, a method of replacing a removable assembly of a nut harvester includes decoupling a motor from a shaft of a removable assembly, removing the removable assembly from the nut harvester by unmounting the removable assembly from a body frame of the nut harvester, mounting a replacement removable assembly to the body frame of the nut harvester, and coupling the motor to a shaft of the replacement removable assembly. In one feature of the disclosure, a method includes removing one or more cover panels from the body frame of a nut harvester. In another feature of the disclosure, a motor is a hydraulic motor. In yet another feature of the disclosure, a step of removing a removable assembly includes lifting up an unmounted removable assembly from an inclined slot formed on a body frame and removing the lifted up removable assembly out of a nut harvester. In one aspect of the disclosure, a step of mounting of a replacement removable assembly includes placing the replacement removable assembly into an inclined slot before removably mounting the replacement removable assembly to a body frame.
In another feature of the disclosure, a harvester is disclosed having a harvester frame, having sidewalls, the sidewalls having inclined slots; and a pick-up and/or separator assembly cassette received for mounting in the harvester frame by the inclined slots, so that the cassette is adapted to be lifted up and out and a replacement cassette dropped into its place.
These and other features and advantages will be more clearly understood from the following detailed description and drawing of embodiments of the present application.
Refer now to
The crop product is collected by the collection mechanism 34, which can be a rotating sweeper or other suitable collection mechanism. Alternatively, the crop product can be collected by another machine. A removable pickup assembly 200 is placed behind the collection mechanism 34 to pick up the collected crop.
After it is picked up, crop product is fed to the separator assembly 100. In the illustrated embodiment of
The harvester 22 has a power take-off 28 that drives a hydraulic pump 30. The hydraulic pump 30 drives, through the hydraulic tubing 31 (
In other embodiments, the harvester 22 can have its own power generation source, e.g., an engine or electric motor, that transfers its mechanical power to the rotational shafts. In this later embodiment, the harvester 22 does not require a power take-off connected to a towing vehicle.
Referring now to
During operation, the removable pickup assembly 200 placed within the body frame 80 is covered by panels, e.g., top body panel 62, side upper body panel 64. The body panels 62 and 64 protect the removable pickup assembly 200 from external dust and other debris, for example, weather or materials kicked up by the towing vehicle that may damage the removable pickup assembly 200. The removable separator assembly 100 is also covered by panels, e.g., side lower body panel(s) 66. The panels 66 protect the removable separator assembly 100 from dust and debris that may damage the removable separator assembly 100 like that of removeable pickup assembly 200, and prevent additional dusts and debris landing on a surface of the removable separator assembly 100.
The pickup assembly hydraulic motor 42 is mounted to the removable pickup assembly 200. In the illustrated embodiment, the pickup assembly hydraulic motor 42 is mounted to the removable pickup assembly 200 by being coupled to a pickup assembly drive shaft 214, which will be discussed below. The roller assembly hydraulic motor 52 is mounted to the removable roller assembly 100 by being coupled through coupler 58 to a roller assembly drive shaft 113 (
The housings 41, 51 of the pickup assembly hydraulic motor 42 and roller assembly hydraulic motor 52, respectively, are attached to a pickup assembly torque arm 44 and a roller assembly torque arm 54, respectively, each of which limits the housings 41, 51 of the respective hydraulic motor 42, 52 from excessive rotation while driving the respective assemblies (
Each of pickup assembly drive shaft 214 and pickup assembly idle shaft 212 may optionally include a shaft cover, e.g., pickup assembly drive shaft cover 215 and pickup assembly idle shaft cover 213, respectively, to provide a suitable dimension and surface for driving and idling one or more belts 204 wrapped around a pickup assembly drive shaft 214 and pickup assembly idle shaft 212. For example, pickup assembly drive shaft cover 215 and pickup assembly idle shaft cover 213 may each include a rubberized material or the like with suitable friction to prevent the belts 204 from slipping. During operation, as the pickup assembly hydraulic motor 42 mounted to the pickup assembly drive shaft 214 drives the rotation of the pickup assembly drive shaft 214, the belts 204 rotate around the removable pickup assembly 200 idling around pickup assembly idle shaft 212. One or more brushes 206 are positioned about perpendicular to a moving direction of the belt(s) 204, spaced periodically around the belts 204. The brushes 206 pick up the crop products and move the collected products to the removable roller assembly 100. The brushes 206 are constructed as known in the art, and may be comprised of a rubber or plastic, or other pliable material, fiber, or fabric, to assist the collection and movement of crop products. For example, in one example the “brushes” 206 may be slit rubber pieces backed by metal tine for strength or other suitable material.
