NUTRITIONAL COMPOSITION CONTAINING A NEUROLOGIC COMPONENT OF KAEMPFEROL AND/OR FISETIN AND USES THEREOF

Information

  • Patent Application
  • 20140107193
  • Publication Number
    20140107193
  • Date Filed
    December 17, 2013
    10 years ago
  • Date Published
    April 17, 2014
    10 years ago
Abstract
The present disclosure generally relates to nutritional compositions that are suitable for administration to adult and pediatric subjects that include a neurologic component. The neurologic component may include a flavonoid compound, such as kaempferol, fisetin, or both, and provides beneficial health benefits such as enhanced brain development and improved memory, cognition, hand-eye coordination, and enhanced focusing. Furthermore, the neurologic component may act synergistically with other brain nutrients that may be present in the compositions.
Description
TECHNICAL FIELD

The present disclosure relates to nutritional compositions that are suitable for administration to adult and pediatric subjects that include a neurologic component. The neurologic component may include a flavonoid compound, such as kaempferol, fisetin, or both. The neurologic component provides beneficial health benefits including enhanced brain development and improved memory, cognition, hand-eye coordination, and enhanced focusing. Furthermore, the neurologic component may act synergistically with other brain nutrients that may be present in the compositions.


Additionally, the disclosure relates to methods of promoting brain and nervous system health by providing a nutritional composition comprising the neurologic component described herein.


BACKGROUND

The brain makes up only 2% of total body weight, yet it is a demanding organ that uses up to 30% of the day's calories and nutrients. (Harris, J. J. et al, The Energetics of CNS White Matter. Jour. of. Neuroscience, January 2012: 32(1): 356-371). The human brain and nervous system begin forming very early in prenatal life and both continue to develop until about the age of three. This early development can have lifelong effects on overall brain and nervous system health. Accordingly, brain nutrients can be important additives in the diets of infants, children and pregnant and lactating women because of their ability to promote early brain development and prevent and protect from brain and nervous system injury or illness. Additionally, brain nutrients are important for adults, as many nutrients promote nervous system repair and provide neuroprotective health benefits.


Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid compound that is naturally presented in many edible plants, such as tea, broccoli, cabbage, kale, beans, endive, leeks, tomatoes, strawberries and grapes, as well as in plants and botanical products commonly used in traditional medicine. Kaempferol is a relatively small molecule and can therefore cross the blood-brain barrier to function directly in the brain. (Rangel-Ordonez, L., et al., Planta Med. 2010 October: 76(15):1683-90; see also Calderon-Montano, J. M., et al. Mini Rev. Med. Chem. 2011 April; 11(4):298-344).


Fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) is a polyphenolic compound found that is naturally present in fruits and vegetables, such as strawberries, applies, grapes, milk thistle and onions. Fisetin is a relatively small molecule and can potentially cross the blood-brain barrier and also function directly in the brain


Numerous nutrients are believed to be involved with supporting healthy brain development, and there is a need for nutritional compositions that comprise a neurologic component in order to support brain and nervous system health. It is believed that kaempferol and fisetin may be useful as dietary supplements that can be formulated into a composition for infants, children and adults. More specifically, kaempferol and fisetin may be useful brain nutrients that can be advantageously formulated into a composition to benefit brain development for infants, children and adults.


BRIEF SUMMARY

Briefly, the present disclosure is directed, in an embodiment, to a nutritional composition comprising a neurologic component including kaempferol, fisetin, or a mixture thereof.


In certain embodiments the nutritional composition may further comprise additional brain nutrients, such as docosahexaenoic acid (DHA), arachidonic acid (ARA), lutein, resveratrol and/or cholesterol. While not being bound by theory, it is believed that DHA may act synergistically with kaempferol and/or fisetin to promote neurogenesis and support overall brain health and development.


Additionally, in some embodiments the nutritional composition may optionally comprise one or any combination of the following: a prebiotic, a probiotic, an iron source, lactoferrin and/or β-glucan.


Due to critical brain development during the first years of life, in one embodiment the nutritional composition is an infant formula or a pediatric nutritional composition. The nutritional compositions described herein may also be useful as medicaments or nutritional supplements for promoting neurological health in subjects with a neural degenerative diseases and/or brain injury. Further, the nutritional compositions of the present disclosure may provide neuroprotective health benefits and promote overall brain and nervous system health.


In some embodiments the disclosure is directed to a method for promoting brain and nervous system health, wherein the method includes providing a nutritional composition comprising a neurologic component to the target subject.


It is to be understood that both the foregoing general description and the following detailed description present embodiments of the disclosure and are intended to provide an overview or framework for understanding the nature and character of the disclosure as it is claimed. The description serves to explain the principles and operations of the claimed subject matter. Other and further features and advantages of the present disclosure will be readily apparent to those skilled in the art upon a reading of the following disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a phase contrast microscopy image of human adipose-derived stem cells (hADSCs) two hours after exposure to the neuronal differentiation conditions without treatment with a neurogenic component (negative control). The hADSCs appear in an undifferentiated state, with a large and flat morphology.



FIG. 1B is a phase contrast microscopy image of hADSCs in the presence of DHA at 20 μM showing that the hADSCs underwent neuronal differentiation to a neuronal cell morphology (positive control).



FIG. 1C is a phase contrast microscopy image of hADSCs in the presence of Kaempferol at 10 μg/mL showing neuronal morphological changes and neurite outgrowth.



FIG. 1D is a phase contrast microscopy image of hADSCs in the presence of Kaempferol at 1.25 μg/mL and 6 μM DHA showing the synergistic effect of Kaempferol and DHA on neuronal differentiation.



FIG. 2A is a phase contrast microscopy image of human adipose-derived stem cells (hADSCs) two hours after exposure to the neuronal differentiation conditions without treatment with a neurogenic component (negative control). The hADSCs appear in an undifferentiated state, with a large and flat morphology.



FIG. 2B is a phase contrast microscopy image of hADSCs in the presence of DHA at 20 μM showing that the hADSCs underwent neuronal differentiation to a neuronal cell morphology (positive control).



FIG. 2C is a phase contrast microscopy image of hADSCs in the presence of fisetin at 25 μg/mL showing neuronal morphological changes and neurite outgrowth.



FIG. 2D is a phase contrast microscopy image of hADSCs in the presence of fisetin at 5 μg/mL and 6 μM DHA showing the synergistic effect of Kaempferol and DHA on neuronal differentiation.





DETAILED DESCRIPTION

Reference now will be made in detail to the embodiments of the present disclosure, one or more examples of which are set forth herein below. Each example is provided by way of explanation of the nutritional composition of the present disclosure and is not a limitation. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made to the teachings of the present disclosure without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one embodiment, can be used with another embodiment to yield a still further embodiment.


Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features and aspects of the present disclosure are disclosed in or are obvious from the following detailed description. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present disclosure.


The present disclosure relates generally to nutritional compositions comprising a neurologic component wherein the neurologic component may comprise kaempferol, fisetin, or a mixture thereof. Additionally, the disclosure relates to methods of supporting and promoting brain and nervous system health, neurogenesis, neuroprotection, and cognitive development by providing a target subject a nutritional composition containing the neurologic component described herein.


“Nutritional composition” means a substance or formulation that satisfies at least a portion of a subject's nutrient requirements. The terms “nutritional(s),” “nutritional formula(s),” “enteral nutritional(s),” “nutritional composition(s),” and “nutritional supplement(s)” are used interchangeably throughout the present disclosure to refer to liquids, powders, gels, pastes, solids, concentrates, suspensions, or ready-to-use forms of enteral formulas, oral formulas, formulas for infants, formulas for pediatric subjects, formulas for children, growing-up milks and/or formulas for adults, such as women who are lactating or pregnant. In particular embodiments, the nutritional compositions are for pediatric subjects, including infants and children.


The term “enteral” means through or within the gastrointestinal, or digestive, tract. “Enteral administration” includes oral feeding, intragastric feeding, transpyloric administration, or any other administration into the digestive tract.


A “neurologic component” refers to a compound or compounds, or a composition, that affects neurogenesis, either by promoting or inhibiting neurogenesis. Thus, in some embodiments, a neurologic component promotes neurogenesis, while in other embodiments, a neurologic component inhibits or reduces neurogenesis.


“Pediatric subject” includes both infants and children, and refers herein to a human that is less than thirteen years of age. In some embodiments, a pediatric subject refers to a human subject that is less than eight years old. In other embodiments, a pediatric subject refers to a human subject between about one and about six years of age or about one and about three years of age. In still further embodiments, a pediatric subject refers to a human subject between about 6 and about 12 years of age.


“Infant” means a human subject ranging in age from birth to not more than one year and includes infants from 0 to 12 months corrected age. The phrase “corrected age” means an infant's chronological age minus the amount of time that the infant was born premature. Therefore, the corrected age is the age of the infant if it had been carried to full term. The term infant includes low birth weight infants, very low birth weight infants, and preterm infants. “Preterm” means an infant born before the end of the 37th week of gestation. “Full term” means an infant born after the end of the 37th week of gestation.


