The herein disclosed and claimed inventive concepts generally relate to a sprinkler head, and more particularly to a nutating sprinkler head for randomizing fluid distribution.
Irrigation systems such as center pivot systems have a structure from which down tube are suspended, with sprinkler heads attached to the down tubes. The sprinkler heads take a number of different forms and all try to create a uniform and random spread of fluid droplets, or a size which does not result in excessive evaporation. The sprinkling heads may also be mounted on top of the rotating structures of the center pivot systems, or on upward turned ends of the down tubes. Such sprinkler heads can operate in any orientation, because the force of the fluid stream is greater than the force of gravity on the lightweight sprinkler parts. However, for convenience the sprinkler head and its parts are described as being in the orientation as shown in the figures, with “upper”, “lower”, “tops”, and “bottom” surfaces applied to the sprinkler parts in the orientation shown in the figures.
What is disclosed is a improved fluid distributing sprinkler head. The fluid distributing sprinkler head is made up of a sprinkler body which partially encloses a fluid delivery tube with an attached fluid nozzle. Fluid flows through the sprinkler body and exits out the fluid nozzle. The fluid nozzle constricts the fluid stream to form the fluid stream into a narrower stream of fluid.
The sprinkler body includes a sprinkler body upper plate, and a sprinkler lower plate. Each of these are generally ring shaped, and have a passage for the stream of fluid or the fluid delivery tube to pass through. Each of the sprinkler body plates has a first side and a second side, which correspond to an upper side, and a lower side, as the sprinkler head is shown in the figures. In an embodiment the sprinkler body upper and lower plates are fixedly attached to the fluid delivery tube. In another embodiment the fluid delivery tube is threaded at both ends for attachment to the sprinkler body, preferably to the sprinkler body upper plate and to the sprinkler body lower plate. Threaded attachment allows for interchangeability of the fluid distribution cage, discussed below, as well as for repair of the sprinkler head in the event that one or more pieces breaks or malfunctions.
The fluid distribution cage is made up of a lower cage plate with a first and second side, and an upper cage plate with a first and second side. The upper and lower cage plates can also be called the swash plate, and the strike plate. The two cage plates are coplanar and held in a spaced apart relationship by one or more cage arms. The upper cage plate is positioned between the sprinkler body upper and lower plates, and there is sufficient room between the sprinkler body upper and lower plates for the upper cage plate to rock back and forth (also called to nutate), as well as to rotate around the stationary sprinkler body plates. The upper portion can be a circular ring shape, trilobal, or any other shape that will function to nutate between the sprinkler body upper plate and lower plate. The term “plate” used in conjunction with the upper sprinkler body plate and lower sprinkler body plate denotes that the lower side of the upper sprinkler plate and the upper side of the lower sprinkler plate are generally formed to allow for the nutating of the upper cage plate between the two surfaces. The upper side of the upper sprinkler body plate and the lower side of the lower sprinkler body plate can be in a variety of shapes that allow for the function of the sprinkler.
The upper cage plate defines a passage for the fluid delivery tube lower end, and also has one or more raised projections adjacent to the fluid passage. If there are one or more projections, the projections are preferably positioned opposite each other on a second (bottom) side of the upper cage plate (swash plate), and rest on the first (upper) surface of the sprinkler body lower plate. The projections serve to destabilize the fluid distributing cage, and to initiate a motion of the fluid distributing cage to rotate and tilt simultaneously, in a manner similar to a coin which is placed on its side and spun. The motion is called nutation, and at the end of the coin's spinning, it is rotating slowly, while rocking side to side, or nutating.
The fluid distribution cage has a generally circular lower cage plate first (top) side which has a generally peaked or pointed surface profile, preferably with an upturned edge at the periphery of the plate. This plate can be called the strike plate. The surface is incised by spirally radiating grooves which radiate from a central raised point in the center. The raised point in the center of the plate has a beveled top surface. This is so that when it is first struck by a stream of fluid, and fluid will deflect the plate to one side, a motion caused by the bevel. Once the strike plate is deflected to one side by the initial impact of fluid, the fluid stream then strikes the radiating groove on the strike plate, which initiates the spiral motion. The projections on the upper cage plate facilitate this initiation of motion, by keeping the cage from stabilizing when struck by the fluid stream. Alternatively the projections can be positioned on the lower sprinkler body plate.