Stretcher assembly 220 supports the pickup assembly drive shaft 214 and pickup assembly idle shaft 212 and tensions the belts 204 by adjusting the distance between shafts 214, 212. The stretcher assembly 220 includes a closed bracket 260, an open bracket 270, a stretcher rod 230 with matching stretcher nut(s) 232, and stretcher plate 202 on which the closed bracket 260 and the open bracket 270 are mounted. Stretcher plate 202 prevents external debris from fouling the removable pickup assembly 200 and also serves to maintain the belts 204 in position. The stretcher plate may be formed of one or more components or in corporate clearances, for example, to allow adjustments of the brackets 260, 270.
The pickup assembly idle shaft and pickup assembly drive shafts 212, 214 are rotatably mounted onto the stretcher plate 202, and are secured to the closed bracket 260 and open bracket 270 with an idle shaft bearing block 242 and drive shaft bearing block 244, respectively, that act as a bearing surface for the respective shafts. Each of idle bearing block 242 and drive bearing block 244 may include ball bearings or similar bearing surfaces within the respective bearing blocks 244. The idle shaft and drive shaft bearing blocks 242, 244 may be fastened onto the closed and open brackets 260, 270, respectively, using a suitable fastener, removable or permanent. The pickup assembly idle shaft and pickup assembly drive shafts 212, 214 are able to rotate within the idle and drive bearing blocks 242, 244, respectively. The rotation causes the brushes 206 to travel around the removable pickup assembly 200.
The open bracket 280 includes open arms 271 surrounding at least one end 262 of the closed bracket 260. The relative position of the closed bracket 260 and the open bracket 270 can be adjusted by manipulating the stretcher rod 230. One end 231 of the stretcher rod 230 is attached to a middle section 272 of the open bracket 280 between the open arms 271 and penetrates the surrounded end 262 of the closed bracket 260 via an opening 264 in a middle section 263 of the surrounded end 262. The matching stretcher nuts 232 are placed on the stretcher rod 230 on both sides of the opening 264 of the closed bracket 260. The stretcher rod 230 may be, for example, a threaded rod that, when rotated in corresponding nuts 232, causes the distance between the pickup assembly drive shaft 214 and pickup assembly idle shaft 212 to change. Alternative stretcher rod mechanisms may also be suitable such as, for example, a hydraulic pneumatic piston, so long as it is capable of maintaining suitable tension. Because the stretcher assembly 220 is able to maintain tension between the pickup assembly drive shaft 214 and pickup assembly idle shaft 212 when not inserted into a harvester, the removable pickup assembly 200 (cassette) may be pre-tensioned in a favorable work environment in advance of installation, which decreases the time it takes to replace the pickup assembly and ultimately reducing the out-of-service-time of the harvester.
The closed and open brackets 260, 270 may include a guide for maintaining the brackets 260, 270 relatively co-planer. For example, as shown in
As such, an out of service removable pickup assembly 200 may be removed and a new or repaired removable pickup assembly may be inserted without significant downtime to the harvester. Out of service removable pickup assembly 200 may then be repaired after the harvester is returned to service with a new removable pickup assembly 200. The out of service removable pickup assembly 200 may be transferred to a workshop or other suitable safe location to have the worn parts, e.g., belts 204 or brushes 206, replaced in a more work friendly environment and stored for a next replacement. As the removable pickup assembly 200 glides into and out of the inclined slot 83, it is guided and supported by an inclined slot bottom surface 84, inclined slot top surface 86, and inclined slot curve surface 85 of the inclined slot 83. The body frame 80 further comprises an opening 87, the edges of which are shaped to accommodate the removable pickup assembly 200 inserted into the inclined slot 83.
The removable pickup assembly 200 received by the body frame 80 is releasably mounted onto one or more holes of the body frame 80, or as shown in
As illustrated in
The pickup assembly hydraulic motor 42 may further include a pickup assembly hydraulic motor power connect 43 including an inlet and outlet port to house the hydraulic lines supplying high and low pressure hydraulic fluids, respectively. Pickup assembly hydraulic motor 42, as well roller assembly hydraulic motor 52 (discussed below), may each be typical hydraulic motors used in the industry, for example, those supplied by: White Drive Products, Inc of Hopkinsville, Ky.; Danfoss; and Bosch Rexroth Corporation. When the high pressure hydraulic fluid is supplied to the pickup assembly hydraulic motor 42, the pickup assembly hydraulic motor 42 drives the pickup assembly drive shaft 214 to rotate.