“Child” means a subject ranging in age from about twelve months to about thirteen years. In some embodiments, a child is a subject between the ages of one and twelve years old. In other embodiments, the terms “children” or “child” refer to subjects that are between about one and about six years old, between about one and about three years old, or between about seven and about twelve years old. In other embodiments, the terms “children” or “child” refer to any range of ages between about 12 months and about 13 years.


“Children's nutritional product” refers to a composition that satisfies at least a portion of the nutrient requirements of a child. A growing-up milk is an example of a children's nutritional product.


“Infant formula” means a composition that satisfies at least a portion of the nutrient requirements of an infant. In the United States, the content of an infant formula is dictated by the federal regulations set forth at 21 C.F.R. Sections 100, 106, and 107. These regulations define macronutrient, vitamin, mineral, and other ingredient levels in an effort to simulate the nutritional and other properties of human breast milk.


The term “growing-up milk” refers to a broad category of nutritional compositions intended to be used as a part of a diverse diet in order to support the normal growth and development of a child between the ages of about 1 and about 6 years of age.


“Milk-based” means comprising at least one component that has been drawn or extracted from the mammary gland of a mammal. In some embodiments, a milk-based nutritional composition comprises components of milk that are derived from domesticated ungulates, ruminants or other mammals or any combination thereof. Moreover, in some embodiments, milk-based means comprising bovine casein, whey, lactose, or any combination thereof. Further, “milk-based nutritional composition” may refer to any composition comprising any milk-derived or milk-based product known in the art.


“Nutritionally complete” means a composition that may be used as the sole source of nutrition, which would supply essentially all of the required daily amounts of vitamins, minerals, and/or trace elements in combination with proteins, carbohydrates, and lipids. Indeed, “nutritionally complete” describes a nutritional composition that provides adequate amounts of carbohydrates, lipids, essential fatty acids, proteins, essential amino acids, conditionally essential amino acids, vitamins, minerals and energy required to support normal growth and development of a subject.


Therefore, a nutritional composition that is “nutritionally complete” for a preterm infant will, by definition, provide qualitatively and quantitatively adequate amounts of carbohydrates, lipids, essential fatty acids, proteins, essential amino acids, conditionally essential amino acids, vitamins, minerals, and energy required for growth of the preterm infant.


A nutritional composition that is “nutritionally complete” for a term infant will, by definition, provide qualitatively and quantitatively adequate amounts of all carbohydrates, lipids, essential fatty acids, proteins, essential amino acids, conditionally essential amino acids, vitamins, minerals, and energy required for growth of the term infant.


A nutritional composition that is “nutritionally complete” for a child will, by definition, provide qualitatively and quantitatively adequate amounts of all carbohydrates, lipids, essential fatty acids, proteins, essential amino acids, conditionally essential amino acids, vitamins, minerals, and energy required for growth of a child.


As applied to nutrients, the term “essential” refers to any nutrient that cannot be synthesized by the body in amounts sufficient for normal growth and to maintain health and that, therefore, must be supplied by the diet. The term “conditionally essential” as applied to nutrients means that the nutrient must be supplied by the diet under conditions when adequate amounts of the precursor compound is unavailable to the body for endogenous synthesis to occur.


“Probiotic” means a microorganism with low or no pathogenicity that exerts a beneficial effect on the health of the host.


The term “inactivated probiotic” means a probiotic wherein the metabolic activity or reproductive ability of the probiotic organism has been reduced or destroyed. An “inactivated probiotic” does, nevertheless, still retain at the cellular level at least a portion of its biological glycol-protein and DNA/RNA structure. As used herein, the term “inactivated” is synonymous with “non-viable.” A non-limiting example of an inactivated probiotic is inactivated Lactobacillus rhamnosus GG (“LGG”).


“Prebiotic” means a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of beneficial gut bacteria in the digestive tract, selective reduction in gut pathogens, or favorable influence on gut short chain fatty acid profile that can improve the health of the host.


“β-glucan” means all β-glucan, including both β-1,3-glucan and β-1,3;1,6-glucan, as each is a specific type of β-glucan. Moreover, β-1,3;1,6-glucan is a type of β-1,3-glucan. Therefore, the term “β-1,3-glucan” includes β-1,3;1,6-glucan.


All percentages, parts and ratios as used herein are by weight of the total formulation, unless otherwise specified.


The nutritional composition of the present disclosure may be free of substantially free of any optional or selected ingredients described herein. In this context, and unless otherwise specified, the term “substantially free” means that the selected composition may contain less than a functional amount of the optional ingredient, typically less than 0.1% by weight, and also, including zero percent by weight of such optional or selected ingredient.


All references to singular characteristics or limitations of the present disclosure shall include the corresponding plural characteristic or limitation, and vice versa, unless otherwise specified or clearly implied to the contrary by the context in which the reference is made.


All combinations of method or process steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.


The compositions and methods of the present disclosure, including components thereof, can comprise, consist of, or consist essentially of the essential elements and limitations of the embodiments described herein, as well as any additional or optional ingredients, components or limitations described herein or otherwise useful in nutritional compositions.


As used herein, the term “about” should be construed to refer to both of the numbers specified in any range. Any reference to a range should be considered as providing support for any subset within that range.


The development of the brain and nervous system plays a crucial role in the overall health and well-being of an individual. Accordingly, the nutritional compositions of the present disclosure promote brain and nervous system health. Indeed, providing the neurologic component described herein can, in some embodiments, promote neural stem progenitor cell (NSPC) migration and signal transduction, increase dopamine receptor densities, support prevention of memory impairment, reduce the number of apoptotic cells, decrease neuronal degeneration, increase overall brain metabolism and reduce oxidative stress.


The present disclosure thus provides, in some embodiments, a nutritional composition comprising a carbohydrate source, a protein source, a fat source, and a neurologic component comprising kaempferol, fisetin, or a mixture thereof.


Kaempferol may be present in the composition, in some embodiments, in an amount ranging from about 0.1 mg/100 kcal to about 5 mg/100 kcal. In other embodiments, the kaempferol may be present in an amount ranging from about 0.1 mg/100 kcal to about 3 mg/100 kcal, or about 0.3 to about 2 mg/100 kcal.


Fisetin may be present in the composition, in some embodiments, in an amount ranging from about 3 mg/100 kcal to about 200 mg/100 kcal. In other embodiments, fisetin is present in an amount ranging from about 3 mg/100 kcal to about 100 mg/100 kcal, while in other embodiments, fisetin is present in an amount ranging from about 3 mg/100 kcal to about 25 mg/100 kcal.


In some embodiments, the nutritional composition comprising a neurologic component is a nutritionally complete formula that is suitable to support normal growth and also benefit brain development. In certain other embodiments, the composition and concentration of the nutrients in the neurologic component are designed to mimic levels that are healthy for early human development.


The nutrients of the neurological component included in the nutritional composition may include functional equivalents, sources, metabolites and/or precursors of the nutrients. Such nutrients of the neurological component may be naturally-occurring, synthetic, or developed through the genetic manipulation of organisms and/or plants, whether such source is now known or developed later.


Any natural or synthetic source of the kaempferol or fistein may be used. Preferably, the source for the nutrients of the neurologic component preferably should be food grade having been food or plant derived or microorganism produced. Additionally, the source of the nutrients of the neurologic component could be part of a complex mixture obtained by separation and purification technology known in the art aimed at enrichment of the derivatives or precursors of the neurologic component nutrient of such mixtures.


More particularly, kaempferol may be obtained from a variety of plant sources in which it is known to be found. For example, kaempferol may be isolated from tea, broccoli, Delphinium, Witch-hazel, grapefruit, cabbage, kale, beans, endive, leeks, tomatoes, strawberries, grapes, Brussels sprouts, apples, capers, dill, and other plant sources. Additional sources of kaempferol include Allium ampeloprasum (leek), A. cepa (onion), A. schoenoprasum (chives), Amaranthus lividus (amaranth), Angelica keiskei (ashitaba), Armoracia rusticana (horseradish), Artemisia dracunculus (tarragon), Atriplex hortensis (orach), Brassica campestris (Chinese cabbage), B. juncea (mustard), B. napobrassica (rutabagas), B. oleracea (broccoli, Brussels sprouts, green cabbage and kale), B. rapa (turnip greens), Bunias orientalis (Turkish rocket), Camellia sinensis (tea), Capparis spinosa (capers), Celosia argentea (feather cockscomb), Cichorium endivia (endive), Citrus paradise (grapefruit), Cnidoscolus aconitifolius and C. chayamansa (tree spinach), Coccinia grandis (ivy gourd), Cucumis sativus (cucumber), Cucurbita maxima (squash), Cyamopsis tetragonoloba (cluster bean), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), Eruca sativa (rocket-salad), Foeniculum vulgare (fennel), Fragaria vesca (strawberry), Houttuynia cordata (fishwort), Ipomoea batatas (sweet potato), Lactuca sativa (lettuce), Lepidium sativum (cress), Levisticum officinale (lovage), Lycium barbarum and L. chinense (goji berries), Malus domestica (apple), Momordica cochinchinensis (gac), Morinda citrifolia (Indian mulberry), Nasturtium officinale (watercress), Nepenthes gracilis, Olea europaea (olive oil), Petroselinum crispum (parsley), Phaseolus vulgaris (green beans), Pistacia vera (pistachio), Prunus persica (peach), Raphanus sativus (radishes), Ribes uva-crispa (gooseberries), Rubís fruticosus (blackberries), Rubus idaeus (raspberry), Sambucus nigra (elderberry), Sauropus androgynous (star gooseberry), Sesbania grandiflora (sesbania), Solanum lycopersicum (tomatoes), S. nigrum (nightshade), S. tuberosum (potatoes), Spinacia oleracea (spinach), Vaccinium erythrocarpum, V. acrocarpon, V. microcarpum and V. oxycoccos (cranberries), Vaccinium vitis-idaea (cowberries), Vicia faba (broadbeans), Vigna unguiculata (cowpea), Vitis rotundifolia (muscadine grapes), and Vitis vinífera (grapes), and chia seed.