The fluid distribution cage thus hangs freely from one or more raised projections when fluid is not flowing through the sprinkler head and the sprinkler head is in a vertical position, with the bevel on the lower plate provided for deflecting the strike plate by an initial jet of fluid from the fluid directing tube. These structures plus the spirally radiating grooves serve to initiate a nutating motion in said fluid distribution cage after the initial deflection by the force of fluid.
Another feature of the sprinkler head are one or more resilient cushions on the swash plate. These can be rubber or rubber like material affixed or attached to the surfaces of the sprinkler body upper plate second (lower) edge and the sprinkler body lower plate first (top) plate. The resilient cushions are placed on the swash plate to interact with races located on the upper and lower cage upper plate. The cushions serve to increase the friction between sprinkler body plates and the cage upper plate, to the cage upper plate nutates rather than spin on the sprinkler body. They also provide a dampening effect and reduction of wear between said sprinkler body plates and the upper cage plate surfaces.
The sprinkler head can have as an option a weight, with the purpose of the weight being to dampen the vibrations caused nutation and help prevent wind from blowing the sprinklers away from vertical when they are hung over the crop on rubber hose.
In a preferred embodiment the fluid delivery tube includes a notch or groove that provides relief and allows additional space for the upper cage plate to begin nutation. The notch is an indentation into the circumference of the tube. The notch preferably has a width of about 4.5 inches and a depth of 0.625 inches, although variations can be utilized and still fall within the scope of the invention.
While the presently disclosed inventive concept(s) is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the inventive concept(s) to the specific form disclosed, but, on the contrary, the presently disclosed and claimed inventive concept(s) is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the inventive concept(s) as defined in the claims.
A first embodiment of the disclosed technology is shown
Extending through the sprinkler body is a fluid delivery tube 15. Typically inserted in the fluid delivery tube is a fluid constriction nozzle 4, which is shaped like a funnel to force the fluid into a more narrow stream, for more velocity and force when it hits the strike plate, and for more distance that the fluid is thrown from the sprinkler head.
Shown in
Fluid sprayed from the constricting nozzle through the fluid delivery tube hits the strike plate at the peak of the strike plate. The peak has a beveled top surface, which is positioned to cause the cage deflect to one side when first struck by a stream of fluid. The bevel is aligned perpendicular to the raised projections on the underside of the swash plate. The strike plate 17 includes a number of spirally radiating grooves that distribute fluid sprayed from the sprinkler body in an irrigation pattern. The strike plate has an upturned edge around the periphery of the plate that further serves to direct fluid being distributed. A stream of fluid sprayed on the peak from the fluid distribution tube causes the cage to begin nutating around the fluid distribution tube. As the fluid stream continues, the cage nutates around the fluid distribution tube altering the angle and location on the cage that the fluid stream hits, thus continuously altering the fluid pattern distributed from the sprinkler head.
A weight 7 is shown in the depicted embodiments. The optional weight is utilized to dampen the vibrations caused by the nutation and help prevent wind from blowing the sprinklers away from vertical when they are hung over the crop on hose. Alternatively the weight can be integral with the sprinkler body.
While certain exemplary embodiments are shown in the Figures and described in this disclosure, it is to be distinctly understood that the presently disclosed inventive concept(s) is not limited thereto but may be variously embodied to practice within the scope of this disclosure. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined herein.
This application claims the benefit of U.S. Provisional Application No. 62/773,971 filed Dec. 2, 2019, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3312400 | Clearman | Apr 1967 | A |
4773594 | Clearman | Sep 1988 | A |
4795100 | Purtell et al. | Jan 1989 | A |
4949905 | Jones et al. | Apr 1990 | A |
5333796 | Purtell et al. | Aug 1994 | A |
5381960 | Sullivan et al. | Jan 1995 | A |
5950927 | Elliott et al. | Sep 1999 | A |
6176440 | Elliott | Jan 2001 | B1 |
6439477 | Sweet | Aug 2002 | B1 |
6932279 | Burcham | Aug 2005 | B2 |
7070122 | Burcham et al. | Jul 2006 | B2 |
7287710 | Nelson et al. | Oct 2007 | B1 |
7562833 | Perkins et al. | Jul 2009 | B2 |
7770821 | Pinch | Aug 2010 | B2 |
7942345 | Sesser et al. | May 2011 | B2 |
8028932 | Sesser et al. | Oct 2011 | B2 |
8991724 | Sesser et al. | Mar 2015 | B2 |
9457363 | Duffin | Oct 2016 | B2 |
10239066 | Sesser et al. | Mar 2019 | B2 |
20190054480 | Sesser et al. | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200215556 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62773971 | Nov 2018 | US |