When preparing to remove the removable pickup assembly 200 from the harvester 22, the pickup assembly hydraulic motor 42 is decoupled from the pickup assembly drive shaft 214. As such, the pickup assembly hydraulic motor 42 is not internal or part of the pickup assembly drive shaft 214. When the removable pickup assembly 200 is lifted up from the inclined slot 83 and removed from the body frame 80, the pickup assembly hydraulic motor 42 remains connected to the hydraulic lines. After the new replacement removable pickup assembly 200 is dropped into the inclined slot 83, the pickup assembly hydraulic motor 42 is mounted to the new replacement removable pickup assembly 200 by being coupled to the pickup assembly drive shaft 214 of the new replacement removable pickup assembly 200. The pickup assembly hydraulic motor 42 is external to the pickup assembly drive shaft 214 and not internal so that the removable pickup assembly 200 may be easily removed from the nut harvester and replaced without having to remove the pickup assembly hydraulic motor 42 with the removable pickup assembly 200.
Also shown in
The pickup assembly torque arm 44, in combination with the pickup assembly torque arm slot 49, and pickup assembly torque arm pin 91 are adapted to tolerate a range of movement of the pickup assembly hydraulic motor 42 occurring during the normal operation of the harvester 22 in the field while retaining the relative position of the pickup assembly hydraulic motor 42 in relation to the removable pickup assembly 200. In an alternative, the pickup assembly toque arm 44 and/or the roller assembly torque arm 54 (discussed below), are made from a flexible material or is of a configuration that can undergo elastic deformation such that they may absorb rotational shock and permit some flexibility while providing a rotational anchor for the respective motors 42, 52. The tolerance provides reasonable tension to a structure of the harvester 22, and its components, and allows the harvester 22 to accommodate, absorb, and dissipate minor movement, vibration, and shocks caused by the physical movements of the harvester 22 and pickup assembly 200, particularly during operation, and prevents damages or cracks that may otherwise occur if the pickup assembly hydraulic motor 42 were mounted directly to the body frame of another harvester.
The wider opening of the pickup assembly torque arm slot 49 allows for manufacturing tolerances and for using the removable pickup assembly 200 in harvesters 22 with different sizes of pickup assembly torque arm pin 91. The opening of the pickup assembly torque arm slot 49 is also elongated to tolerate a movement of the pickup assembly hydraulic motor 42 parallel to the pickup assembly torque arm pin 91. It should be noted that the orientation and shape of the pickup assembly torque arm slot 49 may be adjusted to provide for tolerances in different dimensions as well to assist for movement of the removable pickup assembly 200 in different directions.
An exemplary removable roller assembly 100 of
The roller assembly hydraulic motor 52 is mounted on the removable roller assembly 100 and mechanically coupled to a roller assembly drive shaft 113 via a motor coupler 58. When hydraulic fluid is supplied to the roller assembly hydraulic motor 52 via an inlet and retuned through the outlet port of the roller assembly hydraulic motor power connect 53, through hydraulic lines 31, the roller assembly hydraulic motor 52 rotates the roller assembly drive shaft 113, which in turn rotates the roller assembly shafts 112 and disks 122 to separate the collected crops from debris.
In preparation for removing the removable roller assembly 100 for replacement, the roller assembly hydraulic motor 52 is decoupled from the roller assembly drive shaft 113. When the removable roller assembly 100 is removed from the body frame 80, the roller assembly hydraulic motor 52 remains connected to the hydraulic lines. After the new replacement removable roller assembly 100 is mounted onto the body frame 80, the roller assembly hydraulic motor 52 is mounted to the new replacement removable roller assembly 100 by being coupled to the roller assembly drive shaft 113 of the new replacement removable roller assembly 100. The roller assembly hydraulic motor 52 is external to the roller assembly drive shaft 113 and not internal so that the removable roller assembly 100 may be easily removed from the nut harvester 22 and replaced without having to remove the roller assembly hydraulic motor 52 with the removable roller assembly 100.