Fisetin may be provided by a number of plant sources, including fruits and vegetables, such as strawberries, applies, grapes, milk thistle and onions. Fisetin also may be found in Eudicotyledons such as trees and shrubs in the family Fabaceae, such as the acacias Acacia greggii and Acacia berlandieri, parrot tree the parrot tree (Butea frondosa), the honey locust, Gleditsia triacanthos, members of the family Anacardiaceae, such as the Quebracho Colorado and species of the genus Rhus, which contains the sumacs. Fisetin also may be provided by the yellow cypress (Callitropsis nootkatensis).


When either kaempferol or fisetin is combined with other brain nutrients, a synergistic effect may be observed. Other brain nutrients that may be included in the compositions of the present disclosure include DHA, ARA, lutein, resveratrol, and cholesterol DHA. In specific embodiments, the inclusion of kaempferol and/or fisetin with DHA in the present composition provides a synergistic beneficial effect on neurogenesis and the promotion of brain and nervous system development and health.


Additionally, the neurologic component may be added or incorporated into the nutritional composition by any method well known in the art. In some embodiments, the neurological component may be added to a nutritional composition to supplement the nutritional composition. For example, in one embodiment, the neurological component may be added to a commercially available infant formula. For example, Enfalac, Enfamil®, Enfamil® Premature Formula, Enfamil® with Iron, Enfamil® LIPIL®, Lactofree®, Nutramigen®, Pregestimil®, and ProSobee® (available from Mead Johnson & Company, Glenview, Ill. U.S.A.) may be supplemented with suitable levels of the neurologic component, and used in practice of the present disclosure.


In other embodiments, the neurologic component may be substituted for another nutrient source that does not contain the nutrients of the neurologic component. For example, a certain amount of a fat source that does not contain the neurological component may be substituted with another fat source that contains the nutrients of the neurological component. In still other embodiments, the source of an ingredient typically added to a nutritional composition may be altered, such that the source chosen provides both the ingredient that is commonly added to the nutritional composition and a nutrient of the neurological composition.


In some embodiments, the neurologic component may be included in prenatal dietary supplements. The neurologic component may be incorporated into prenatal dietary supplements by any method known in the art. The prenatal administration of the neurologic component may directly impact the development of the fetus and embryo. Since brain development begins early in prenatal life, the inclusion of the neurologic component in a prenatal dietary supplement may promote brain development and neurogenesis in pediatric subjects while still in utero.


Conveniently, commercially available prenatal dietary supplements and/or prenatal nutritional products may be used. For example, Expecta® Supplement (available from Mead Johnson & Company, Glenview, Ill., U.S.A.) may be supplemented with suitable levels of the neurologic component and used in practice of the present disclosure.


The prenatal dietary supplement may be administered in one or more doses daily. In some embodiments, the prenatal dietary supplement is administered in two doses daily. In a separate embodiment, the prenatal dietary supplement is administered in three daily doses. The prenatal dietary supplement may be administered to either pregnant women or women who are breastfeeding.


Any orally acceptable dosage form is contemplated by the present disclosure. Examples of such dosage forms include, but are not limited to pills, tablets, capsules, soft-gels, liquids, liquid concentrates, powders, elixirs, solutions, suspensions, emulsions, lozenges, beads, cachets, and combinations thereof. Alternatively, the prenatal dietary supplement of the invention may be added to a more complete nutritional product. In this embodiment, the nutritional product may contain protein, fat, and carbohydrate components and may be used to supplement the diet or may be used as the sole source of nutrition.


In some embodiments, the nutritional composition comprises at least one carbohydrate source. The carbohydrate source can be any used in the art, e.g., lactose, glucose, fructose, corn syrup solids, maltodextrins, sucrose, starch, rice syrup solids, and the like. The amount of the carbohydrate component in the nutritional composition typically can vary from between about 5 g/100 kcal and about 25 g/100 kcal. In some embodiments, the amount of carbohydrate is between about 6 g/100 kcal and about 22 g/100 kcal. In other embodiments, the amount of carbohydrate is between about 12 g/100 kcal and about 14 g/100 kcal. In some embodiments, corn syrup solids are preferred. Moreover, hydrolyzed, partially hydrolyzed, and/or extensively hydrolyzed carbohydrates may be desirable for inclusion in the nutritional composition due to their easy digestibility. Specifically, hydrolyzed carbohydrates are less likely to contain allergenic epitopes.


Non-limiting examples of carbohydrate materials suitable for use herein include hydrolyzed or intact, naturally or chemically modified, starches sourced from corn, tapioca, rice or potato, in waxy or non-waxy forms. Non-limiting examples of suitable carbohydrates include various hydrolyzed starches characterized as hydrolyzed cornstarch, maltodextrin, maltose, corn syrup, dextrose, corn syrup solids, glucose, and various other glucose polymers and combinations thereof. Non-limiting examples of other suitable carbohydrates include those often referred to as sucrose, lactose, fructose, high fructose corn syrup, indigestible oligosaccharides such as fructooligosaccharides and combinations thereof.


Moreover, the nutritional composition(s) of the disclosure may comprise at least one protein source. The protein source can be any used in the art, e.g., nonfat milk, whey protein, casein, soy protein, hydrolyzed protein, amino acids, and the like. Bovine milk protein sources useful in practicing the present disclosure include, but are not limited to, milk protein powders, milk protein concentrates, milk protein isolates, nonfat milk solids, nonfat milk, nonfat dry milk, whey protein, whey protein isolates, whey protein concentrates, sweet whey, acid whey, casein, acid casein, caseinate (e.g. sodium caseinate, sodium calcium caseinate, calcium caseinate), soy bean proteins, and any combinations thereof.


In a particular embodiment of the nutritional composition, the whey:casein ratio of the protein source is similar to that found in human breast milk. In an embodiment, the protein source comprises from about 40% to about 85% whey protein and from about 15% to about 60% casein.


In some embodiments, the nutritional composition comprises between about 1 g and about 7 g of a protein source per 100 kcal. In other embodiments, the nutritional composition comprises between about 3.5 g and about 4.5 g of protein per 100 kcal.


In some embodiments, the proteins of the nutritional composition are provided as intact proteins. In other embodiments, the proteins are provided as a combination of both intact proteins and hydrolyzed proteins, with a degree of hydrolysis of between about 4% and 10%. In certain other embodiments, the proteins are more hydrolyzed. In still other embodiments, the protein source comprises amino acids. In yet another embodiment, the protein source may be supplemented with glutamine-containing peptides. In another embodiment, the protein component comprises extensively hydrolyzed protein. In still another embodiment, the protein component of the nutritional composition consists essentially of extensively hydrolyzed protein in order to minimize the occurrence of food allergy.


In some embodiments, the protein component of the nutritional composition comprises either partially or extensively hydrolyzed protein, such as protein from cow's milk. The proteins may be treated with enzymes to break down some or most of the proteins that cause adverse symptoms with the goal of reducing allergic reactions, intolerance, and sensitization. Moreover, the proteins may be hydrolyzed by any method known in the art.


In some embodiments, the nutritional composition of the present disclosure is substantially free of intact proteins. In this context, the term “substantially free” means that the preferred embodiments herein comprise sufficiently low concentrations of intact protein to thus render the formula hypoallergenic. The extent to which a nutritional composition in accordance with the disclosure is substantially free of intact proteins, and therefore hypoallergenic, is determined by the August 2000 Policy Statement of the American Academy of Pediatrics in which a hypoallergenic formula is defined as one which in appropriate clinical studies demonstrates that it does not provoke reactions in 90% of infants or children with confirmed cow's milk allergy with 95% confidence when given in prospective randomized, double-blind, placebo-controlled trials.


The nutritional composition may be protein-free in some embodiments and comprise free amino acids as a protein equivalent source. In some embodiments, the amino acids may comprise, but are not limited to, histidine, isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, tryptophan, valine, alanine, arginine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, proline, serine, carnitine, taurine and mixtures thereof. In some embodiments, the amino acids may be branched chain amino acids. In certain other embodiments, small amino acid peptides may be included as the protein component of the nutritional composition. Such small amino acid peptides may be naturally occurring or synthesized. The amount of free amino acids in the nutritional composition may vary from about 1 g/100 kcal to about 5 g/100 kcal.


The nutritional composition may also comprise a fat source. Suitable fat or lipid sources for the nutritional composition of the present disclosure may be any known or used in the art, including but not limited to, animal sources, e.g., milk fat, butter, butter fat, egg yolk lipid; marine sources, such as fish oils, marine oils, single cell oils; vegetable and plant oils, such as corn oil, canola oil, sunflower oil, soybean oil, palm olein oil, coconut oil, high oleic sunflower oil, evening primrose oil, rapeseed oil, olive oil, flaxseed (linseed) oil, cottonseed oil, high oleic safflower oil, palm stearin, palm kernel oil, wheat germ oil; medium chain triglyceride oils and emulsions and esters of fatty acids; and any combinations thereof.


In one embodiment, the nutritional composition may contain one or more probiotics. Any probiotic known in the art may be acceptable in this embodiment. In a particular embodiment, the probiotic may be selected from any Lactobacillus species, Lactobacillus rhamnosus GG (ATCC number 53103), Bifidobacterium species, Bifidobacterium longum BB536 (BL999, ATCC: BAA-999), Bifidobacterium longum AH1206 (NCIMB: 41382), Bifidobacterium breve AH1205 (NCIMB: 41387), Bifidobacterium infantis 35624 (NCIMB: 41003), and Bifidobacterium animalis subsp. lactis BB-12 (DSM No. 10140) or any combination thereof.


If included in the composition, the amount of the probiotic may vary from about 1×104 to about 1.5×1010 cfu of probiotics per 100 kcal, more preferably from about 1×106 to about 1×109 cfu of probiotics per 100 kcal. In certain other embodiments the amount of probiotic may vary from about 1×107 cfu/100 kcal to about 1×108 cfu/100 kcal.


In an embodiment, the probiotic(s) may be viable or non-viable. As used herein, the term “viable”, refers to live microorganisms. The term “non-viable” or “non-viable probiotic” means non-living probiotic microorganisms, their cellular components and/or metabolites thereof. Such non-viable probiotics may have been heat-killed or otherwise inactivated, but they retain the ability to favorably influence the health of the host. The probiotics useful in the present disclosure may be naturally-occurring, synthetic or developed through the genetic manipulation of organisms, whether such source is now known or later developed.


The nutritional composition may also contain one or more prebiotics (also referred to as a prebiotic source) in certain embodiments. Prebiotics can stimulate the growth and/or activity of ingested probiotic microorganisms, selectively reduce pathogens found in the gut, and favorably influence the short chain fatty acid profile of the gut. Such prebiotics may be naturally-occurring, synthetic, or developed through the genetic manipulation of organisms and/or plants, whether such new source is now known or developed later. Prebiotics useful in the present disclosure may include oligosaccharides, polysaccharides, and other prebiotics that contain fructose, xylose, soya, galactose, glucose and mannose.


More specifically, prebiotics useful in the present disclosure may include polydextrose, polydextrose powder, lactulose, lactosucrose, raffinose, gluco-oligosaccharide, inulin, fructo-oligosaccharide, isomalto-oligosaccharide, soybean oligosaccharides, lactosucrose, xylo-oligosaccharide, chito-oligosaccharide, manno-oligosaccharide, aribino-oligosaccharide, siallyl-oligosaccharide, fuco-oligosaccharide, galacto-oligosaccharide, and gentio-oligosaccharides. In some embodiments, the total amount of prebiotics present in the nutritional composition may be from about 0.1 g/100 kcal to about 1 g/100 kcal. In certain embodiments, the total amount of prebiotics present in the nutritional composition may be from about 0.3 g/100 kcal to about 0.7 g/100 kcal. Moreover, the nutritional composition may comprise a prebiotic component comprising polydextrose (“PDX”) and/or galacto-oligosaccharide (“GOS”). In some embodiments, the prebiotic component comprises at least 20% GOS, PDX or a mixture thereof.


If PDX is used in the prebiotic composition, the amount of PDX in the nutritional composition may, in an embodiment, be within the range of from about 0.1 g/100 kcal to about 1 g/100 kcal. In another embodiment, the amount of polydextrose is within the range of from about 0.2 g/100 kcal to about 0.6 g/100 kcal. And in still other embodiments, the amount of PDX in the nutritional composition may be from about 0.1 mg/100 kcal to about 0.5 mg/100 kcal or about 0.3 mg/100 kcal.


If GOS is used in the prebiotic composition, the amount of GOS in the nutritional composition may, in an embodiment, be from about 0.1 g/100 kcal to about 1 g/100 kcal. In another embodiment, the amount of GOS in the nutritional composition may be from about 0.2 g/100 kcal to about 0.5 g/100 kcal. In other embodiments, the amount of GOS in the nutritional composition may be from about 0.1 mg/100 kcal to about 1.0 mg/100 kcal or from about 0.1 mg/100 kcal to about 0.5 mg/100 kcal.


In a particular embodiment of the nutritional composition, PDX is administered in combination with GOS. In this embodiment, PDX and GOS can be administered in a ratio of PDX:GOS of between about 9:1 and 1:9. In another embodiment, the ratio of PDX:GOS can be between about 5:1 and 1:5. In yet another embodiment, the ratio of PDX:GOS can be between about 1:3 and 3:1. In a particular embodiment, the ratio of PDX to GOS can be about 5:5. In another particular embodiment, the ratio of PDX to GOS can be about 8:2.


In a particular embodiment, GOS and PDX are supplemented into the nutritional composition in a total amount of at least about 0.2 mg/100 kcal or about 0.2 mg/100 kcal to about 1.5 mg/100 kcal. In some embodiments, the nutritional composition may comprise GOS and PDX in a total amount of from about 0.6 to about 0.8 mg/100 kcal.


As noted, the disclosed nutritional composition may comprise a source of β-glucan. Glucans are polysaccharides, specifically polymers of glucose, which are naturally occurring and may be found in cell walls of bacteria, yeast, fungi, and plants. Beta glucans (β-glucans) are themselves a diverse subset of glucose polymers, which are made up of chains of glucose monomers linked together via beta-type glycosidic bonds to form complex carbohydrates.


β-1,3-glucans are carbohydrate polymers purified from, for example, yeast, mushroom, bacteria, algae, or cereals. (Stone B A, Clarke A E. Chemistry and Biology of (1-3)-Beta-Glucans. London:Portland Press Ltd; 1993.) The chemical structure of β-1,3-glucan depends on the source of the β-1,3-glucan. Moreover, various physiochemical parameters, such as solubility, primary structure, molecular weight, and branching, play a role in biological activities of β-1,3-glucans. (Yadomae T., Structure and biological activities of fungal beta-1,3-glucans. Yakugaku Zasshi. 2000; 120:413-431.)


β-1,3-glucans are naturally occurring polysaccharides, with or without β-1,6-glucose side chains that are found in the cell walls of a variety of plants, yeasts, fungi and bacteria. β-1,3;1,6-glucans are those containing glucose units with (1,3) links having side chains attached at the (1,6) position(s). β-1,3;1,6 glucans are a heterogeneous group of glucose polymers that share structural commonalities, including a backbone of straight chain glucose units linked by a β-1,3 bond with β-1,6-linked glucose branches extending from this backbone. While this is the basic structure for the presently described class of β-glucans, some variations may exist. For example, certain yeast β-glucans have additional regions of β(1,3) branching extending from the β(1,6) branches, which add further complexity to their respective structures.


β-glucans derived from baker's yeast, Saccharomyces cerevisiae, are made up of chains of D-glucose molecules connected at the 1 and 3 positions, having side chains of glucose attached at the 1 and 6 positions. Yeast-derived β-glucan is an insoluble, fiber-like, complex sugar having the general structure of a linear chain of glucose units with a β-1,3 backbone interspersed with β-1,6 side chains that are generally 6-8 glucose units in length. More specifically, β-glucan derived from baker's yeast is poly-(1,6)-β-D-glucopyranosyl-(1,3)-β-D-glucopyranose.


Furthermore, β-glucans are well tolerated and do not produce or cause excess gas, abdominal distension, bloating or diarrhea in pediatric subjects. Addition of β-glucan to a nutritional composition for a pediatric subject, such as an infant formula, a growing-up milk or another children's nutritional product, will improve the subject's immune response by increasing resistance against invading pathogens and therefore maintaining or improving overall health.


In some embodiments, the amount of β-glucan in the nutritional composition is between about 3 mg/100 kcal and about 17 mg/100 kcal. In another embodiment the amount of β-glucan is between about 6 mg/100 kcal and about 17 mg/100 kcal.


The nutritional composition may comprise in some embodiments β-1,3;1,6-glucan. The β-1,3;1,6-glucan can be derived from baker's yeast. The nutritional composition may comprise whole glucan particle β-glucan, particulate β-glucan, PGG-glucan (poly-1,6-β-D-glucopyranosyl-1,3-β-D-glucopyranose) or any mixture thereof.