Also shown in
The roller assembly torque arm 54, roller assembly torque arm slot 59, and roller assembly torque arm pin 92 have similar features to the pickup assembly torque arm 44, pickup assembly torque arm slot 49, and pickup assembly torque arm pin 91 discussed above with respect to the removable pickup assembly 200 and have similar advantages. In the embodiments of
To replace the removable pickup assembly 200, the pickup assembly hydraulic motor 42 mounted to the pickup assembly drive shaft 214 is decoupled from the pickup assembly drive shaft 214, while the pickup assembly hydraulic motor 42 remains connected to the hydraulic tubing 31. Optionally, the pickup assembly torque arm slot 49 may be lifted from the pickup assembly torque arm pin 91. The removable pickup assembly 200 is decoupled from the frame 80 by removing the appropriate fastener(s). For example, the attachment blocks 261 (
To replace the removable separator assembly 100, the roller assembly hydraulic motor 52 is decoupled from the roller assembly drive shaft 113, while the roller assembly hydraulic motor 52 is still connected to the hydraulic tubing 31. Optionally, the roller assembly torque arm slot 59 may be lifted from the roller assembly torque arm pin 92. The removable separator assembly 100 is decoupled from the frame 80 by removing the appropriate fastener(s). For example, the attachment surface(s) 132 of the roller assembly 100 is unfastened from the mounting slot(s) 93 of the mounting rail 82. The side lower body panel(s) 66 are removed from the body frame 80. Thereafter, the removable roller assembly 100 is removed from the separator compartment 78. A new removable roller assembly 100 is paced into the separator compartment 78. The side lower body panel(s) 66 covers the new removable roller assembly 100, and the attachment surface 132 of the new removable roller assembly 100 is fastened to the mounting slot(s) 93 of the mounting rail 82. The roller assembly hydraulic motor 52 is coupled to the roller assembly drive shaft 113 of the new removable roller assembly 100 via the motor coupler 58, and, if removed, the roller assembly torque arm pin 92 is inserted into the roller assembly torque arm slot 59.
The apparatus and methods of the present disclosure offer improvements in crop product harvesting by allowing for more efficient crop harvesting. The efficiency is gained by decreasing the out of service time associated with repairing pickup and separation configurations. The ability to remove and reinstall a cassette of, for example, a removable pickup assembly 200 and/or a removable roller assembly 100 allows for the units to be pre-configured and refurbished without taking the harvester out of service. The advantage of being able to remove and replace the removable pickup assembly 200 and removable roller assembly 100 quickly allows for the harvester to return to service with limited down-time and for maintenance on the assemblies to be completed in a more ideal work environment with access to appropriate tools and shelter as opposed to the need for field repairs of the equipment.