The nutritional composition of the present disclosure may comprise lactoferrin. Lactoferrins are single chain polypeptides of about 80 kD containing 1-4 glycans, depending on the species. The 3-D structures of lactoferrin of different species are very similar, but not identical. Each lactoferrin comprises two homologous lobes, called the N- and C-lobes, referring to the N-terminal and C-terminal part of the molecule, respectively. Each lobe further consists of two sub-lobes or domains, which form a cleft where the ferric ion (Fe3+) is tightly bound in synergistic cooperation with a (bi)carbonate anion. These domains are called N1, N2, C1 and C2, respectively. The N-terminus of lactoferrin has strong cationic peptide regions that are responsible for a number of important binding characteristics. Lactoferrin has a very high isoelectric point (˜pl 9) and its cationic nature plays a major role in its ability to defend against bacterial, viral, and fungal pathogens. There are several clusters of cationic amino acids residues within the N-terminal region of lactoferrin mediating the biological activities of lactoferrin against a wide range of microorganisms.


Lactoferrin for use in the present disclosure may be, for example, isolated from the milk of a non-human animal or produced by a genetically modified organism. The oral electrolyte solutions described herein can, in some embodiments comprise non-human lactoferrin, non-human lactoferrin produced by a genetically modified organism and/or human lactoferrin produced by a genetically modified organism.


Suitable non-human lactoferrins for use in the present disclosure include, but are not limited to, those having at least 48% homology with the amino acid sequence of human lactoferrin. For instance, bovine lactoferrin (“bLF”) has an amino acid composition which has about 70% sequence homology to that of human lactoferrin. In some embodiments, the non-human lactoferrin has at least 65% homology with human lactoferrin and in some embodiments, at least 75% homology. Non-human lactoferrins acceptable for use in the present disclosure include, without limitation, bLF, porcine lactoferrin, equine lactoferrin, buffalo lactoferrin, goat lactoferrin, murine lactoferrin and camel lactoferrin.


In some embodiments, the nutritional composition of the present disclosure comprises non-human lactoferrin, for example bLF. bLF is a glycoprotein that belongs to the iron transporter or transferring family. It is isolated from bovine milk, wherein it is found as a component of whey. There are known differences between the amino acid sequence, glycosylation patters and iron-binding capacity in human lactoferrin and bLF. Additionally, there are multiple and sequential processing steps involved in the isolation of bLF from cow's milk that affect the physiochemical properties of the resulting bLF preparation. Human lactoferrin and bLF are also reported to have differences in their abilities to bind the lactoferrin receptor found in the human intestine.


Though not wishing to be bound by this or any other theory, it is believe that bLF that has been isolated from whole milk has less lipopolysaccharide (LPS) initially bound than does bLF that has been isolated from milk powder. Additionally, it is believed that bLF with a low somatic cell count has less initially-bound LPS. A bLF with less initially-bound LPS has more binding sites available on its surface. This is thought to aid bLF in binding to the appropriate location and disrupting the infection process.


bLF suitable for the present disclosure may be produced by any method known in the art. For example, in U.S. Pat. No. 4,791,193, incorporated by reference herein in its entirety, Okonogi et al. discloses a process for producing bovine lactoferrin in high purity. Generally, the process as disclosed includes three steps. Raw milk material is first contacted with a weakly acidic cationic exchanger to absorb lactoferrin followed by the second step where washing takes place to remove nonabsorbed substances. A desorbing step follows where lactoferrin is removed to produce purified bovine lactoferrin. Other methods may include steps as described in U.S. Pat. Nos. 7,368,141, 5,849,885, 5,919,913 and 5,861,491, the disclosures of which are all incorporated by reference in their entirety.


The lactoferrin that is used in certain embodiments may be any lactoferrin isolated from whole milk and/or having a low somatic cell count, wherein “low somatic cell count” refers to a somatic cell count less than 200,000 cells/mL. By way of example, suitable lactoferrin is available from Tatua Co-operative Dairy Co. Ltd., in Morrinsville, New Zealand, from FrieslandCampina Domo in Amersfoort, Netherlands or from Fonterra Co-Operative Group Limited in Auckland, New Zealand.


Surprisingly, lactoferrin included herein maintains certain bactericidal activity even if exposed to a low pH (i.e., below about 7, and even as low as about 4.6 or lower) and/or high temperatures (i.e., above about 65° C., and as high as about 120° C.), conditions which would be expected to destroy or severely limit the stability or activity of human lactoferrin. These low pH and/or high temperature conditions can be expected during certain processing regimen for nutritional compositions of the types described herein, such as pasteurization. Therefore, even after processing regimens, lactoferrin has bactericidal activity against undesirable bacterial pathogens found in the human gut. The nutritional composition may, in some embodiments, comprise lactoferrin in an amount from about 25 mg/100 mL to about 150 mg/100 mL. In other embodiments lactoferrin is present in an amount from about 60 mg/100 mL to about 120 mg/100 mL. In still other embodiments lactoferrin is present in an amount from about 85 mg/100 mL to about 110 mg/100 mL.


The nutritional composition of the present disclosure may also contain a source of long chain polyunsaturated fatty acids (“LCPUFAs”). Suitable LCPUFAs include, but are not limited to DHA, eicosapentaenoic acid (“EPA”), ARA, linoleic (18:2 n-6), γ-linolenic (18:3 n-6), dihomo-γ-linolenic (20:3 n-6) acids in the n-6 pathway, α-linolenic (18:3 n-3), stearidonic (18:4 n-3), eicosatetraenoic (20:4 n-3), eicosapentaenoic (20:5 n-3), and docosapentaenoic (22:6 n-3).


The amount of LCPUFA in the nutritional composition is advantageously at least about 5 mg/100 kcal, and may vary from about 5 mg/100 kcal to about 100 mg/100 kcal, more preferably from about 10 mg/100 kcal to about 50 mg/100 kcal.


Sources of LCPUFAs include dairy products like eggs and butterfat; marine oils, such as cod, menhaden, sardine, tuna and many other fish; certain animal fats, lard, tallow and microbial oils such as fungal and algal oils, or from any other resource fortified or not, form which LCPUFAs could be obtained and used in a nutritional composition. The LCPUFA could be part of a complex mixture obtained by separation technology known in the art aimed at enrichment of LCPUFAs and the derivatives or precursors of LCPUFAs in such mixtures.


The LCPUFAs may be provided in the nutritional composition in the form of esters of free fatty acids; mono-, di- and tri-glycerides; phosphoglycerides, including lecithins; and/or mixtures thereof. Additionally, LCPUFA may be provided in the nutritional composition in the form of phospholipids, especially phosphatidylcholine.


In an embodiment, especially if the nutritional composition is an infant formula, the nutritional composition is supplemented with both DHA and ARA. In this embodiment, the weight ratio of ARA:DHA may be between about 1:3 and about 9:1. In a particular embodiment, the weight ratio of ARA:DHA is from about 1:2 to about 4:1.


DHA is advantageously present in the nutritional composition, in some embodiments, from at least about 17 mg/100 kcal, and may vary from about 5 mg/100 kcal to about 75 mg/100 kcal. In some embodiments, DHA is present from about 10 mg/100 kcal to about 50 mg/100 kcal.


The nutritional composition may be supplemented with oils containing DHA and/or ARA using standard techniques known in the art. For example, DHA and ARA may be added to the composition by replacing an equivalent amount of an oil, such as high oleic sunflower oil, normally present in the composition. As another example, the oils containing DHA and ARA may be added to the composition by replacing an equivalent amount of the rest of the overall fat blend normally present in the composition without DHA and ARA.


If utilized, the source of DHA and/or ARA may be any source known in the art such as marine oil, fish oil, single cell oil, egg yolk lipid, and brain lipid. In some embodiments, the DHA and ARA are sourced from single cell Martek oils, DHASCO® and ARASCO®, or variations thereof. The DHA and ARA can be in natural form, provided that the remainder of the LCPUFA source does not result in any substantial deleterious effect on the infant. Alternatively, the DHA and ARA can be used in refined form.


In an embodiment, sources of DHA and ARA are single cell oils as taught in U.S. Pat. Nos. 5,374,567; 5,550,156; and 5,397,591, the disclosures of which are incorporated herein in their entirety by reference. However, the present disclosure is not limited to only such oils.


Furthermore, some embodiments of the nutritional composition may mimic certain characteristics of human breast milk. However, to fulfill the specific nutrient requirements of some subjects, the nutritional composition may comprise a higher amount of some nutritional components than does human milk. For example, the nutritional composition may comprise a greater amount of DHA than does human breast milk. The enhanced level of DHA of the nutritional composition may compensate for an existing nutritional DHA deficit.


The disclosed nutritional composition described herein, can, in some embodiments also comprise an effective amount of iron. The iron may comprise encapsulated iron forms, such as encapsulated ferrous fumarate or encapsulated ferrous sulfate or less reactive iron forms, such as ferric pyrophosphate or ferric orthophosphate.


In some embodiments the nutritional composition(s) disclosed herein further comprises lutein. The lutein as used herein, unless otherwise specified, refers to one or more of free lutein, lutein esters, lutein salts, or other lutein derivatives of related structures as described or otherwise suggested herein. In some embodiments lutein is present from about 0.343 mg/100 kcal to about 6.0 mg/100 kcal. In still other embodiments, lutein is present from about 1.0 mg/100 kcal to about 4.0 mg/100 kcal.


Lutein sources for the present disclosure include, but are not limited to, plant sources rich in carotenoids including, but not limited to kiwi, grapes, citrus, tomatoes, watermelons, papayas and other red fruits, or dark greens, such as kale, spinach, turnip greens, collard greens, romaine lettuce, broccoli, zucchini, garden peas and Brussels sprouts, spinach, and carrots. Further, sources for lutein include other plants and any other resources, fortified or not, from which lutein could be obtained and used in a nutritional composition. The lutein could be part of a complex mixture obtained by separation technology known in the art aimed at enrichment of the lutein and the derivatives or precursors of lutein in such mixtures.


Lutein for use herein includes any natural or synthetic source that is known for or is otherwise an acceptable source for use in oral nutritionals, including infant formulas. Lutein sources can be provided as individual ingredients or in any combination with other materials or sources, including sources such as multivitamin premixes, mixed carotenoid premixes, pure lutein sources, and inherent lutein components in the infant formula. The lutein concentrations and ratios as described herein may be calculated based upon both added and inherent lutein sources. In one embodiment, the nutritional composition is an infant formula which comprises at least about 10%, 25%, more preferable from about 50% to about 95%, by weight of total lutein as inherent lutein. In other embodiments, the nutritional composition is an infant formula which preferably comprises at least about 85% lutein by weight of total lutein as inherent lutein.


In certain embodiments, the nutritional composition may comprise zeaxanthin. In come embodiments zeaxanthin may be present in an amount from about 0.143 mg/100 kcal to about 4.0 mg/100 kcal. In other embodiments, zeaxanthin may be present from about 0.50 mg/100 kcal to about 3.0 mg/100 kcal. In still other embodiments zeaxanthin may be present from about 1.5 mg/100 kcal to about 2.5 mg/100 kcal. Zeaxanthin suitable for inclusion in the nutritional composition includes, but is not limited to meso-zeaxanthin (3R,3′S), and other stereoisomers such as (3R,3R′) and (3S,3′S). In some embodiments the nutritional composition may comprise lutein and zeaxanthin. The ratio of lutein to zeaxanthin may range from 95:5 to 5:95.


Cholesterol may also be present in the nutritional composition(s) of the present disclosure. In some embodiments, cholesterol is present from about 1 mg/100 kcal to about 100 mg/100 kcal. In other embodiments, cholesterol is present in the nutritional composition from about 5 mg/100 kcal to about 25 mg/100 kcal. In other embodiments cholesterol is present from about 15 mg/100 kcal to about 40 mg/100 kcal. In still other embodiments, cholesterol is present in the nutritional composition from about 50 mg/100 kcal to about 75 mg/100 kcal.


In one embodiment, cholesterol sources for the present disclosure include, but are not limited to, milk, other dairy products, eggs, meat, beef tallow, poultry, fish, shellfish and any other resources, fortified or not, from which cholesterol could be obtained and used in a nutritional composition. Sources of cholesterol also include precursors such as squalene, lanosterol, dimethylsterol, methostenol, lathosterol, and desmosterol. The cholesterol could be part of a complex mixture obtained by separation technology known in the art aimed at enrichment of the cholesterol and the derivatives or precursors of cholesterol in such mixtures.


In some embodiments, the nutritional composition of the present disclosure comprises resveratrol. Resveratrol may be present from about 5 mg/100 kcal to about 120 mg/100 kcal. In other embodiments, resveratrol may be present from about 9 mg/100 kcal to about 60 mg/100 kcal.


Resveratrol sources for the present disclosure include, but are not limited to, plant derived extracts, including but not limited to apple extract and grape seed extract. Additionally, non-limiting examples of plants rich in resveratrol suitable for use in the nutritional composition of the present disclosure include: berries (acai, grape, bilberry, blueberry, lingonberry, black currant, chokeberry, blackberry, raspberry, cherry, red currant, cranberry, crowberry, cloudberry, whortleberry, rowanberry), purple corn, purple potato, purple carrot, red sweet potato, red cabbage, eggplant. The resveratrol could be part of a complex mixture obtained by separation technology known in the art aimed at enrichment of the resveratrol and the derivatives or precursors of resveratrol in such mixtures.


Without being bound by any particular theory, it is believed that DHA, lutein, resveratrol and/or cholesterol in combination with the neurologic component may have additive and/or synergistic brain and nervous system health benefits. In certain embodiments, the nutritional composition comprising DHA, lutein, cholesterol, milk fats and/or resveratrol and mixtures thereof can act synergistically with the nutrients of the neurologic component to promote neurogenesis in nervous cell tissues.


The disclosed nutritional composition(s) may be provided in any form known in the art, such as a powder, a gel, a suspension, a paste, a solid, a liquid, a liquid concentrate, a reconstituteable powdered milk substitute or a ready-to-use product. The nutritional composition may, in certain embodiments, comprise a nutritional supplement, children's nutritional product, infant formula, human milk fortifier, growing-up milk or any other nutritional composition designed for an infant or a pediatric subject. Nutritional compositions of the present disclosure include, for example, orally-ingestible, health-promoting substances including, for example, foods, beverages, tablets, capsules and powders. Moreover, the nutritional composition of the present disclosure may be standardized to a specific caloric content, it may be provided as a ready-to-use product, or it may be provided in a concentrated form. In some embodiments, the nutritional composition is in powder form with a particle size in the range of 5 μm to 1500 μm, more preferably in the range of 10 μm to 300 μm.


If the nutritional composition is in the form of a ready-to-use product, the osmolality of the nutritional composition may be between about 100 and about 1100 mOsm/kg water, more typically about 200 to about 700 mOsm/kg water.


In certain embodiments, the nutritional composition is hypoallergenic. In other embodiments, the nutritional composition is kosher and/or halal. In still further embodiments, the nutritional composition contains non-genetically modified ingredients. In an embodiment, the nutritional formulation is sucrose-free. The nutritional composition may also be lactose-free. In other embodiments, the nutritional composition does not contain any medium-chain triglyceride oil. In some embodiments, no carrageenan is present in the composition. In other embodiments, the nutritional composition is free of all gums.


The nutritional composition of the present disclosure is not limited to compositions comprising nutrients specifically listed herein. Any nutrient may be delivered as part of the composition for the purpose of meeting nutritional needs and/or in order to optimize the nutritional status in a subject.


Moreover, in some embodiments, the nutritional composition is nutritionally complete, containing suitable types and amounts of lipids, carbohydrates, proteins, vitamins and minerals to be a subject's sole source of nutrition. Indeed, the nutritional composition may optionally include any number of proteins, peptides, amino acids, fatty acids, probiotics and/or their metabolic by-products, prebiotics, carbohydrates and any other nutrient or other compound that may provide many nutritional and physiological benefits to a subject. Further, the nutritional composition of the present disclosure may comprise flavors, flavor enhancers, sweeteners, pigments, vitamins, minerals, therapeutic ingredients, functional food ingredients, food ingredients, processing ingredients or combinations thereof.


The nutritional composition of the present disclosure may be standardized to a specific caloric content, it may be provided as a ready-to-use product, or it may be provided in a concentrated form.


In some embodiments, the nutritional composition of the present disclosure is a growing-up milk. Growing-up milks are fortified milk-based beverages intended for children over 1 year of age (typically from 1-3 years of age, from 4-6 years of age or from 1-6 years of age). They are not medical foods and are not intended as a meal replacement or a supplement to address a particular nutritional deficiency. Instead, growing-up milks are designed with the intent to serve as a complement to a diverse diet to provide additional insurance that a child achieves continual, daily intake of all essential vitamins and minerals, macronutrients plus additional functional dietary components, such as non-essential nutrients that have purported health-promoting properties.


The exact composition of a nutritional composition according to the present disclosure can vary from market-to-market, depending on local regulations and dietary intake information of the population of interest. In some embodiments, nutritional compositions according to the disclosure consist of a milk protein source, such as whole or skim milk, plus added sugar and sweeteners to achieve desired sensory properties, and added vitamins and minerals. The fat composition is typically derived from the milk raw materials. Total protein can be targeted to match that of human milk, cow milk or a lower value. Total carbohydrate is usually targeted to provide as little added sugar, such as sucrose or fructose, as possible to achieve an acceptable taste. Typically, Vitamin A, calcium and Vitamin D are added at levels to match the nutrient contribution of regional cow milk. Otherwise, in some embodiments, vitamins and minerals can be added at levels that provide approximately 20% of the dietary reference intake (DRI) or 20% of the Daily Value (DV) per serving. Moreover, nutrient values can vary between markets depending on the identified nutritional needs of the intended population, raw material contributions and regional regulations.


One or more vitamins and/or minerals may also be added in to the nutritional composition in amounts sufficient to supply the daily nutritional requirements of a subject. It is to be understood by one of ordinary skill in the art that vitamin and mineral requirements will vary, for example, based on the age of the child. For instance, an infant may have different vitamin and mineral requirements than a child between the ages of one and thirteen years. Thus, the embodiments are not intended to limit the nutritional composition to a particular age group but, rather, to provide a range of acceptable vitamin and mineral components.