The above description and drawings are only illustrative of preferred embodiments, and are not intended to be limiting. Features described with a single aspect or embodiment of this disclosure may also be use with other aspects or embodiments of this disclosure where appropriate. Any subject matter or modification thereof which comes within the spirit and scope of the following claims is to be considered part of the present inventions.
This application claims the benefit of U.S. Provisional Application No. 62/803,011, filed Feb. 8, 2019, the subject matter of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
530262 | Distl et al. | Dec 1894 | A |
622035 | Bray | Mar 1899 | A |
785508 | Mason | Mar 1905 | A |
800690 | Stuart et al. | Oct 1905 | A |
1012046 | Anderson | Dec 1911 | A |
1014493 | Lauritzen et al. | Jan 1912 | A |
1418899 | Acken | Jun 1922 | A |
1524360 | Lauritzen | Jan 1925 | A |
1641777 | Newhouse | Sep 1927 | A |
1647816 | Riddell | Nov 1927 | A |
1677838 | Moiin | Jul 1928 | A |
1679593 | Williamson et al. | Aug 1928 | A |
1699718 | Robins | Jan 1929 | A |
1899292 | Rienks | Feb 1933 | A |
1899737 | Ulrich | Feb 1933 | A |
1941147 | Johlige | Dec 1933 | A |
1950210 | Anderson | Mar 1934 | A |
2055630 | McLean | Sep 1936 | A |
2124856 | Kohler | Jul 1938 | A |
2244546 | Stockdale | Jun 1941 | A |
2257352 | Silver | Sep 1941 | A |
2266506 | Morse | Dec 1941 | A |
2350332 | Albaugh, Sr. | Jun 1944 | A |
2357892 | Grant | Sep 1944 | A |
2370539 | Hodecker | Feb 1945 | A |
2417921 | Fox | Mar 1947 | A |
2477006 | Pierson | Jul 1949 | A |
2565559 | Hurdelbrink | Aug 1951 | A |
2588309 | Troyer | Mar 1952 | A |
2604206 | Armer | Jul 1952 | A |
2618385 | Silver et al. | Nov 1952 | A |
2624458 | Molnau | Jan 1953 | A |
2632290 | Anderson | Mar 1953 | A |
2670846 | Rienks et al. | Mar 1954 | A |
2699253 | Miller | Jan 1955 | A |
2743813 | Erickson | May 1956 | A |
2786574 | Clark | Mar 1957 | A |
2830703 | Laase | Apr 1958 | A |
2915180 | MacGillivray | Dec 1959 | A |
2949189 | Haines | Aug 1960 | A |
2954810 | Bond | Oct 1960 | A |
2966267 | Dunbar | Dec 1960 | A |
2974793 | Kuntz | Mar 1961 | A |
2976550 | Silver et al. | Mar 1961 | A |
3010522 | Oppel | Nov 1961 | A |
3217346 | Silver et al. | Nov 1965 | A |
3260314 | Edwards | Jul 1966 | A |
3265206 | Allen | Aug 1966 | A |
3267502 | Wells | Aug 1966 | A |
3306441 | Sanders et al. | Feb 1967 | A |
3353947 | Kramer | Nov 1967 | A |
3367494 | Peterson | Feb 1968 | A |
3451084 | Silver | Jun 1969 | A |
3456776 | Viene | Jul 1969 | A |
3473615 | Harrell | Oct 1969 | A |
3738483 | MacKenzie | Jun 1973 | A |
3747149 | Tatyanko et al. | Jul 1973 | A |
3750211 | Zaun et al. | Aug 1973 | A |
3757946 | Berkowitz et al. | Sep 1973 | A |
3817375 | Herkes | Jun 1974 | A |
3848741 | Haley et al. | Nov 1974 | A |
3870627 | Herkes | Mar 1975 | A |
3878937 | Glaser et al. | Apr 1975 | A |
3985233 | Sherman | Oct 1976 | A |
4037723 | Wahl et al. | Jul 1977 | A |
4101420 | Luginbuhl | Jul 1978 | A |
4102502 | Vaplon et al. | Jul 1978 | A |
4202542 | Lammers et al. | May 1980 | A |
4209097 | Nordmark et al. | Jun 1980 | A |
4239119 | Kroell | Dec 1980 | A |
4264012 | Paradis | Apr 1981 | A |
4266676 | Ruckstuhl et al. | May 1981 | A |
4301930 | Smith | Nov 1981 | A |
4376042 | Brown | Mar 1983 | A |
4377401 | Laughlin | Mar 1983 | A |
4377474 | Lindberg | Mar 1983 | A |