In embodiments providing a nutritional composition for a child, the composition may optionally include, but is not limited to, one or more of the following vitamins or derivations thereof: vitamin B1 (thiamin, thiamin pyrophosphate, TPP, thiamin triphosphate, TTP, thiamin hydrochloride, thiamin mononitrate), vitamin B2 (riboflavin, flavin mononucleotide, FMN, flavin adenine dinucleotide, FAD, lactoflavin, ovoflavin), vitamin B3 (niacin, nicotinic acid, nicotinamide, niacinamide, nicotinamide adenine dinucleotide, NAD, nicotinic acid mononucleotide, NicMN, pyridine-3-carboxylic acid), vitamin B3-precursor tryptophan, vitamin B6 (pyridoxine, pyridoxal, pyridoxamine, pyridoxine hydrochloride), pantothenic acid (pantothenate, panthenol), folate (folic acid, folacin, pteroylglutamic acid), vitamin B12 (cobalamin, methylcobalamin, deoxyadenosylcobalamin, cyanocobalamin, hydroxycobalamin, adenosylcobalamin), biotin, vitamin C (ascorbic acid), vitamin A (retinol, retinyl acetate, retinyl palmitate, retinyl esters with other long-chain fatty acids, retinal, retinoic acid, retinol esters), vitamin D (calciferol, cholecalciferol, vitamin D3, 1,25,-dihydroxyvitamin D), vitamin E α-tocopherol, α-tocopherol acetate, α-tocopherol succinate, α-tocopherol nicotinate, α-tocopherol), vitamin K (vitamin K1, phylloquinone, naphthoquinone, vitamin K2, menaquinone-7, vitamin K3, menaquinone-4, menadione, menaquinone-8, menaquinone-8H, menaquinone-9, menaquinone-9H, menaquinone-10, menaquinone-11, menaquinone-12, menaquinone-13), choline, inositol, β-carotene and any combinations thereof.


In embodiments providing a children's nutritional product, such as a growing-up milk, the composition may optionally include, but is not limited to, one or more of the following minerals or derivations thereof: boron, calcium, calcium acetate, calcium gluconate, calcium chloride, calcium lactate, calcium phosphate, calcium sulfate, chloride, chromium, chromium chloride, chromium picolonate, copper, copper sulfate, copper gluconate, cupric sulfate, fluoride, iron, carbonyl iron, ferric iron, ferrous fumarate, ferric orthophosphate, iron trituration, polysaccharide iron, iodide, iodine, magnesium, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium stearate, magnesium sulfate, manganese, molybdenum, phosphorus, potassium, potassium phosphate, potassium iodide, potassium chloride, potassium acetate, selenium, sulfur, sodium, docusate sodium, sodium chloride, sodium selenate, sodium molybdate, zinc, zinc oxide, zinc sulfate and mixtures thereof. Non-limiting exemplary derivatives of mineral compounds include salts, alkaline salts, esters and chelates of any mineral compound.


The minerals can be added to growing-up milks or to other children's nutritional compositions in the form of salts such as calcium phosphate, calcium glycerol phosphate, sodium citrate, potassium chloride, potassium phosphate, magnesium phosphate, ferrous sulfate, zinc sulfate, cupric sulfate, manganese sulfate, and sodium selenite. Additional vitamins and minerals can be added as known within the art.


In an embodiment, the children's nutritional composition may contain between about 10 and about 50% of the maximum dietary recommendation for any given country, or between about 10 and about 50% of the average dietary recommendation for a group of countries, per serving, of vitamins A, C, and E, zinc, iron, iodine, selenium, and choline. In another embodiment, the children's nutritional composition may supply about 10-30% of the maximum dietary recommendation for any given country, or about 10-30% of the average dietary recommendation for a group of countries, per serving of B-vitamins. In yet another embodiment, the levels of vitamin D, calcium, magnesium, phosphorus, and potassium in the children's nutritional product may correspond with the average levels found in milk. In other embodiments, other nutrients in the children's nutritional composition may be present at about 20% of the maximum dietary recommendation for any given country, or about 20% of the average dietary recommendation for a group of countries, per serving.


The nutritional composition(s) of the present disclosure may optionally include one or more of the following flavoring agents, including, but not limited to, flavored extracts, volatile oils, cocoa or chocolate flavorings, peanut butter flavoring, cookie crumbs, vanilla or any commercially available flavoring. Examples of useful flavorings include, but are not limited to, pure anise extract, imitation banana extract, imitation cherry extract, chocolate extract, pure lemon extract, pure orange extract, pure peppermint extract, honey, imitation pineapple extract, imitation rum extract, imitation strawberry extract, grape and or grape seed extracts, apple extract, bilberry extract or vanilla extract; or volatile oils, such as balm oil, bay oil, bergamot oil, cedarwood oil, cherry oil, cinnamon oil, clove oil, or peppermint oil; peanut butter, chocolate flavoring, vanilla cookie crumb, butterscotch, toffee, and mixtures thereof. The amounts of flavoring agent can vary greatly depending upon the flavoring agent used. The type and amount of flavoring agent can be selected as is known in the art.


The nutritional compositions of the present disclosure may optionally include one or more emulsifiers that may be added for stability of the final product. Examples of suitable emulsifiers include, but are not limited to, lecithin (e.g., from egg or soy or any other plant and animal sources), alpha lactalbumin and/or mono- and diglycerides, and mixtures thereof. Other emulsifiers are readily apparent to the skilled artisan and selection of suitable emulsifier(s) will depend, in part, upon the formulation and final product.


The nutritional compositions of the present disclosure may optionally include one or more preservatives that may also be added to extend product shelf life. Suitable preservatives include, but are not limited to, potassium sorbate, sodium sorbate, potassium benzoate, sodium benzoate, calcium disodium EDTA, and mixtures thereof.


The nutritional compositions of the present disclosure may optionally include one or more stabilizers. Suitable stabilizers for use in practicing the nutritional composition of the present disclosure include, but are not limited to, gum arabic, gum ghatti, gum karaya, gum tragacanth, agar, furcellaran, guar gum, gellan gum, locust bean gum, pectin, low methoxyl pectin, gelatin, microcrystalline cellulose, CMC (sodium carboxymethylcellulose), methylcellulose hydroxypropyl methyl cellulose, hydroxypropyl cellulose, DATEM (diacetyl tartaric acid esters of mono- and diglycerides), dextran, carrageenans, CITREM, and mixtures thereof.


The present disclosure further provides a method for promoting brain and nervous system health by providing a nutritional composition comprising a neurologic component described herein to a target subject. Without being bound by any particular theory, it is believed that providing a nutritional composition comprising the neurologic component will support neurogenesis.


In some embodiments the target subject may be a pediatric subject. Further, in one embodiment, the nutritional composition provided to the pediatric subject may be an infant formula. The neurologic component added to the infant formula may be selected from a specific source and concentrations thereof may be adjusted to maximize health benefits. In another embodiment of this method, the nutritional composition comprising a neurologic component that is provided to a pediatric subject is a growing up milk.


In another embodiment the nutritional composition may be provided to a target subject who has suffered, is currently suffering from, or is likely to suffer in the future from a brain and/or nervous system injury or disease. For example, in one embodiment, the nutritional composition may be provided to a target subject who has been diagnosed with Alzheimer's disease or another degenerative brain disorder.


In yet another embodiment, the nutritional composition comprising a neurologic component may be provided to any target subject to promote neuroprotection. In still other embodiments, the method is directed toward promoting neurogenesis by providing a nutritional composition comprising a neurologic component to a pregnant or lactating mother. Additionally, the nutritional compositions comprising a neurologic component described herein may provide a supplemental source of neurological nutrition to target subjects.


The methods of the present disclosure directed toward providing the nutritional compositions described herein deliver enhanced neurological nutritional and health benefits to their target subjects. The disclosure of the methods for providing the nutritional composition described herein for a particular neurological illness or to a particular target subject are not to be limiting, instead they further serve as examples where administration of the nutritional composition described herein may be appropriate.


EXAMPLES

Examples are provided to illustrate the neurogenesis of the nutrients included in the neurologic component of the nutritional composition(s) described herein. Briefly, the neurogenesis capabilities of kaempferol and fisetin on hADSCs is described. These examples should not be interpreted as any limitation on the nutritional compositions disclosed herein, but serve as illustrations. It is intended that the specification, together with the examples, be considered to be exemplary only, with the scope and spirit of the disclosure being indicated by the claims which follow the examples. The procedures of U.S. patent application Ser. No. 13/408,485 to Kuang, et al. and U.S. patent application Ser. No. 13/408,490 to Kuang, et al. may be suitable for practice of the present disclosure and are hereby incorporated by reference.


Example 1

This example describes the neurogenesis of hADSCs by kaempferol as compared to DHA (positive control) and hADSCs cultured in the absence of kaempferol and DHA (negative control). Kaempferol was purchased from Sigma-Aldrich (Cat. No. 60010) and diluted in 95% ethanol to a concentration of 2.5 mg/mL, giving a clear faint yellow stick solution that was then stored at −20° C. hADSCs were purchased from Invitrogen®, also known as Life Technologies, of Carlsbad, Calif., U.S.A., and were cultured as near confluent monolayers in 100 mm culture plates within a maintenance medium consisting of Complete MesenPro RS™ medium with growth supplement and L-glutamine, also obtained from Invitrogen®. The process of culturing, passage, and seeding the hADSCs is described below. The cells were then subjected to removal and reseeded at a density of 0.5-1×104 cells/mL onto a 24-well culture plate with poly-L-ornithine and bovine plasma fibronectin coating. The culture medium is the same as the aforementioned maintenance medium. Three days after seeding, the culture medium was changed to a neuronal differentiation medium.