4430210 | Tuuha | Feb 1984 | A |
4452694 | Christensen et al. | Jun 1984 | A |
4471876 | Stevenson, Jr. et al. | Sep 1984 | A |
4504386 | Dyren et al. | Mar 1985 | A |
4538734 | Gill | Sep 1985 | A |
4563926 | Boardman | Jan 1986 | A |
4579652 | Bielagus | Apr 1986 | A |
4600106 | Minardi | Jul 1986 | A |
4606494 | Kroell | Aug 1986 | A |
4633956 | Glifberg et al. | Jan 1987 | A |
4653648 | Bielagus | Mar 1987 | A |
4658964 | Williams | Apr 1987 | A |
4658965 | Smith | Apr 1987 | A |
4703860 | Gobel et al. | Nov 1987 | A |
4741444 | Bielagus | May 1988 | A |
4755286 | Bielagus | Jul 1988 | A |
4760925 | Stehle et al. | Aug 1988 | A |
4789068 | Gilmore | Dec 1988 | A |
4795036 | Williams | Jan 1989 | A |
4798508 | Lewis | Jan 1989 | A |
4836388 | Bielagus | Jun 1989 | A |
4844351 | Holloway | Jul 1989 | A |
4853112 | Brown | Aug 1989 | A |
4871073 | Berry et al. | Oct 1989 | A |
4901863 | Lancaster | Feb 1990 | A |
4901864 | Daugherty | Feb 1990 | A |
4903845 | Artiano | Feb 1990 | A |
4915824 | Surtees | Apr 1990 | A |
4946046 | Affleck et al. | Aug 1990 | A |
4972959 | Bielagus | Nov 1990 | A |
4972960 | Bielagus | Nov 1990 | A |
5001893 | Stanley | Mar 1991 | A |
5012933 | Artiano | May 1991 | A |
5022514 | Lofberg | Jun 1991 | A |
5024335 | Lundell | Jun 1991 | A |
5025929 | Carrera | Jun 1991 | A |
5032255 | Jauncey | Jul 1991 | A |
5037537 | Bielagus | Aug 1991 | A |
5051172 | Gilmore | Sep 1991 | A |
5058727 | Jahns et al. | Oct 1991 | A |
5058751 | Artiano | Oct 1991 | A |
5060806 | Savage | Oct 1991 | A |
5074992 | Clinton | Dec 1991 | A |
5078274 | Brown | Jan 1992 | A |
5108589 | Sherman | Apr 1992 | A |
5116486 | Pederson | May 1992 | A |
5136832 | Sund | Aug 1992 | A |
5152402 | Matula | Oct 1992 | A |
5159734 | Whitt et al. | Nov 1992 | A |
5163564 | Matula | Nov 1992 | A |
5174435 | Dorner et al. | Dec 1992 | A |
5211281 | Aimes | May 1993 | A |
5232097 | Tohkala | Aug 1993 | A |
5234109 | Pederson | Aug 1993 | A |
5236093 | Marrs | Aug 1993 | A |
5257699 | Fricker et al. | Nov 1993 | A |
5263591 | Taormina et al. | Nov 1993 | A |
5287977 | Tirschler | Feb 1994 | A |
5298119 | Brown | Mar 1994 | A |
5305891 | Bielagus | Apr 1994 | A |
5344025 | Tyler et al. | Sep 1994 | A |
5361909 | Gemmer | Nov 1994 | A |
5377848 | Jokinen et al. | Jan 1995 | A |
5386914 | Eramaia et al. | Feb 1995 | A |
5395057 | Williams, Jr. et al. | Mar 1995 | A |
5421147 | Holden | Jun 1995 | A |
5423430 | Zaffiro et al. | Jun 1995 | A |
5425459 | Ellis et al. | Jun 1995 | A |
5427228 | Delsanto | Jun 1995 | A |
5450966 | Clark et al. | Sep 1995 | A |
5465847 | Gilmore | Nov 1995 | A |
5480034 | Kobayashi | Jan 1996 | A |
5484247 | Clark et al. | Jan 1996 | A |
5485925 | Miller et al. | Jan 1996 | A |
5493796 | Ballew et al. | Feb 1996 | A |
5503712 | Brown | Apr 1996 | A |
5506123 | Chieffalo et al. | Apr 1996 | A |
RE35331 | Sherman | Sep 1996 | E |
5555985 | Kobayashi | Sep 1996 | A |
5558234 | Mobley | Sep 1996 | A |
5560496 | Lynn | Oct 1996 | A |
5582300 | Kobayashi | Dec 1996 | A |
5590792 | Kobayashi | Jan 1997 | A |
5626239 | Kobayashi | May 1997 | A |
5697451 | Nicholson | Dec 1997 | A |
5733592 | Wettstein et al. | Mar 1998 | A |
5740922 | Williams | Apr 1998 | A |
5799801 | Clark et al. | Sep 1998 | A |
5824356 | Silver et al. | Oct 1998 | A |
5826703 | Altemus, Jr. et al. | Oct 1998 | A |
5887515 | Kunstmann et al. | Mar 1999 | A |
5887810 | Maruyama | Mar 1999 | A |
5901856 | Brantley, Jr. et al. | Apr 1999 | A |
5913268 | Jackson et al. | Jun 1999 | A |
5957306 | Hoffman | Sep 1999 | A |
5960964 | Austin et al. | Oct 1999 | A |
5967333 | Smith | Oct 1999 | A |
RE36537 | Sommer, Jr. et al. | Feb 2000 | E |
6053330 | Lavoie | Apr 2000 | A |
6076684 | Bollegraaf | Jun 2000 | A |
6079929 | Muma et al. | Jun 2000 | A |
6110242 | Young | Aug 2000 | A |
6144004 | Doak | Nov 2000 | A |
6149018 | Austin et al. | Nov 2000 | A |
6193054 | Henson et al. | Feb 2001 | B1 |
6196394 | Sieg et al. | Mar 2001 | B1 |
6234292 | Schut | May 2001 | B1 |
6237778 | Weston | May 2001 | B1 |
6241100 | Tanner et al. | Jun 2001 | B1 |
6250472 | Grubbs et al. | Jun 2001 | B1 |
6250477 | Swanink | Jun 2001 | B1 |
6250478 | Davis | Jun 2001 | B1 |
6318560 | Davis | Nov 2001 | B2 |
6360678 | Komatsu et al. | Mar 2002 | B1 |
6371305 | Austin et al. | Apr 2002 | B1 |
6375565 | Tanner et al. | Apr 2002 | B1 |
6390915 | Brantley et al. | May 2002 | B2 |
6460706 | Davis | Oct 2002 | B1 |
6513641 | Affaticati et al. | Feb 2003 | B1 |
6523678 | Roessler et al. | Feb 2003 | B2 |
6619473 | Romeo | Sep 2003 | B2 |
6648145 | Davis et al. | Nov 2003 | B2 |
6702104 | Bollegraaf | Mar 2004 | B2 |
6705433 | McQuaid et al. | Mar 2004 | B2 |
6708813 | Takahashi | Mar 2004 | B2 |
6715598 | Affaticati et al. | Apr 2004 | B2 |
6726028 | Visscher et al. | Apr 2004 | B2 |
6811018 | Cotter et al. | Nov 2004 | B2 |
6834447 | Currey | Dec 2004 | B1 |
6860383 | Veit et al. | Mar 2005 | B2 |
6918484 | Affaticati et al. | Jul 2005 | B2 |
7093709 | Cotter et al. | Aug 2006 | B2 |
7121398 | Affaticati et al. | Oct 2006 | B2 |
7124876 | Wolf | Oct 2006 | B2 |
7316181 | Augusto et al. | Jan 2008 | B2 |
7412817 | Flora | Aug 2008 | B2 |
7445122 | Currey | Nov 2008 | B2 |
7467708 | McGettigan et al. | Dec 2008 | B2 |
7472788 | Bonora et al. | Jan 2009 | B2 |
7549544 | Currey | Jun 2009 | B1 |
7556144 | Cotter et al. | Jul 2009 | B2 |
7562760 | Affaticati et al. | Jul 2009 | B2 |
7578396 | Garzon | Aug 2009 | B1 |
7661537 | Sewell | Feb 2010 | B1 |
7677396 | Visscher et al. | Mar 2010 | B2 |
7681710 | Kuhn et al. | Mar 2010 | B2 |
7681718 | Stebnicki et al. | Mar 2010 | B2 |
7699734 | Lohrentz | Apr 2010 | B2 |
7788891 | Puryk et al. | Sep 2010 | B2 |
7806254 | Brayman et al. | Oct 2010 | B2 |
7942273 | Campbell et al. | May 2011 | B2 |
8096408 | Deyanov et al. | Jan 2012 | B2 |
8127933 | Bohlig et al. | Mar 2012 | B2 |
8136672 | Bjornson et al. | Mar 2012 | B2 |
8141698 | Pietsch | Mar 2012 | B2 |
8146489 | Turatti | Apr 2012 | B2 |
8191714 | Kalverkamp | Jun 2012 | B2 |
8196737 | Brayman et al. | Jun 2012 | B2 |
8231011 | Currey | Jul 2012 | B1 |
8307987 | Miller et al. | Nov 2012 | B2 |
8328126 | Bruggencate | Dec 2012 | B2 |
8336714 | Campbell et al. | Dec 2012 | B2 |
8356715 | Brasseur | Jan 2013 | B2 |
8376130 | Deyanov et al. | Feb 2013 | B2 |
8424684 | Campbell et al. | Apr 2013 | B2 |
8459466 | Duffy et al. | Jun 2013 | B2 |
8517181 | Davis et al. | Aug 2013 | B1 |
8522983 | Davis | Sep 2013 | B2 |
8544250 | Lovett et al. | Oct 2013 | B2 |
8646615 | Bruggencate et al. | Feb 2014 | B2 |
8683918 | Witham et al. | Apr 2014 | B1 |
8695315 | Coon et al. | Apr 2014 | B2 |
8800781 | Carlile, Jr. et al. | Aug 2014 | B1 |
8857621 | Campbell et al. | Oct 2014 | B2 |
8874257 | Sinram et al. | Oct 2014 | B2 |
8893409 | Rossi, Jr. | Nov 2014 | B1 |
8939292 | Doppstadt et al. | Jan 2015 | B2 |
9027762 | Davis et al. | May 2015 | B2 |
9485915 | Rittershofer | Nov 2016 | B2 |
9775294 | Bertino | Oct 2017 | B2 |
9788488 | Bertino | Oct 2017 | B2 |
10111385 | DeMont et al. | Oct 2018 | B2 |
10257980 | Savage | Apr 2019 | B1 |
10723556 | Jager | Jul 2020 | B1 |
20030089645 | Backers | May 2003 | A1 |
20030116486 | Davis | Jun 2003 | A1 |
20030183561 | Smook | Oct 2003 | A1 |
20040035764 | Kreft et al. | Feb 2004 | A1 |
20040069693 | Paladin | Apr 2004 | A1 |
20040079684 | Davis et al. | Apr 2004 | A1 |
20040188329 | Visscher et al. | Sep 2004 | A1 |
20050056524 | Cotter et al. | Mar 2005 | A1 |
20050126057 | Currey | Jun 2005 | A1 |
20050242006 | Bohlig et al. | Nov 2005 | A1 |
20060021915 | Biornson et al. | Feb 2006 | A1 |
20060081513 | Kenny | Apr 2006 | A1 |
20060081514 | Kenny | Apr 2006 | A1 |
20060085212 | Kenny | Apr 2006 | A1 |
20060163120 | Doppstadt et al. | Jul 2006 | A1 |
20060180524 | Duncan et al. | Aug 2006 | A1 |
20060226054 | Bishop, Jr. | Oct 2006 | A1 |
20060272930 | Cotter et al. | Dec 2006 | A1 |
20070034478 | Wolf | Feb 2007 | A1 |
20070108026 | McGettigan | May 2007 | A1 |
20070187211 | Vertogen et al. | Aug 2007 | A1 |
20100264069 | Green et al. | Oct 2010 | A1 |
20110073441 | Dale | Mar 2011 | A1 |
20120110971 | Monchiero et al. | May 2012 | A1 |
20140202933 | Benjamins | Jul 2014 | A1 |
20140263770 | Hissong et al. | Sep 2014 | A1 |
20140331629 | Dagorret | Nov 2014 | A1 |
20160167885 | Westergaard Andersen | Jun 2016 | A1 |
20190183051 | Matsuo | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
646931 | Mar 1994 | AU |
671168 | Aug 1996 | AU |
511963 | Jan 1954 | BE |
2054615 | May 1992 | CA |
592 126 | Feb 1934 | DE |
609 919 | Feb 1935 | DE |
618 154 | Sep 1935 | DE |
640 551 | Jan 1937 | DE |
3027651 | Mar 1982 | DE |
3636668 | May 1988 | DE |
3926451 | Mar 1991 | DE |
4339510 | Jan 1995 | DE |
29803880 | Apr 1998 | DE |
19857498 | Jun 2000 | DE |
0132217 | Jan 1985 | EP |
0382676 | Aug 1990 | EP |
0410807 | Jan 1991 | EP |
0410808 | Jan 1991 | EP |
0773070 | May 1997 | EP |
0818406 | Jan 1998 | EP |
1005918 | Jun 2000 | EP |
1584580 | Oct 2005 | EP |
1607349 | Dec 2005 | EP |
1785199 | May 2007 | EP |
2436255 | Apr 2012 | EP |
754400 | Aug 1956 | GB |
878 492 | Oct 1961 | GB |
2 145 612 | Oct 1985 | GB |
2 222 507 | Aug 1993 | GB |
2 356 547 | May 2001 | GB |
2 407 469 | Apr 2006 | GB |
1764712 | Sep 1992 | SU |
WO-8900893 | Feb 1989 | WO |
WO-9216311 | Oct 1992 | WO |
WO-9714514 | Apr 1997 | WO |
WO-9738568 | Oct 1997 | WO |
WO-0007743 | Feb 2000 | WO |
WO-03026384 | Apr 2003 | WO |
WO-2007112593 | Oct 2007 | WO |
Entry |
---|
Eller, Brandon, “Designs, Construction, and Testing of an Almond Harvester Pick-Up Belt Tensioning Mechanism,” BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, 2012. |
Number | Date | Country | |
---|---|---|---|
20200253123 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62803011 | Feb 2019 | US |