The subculture of hADSCs was performed when cell culture reached confluence. To passage hADSCs, the following procedure is used: i) aspirate the Complete MesenPRO RS medium from the cells; ii) rinse the surface area of the cell layer with Dulbecco's phosphate buffered saline (DBPS) buffer by adding the DPBS to the side of the vessel opposite the attached cell layer and rocking the vessel back and forth several times; iii) remove the DPBS by aspiration and discard; iv) detach the cells by adding a sufficient volume of pre-warmed trypsin-EDTA solution without phenol red to cover the cell layer; v) incubate at 37° C. for approximately 7 minutes; vi) observe the cells under a microscope to determine if additional incubation is needed; vii) add 3 mL of the maintenance medium to the plate, mix the cell suspension, add the suspension to a 15 mL centrifuge tube and centrifuge at 210 g for 5 minutes; viii) determine the total number of cells and percent viability using a hemacytometer; ix) add Complete MesenPRO RS medium to each vessel so that the final culture volume is 0.2 mL-0.5 mL per cm2; x) seed the cells by adding the appropriate volume of cells to each vessel and incubate at 37° C., 5% CO2 and 90% humidity; and xi) three or four days after seeding, completely remove the medium and replace with an equal volume of Complete MesenPRO RS medium.


Before seeding the passaged hADSCs on fresh culture plates, the surfaces of the culture ware are washed with sterile DPBS solution three times, followed by multiple rinses with sterile water prior to preparing the culture ware coating. The first layer of coating is poly-L-ornithine, which is prepared by adding about 15 to about 20 μg/mL of poly-L-ornithine and incubating at 37° C. for one hour. The plate is washed three times with DPBS, 15 minutes per wash. The second layer of coating is bovine plasma fibronectin. The fibronectin is diluted in DPBS from stock to 1:1000 and 500 μL is added to each well. The plate is left at room temperature for one hour. One final wash with 500 μL per well of DPBS is performed and the plate is used immediately.


The cells were then subjected to removal and reseeded at a density of 2×104 cells/ml (1×104 cells/well) onto 24-well culture plates that contained a poly-L-ornithine and bovine plasma fibronectin coating.


Three days after seeding and priming; the culture medium was changed to a serum-free neuronal differentiation medium. The culture plates were removed from the incubator and all procedures were conducted in a laminar flow hood. The culture medium was completely removed from each well. The hADSCs were then washed with sterile DPBS solution in an amount of about 1 mL per well, to remove excess culture medium. The DPBS solution was removed and replaced with the serum-free neuronal differentiation medium, which contains Neurobasal™ Medium, available from Invitrogen® with L-glutamine, 20 ng/mL of bFGF, 20 ng/mL of EGF and N2 supplement.


Kaempferol in varying concentrations ranging from 5-20 μg/mL was added to the individual wells to be tested individually and compared to the positive control (20 μM of DHA), and the negative control (no treatment) under phase contrast microscopy at 24 hours, 48 hours and 96 hours. The experiments were repeated in triplicate. Phase contrast microscopy images of the negative control, the positive control, and cells treated with 20 μg/mL of kaempferol are depicted in FIGS. 1A-C. Generally, if the hADSCs display neuronal morphology this result is attributed to the neurogenesis capability of the neurologic component added, in this example kaempferol.


hADSCs treated with the negative control maintained their morphology as large, flat, spread cells, suggesting to significant neurogenesis (FIG. 1A). In the presence of DHA at 20 μM, a few of the hADSCs changed dramatically into a neuronal cell morphology (FIG. 1B). The cytoplasm shrank and neurites began to protrude. The corona of light can be observed with the neuronal differentiated cells due to the shrinking cellular body and the enhanced reflection of light from the microscope. A large percentage of cells underwent neurogenesis in the presence of 5-20 μg/mL of kaempferol, as seen in FIG. 1C, which shows hADSCs treated with 10 μg/mL of kaempferol.


To investigate the synergistic effects of kaempferol with other brain nutrients, hADSCs were treated with kaempferol and DHA together. The treatment with 1.5 μg/mL of kaempferol and 6 μM DHA demonstrated potent neurogenesis effects in comparison to 20 μg/mL kaempferol or 20 μM of DHA alone, thus demonstrating a synergistic effect in vitro (FIG. 1D).


Example 2

This example describes the neurogenesis of hADSCs by fisetin as compared to DHA (positive control) and hADSCs cultured in the absence of kaempferol and DHA (negative control). Fisetin was purchased from Sigma-Aldrich (Cat. No. F4043) and diluted in 95% ethanol to a concentration of 5.0 mg/mL, giving a clear faint yellow stick solution that was then stored at −20° C. The hADSCs were cultured, passaged, seeded and subjected to the negative control, DHA, fisetin or fisetin and DHA via the same procedure outlined in Example 1.


hADSCs treated with the negative control maintained their morphology as large, flat, spread cells, suggesting to significant neurogenesis (FIG. 2A). In the presence of DHA at 20 μM, a few of the hADSCs changed dramatically into a neuronal cell morphology (FIG. 1B). The cytoplasm shrank and neurites began to protrude. The corona of light can be observed with the neuronal differentiated cells due to the shrinking cellular body and the enhanced reflection of light from the microscope. A large percentage of cells underwent neurogenesis in the presence of 5-50 μg/mL of fisetin, as seen in FIG. 1C, which shows hADSCs treated with 25 μg/mL of fisetin.


To investigate the synergistic effects of fisetin with other brain nutrients, hADSCs were treated with fisetin and DHA together. The treatment with 1.5 μg/mL of kaempferol and 6 μM DHA demonstrated potent neurogenesis effects in comparison to 25 μg/mL kaempferol or 20 μM of DHA alone, thus demonstrating a synergistic effect in vitro (FIG. 1D).


Example 3

Table 1 provides an example embodiment of a nutritional composition according to the present disclosure and describes the amount of each ingredient to be included per 100 kcal serving. The composition may contain a neurologic component comprising kaempferol, fisetin, or both.









TABLE 1







Nutrition profile of an example nutritional composition










per 100 kcal












Nutrient
Minimum
Maximum















Protein (g)
1.8
6.8



Fat (g)
1.3
7.2



Carbohydrates (g)
6
22



Prebiotic (g)
0.3
1.2



DHA (g)
4
22



Beta glucan (mg)
2.9
17



Kaempferol (mg)
0.1
5



Fisetin (mg)
3
25



Probiotics (cfu)
9.60 × 105
3.80 × 108



Vitamin A (IU)
134
921



Vitamin D (IU)
22
126



Vitamin E (IU)
0.8
5.4



Vitamin K (mcg)
2.9
18



Thiamin (mcg)
63
328



Riboflavin (mcg)
68
420



Vitamin B6 (mcg)
52
397



Vitamin B12 (mcg)
0.2
0.9



Niacin (mcg)
690
5881



Folic acid (mcg)
8
66



Pantothenic acid (mcg)
232
1211



Biotin (mcg)
1.4
5.5



Vitamin C (mg)
4.9
24



Choline (mg)
4.9
43



Calcium (mg)
68
297



Phosphorus (mg)
54
210



Magnesium (mg)
4.9
34



Sodium (mg)
24
88



Potassium (mg)
82
346



Chloride (mg)
53
237



Iodine (mcg)
8.9
79



Iron (mg)
0.7
2.8



Zinc (mg)
0.7
2.4



Manganese (mcg)
7.2
41



Copper (mcg)
16
331










All references cited in this specification, including without limitation, all papers, publications, patents, patent applications, presentations, texts, reports, manuscripts, brochures, books, internet postings, journal articles, periodicals, and the like, are hereby incorporated by reference into this specification in their entireties. The discussion of the references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.


Although embodiments of the disclosure have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present disclosure, which is set forth in the following claims. In addition, it should be understood that aspects of the various embodiments may be interchanged in whole or in part. For example, while methods for the production of a commercially sterile liquid nutritional supplement made according to those methods have been exemplified, other uses are contemplated. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained therein.

Claims
  • 1. A nutritional composition comprising: (i) a carbohydrate source;(ii) a protein source;(iii) a fat source; and(iv) a neurologic component comprising kaempferol, fisetin or combinations thereof.
  • 2. The nutritional composition of claim 1, wherein the kaempferol is present in an amount from about 0.1 mg/100 kcal to about 5 mg/100 kcal.
  • 3. The nutritional composition of claim 1, wherein the fisetin is present in an amount from about 0.15 mg/100 kcal to about 73 mg/100 kcal.
  • 4. The nutritional composition of claim 1, further comprising a long-chain polyunsaturated fatty acid.
  • 5. The nutritional composition of claim 4, wherein the long chain polyunsaturated fatty comprises docosahexaenoic acid, arachidonic acid, or a mixture thereof.
  • 6. The nutritional composition of claim 1, further comprising a prebiotic.
  • 7. The composition of claim 6, wherein the prebiotic comprises polydextrose and galactooligosaccharides.
  • 8. The composition of claim 1, further comprising a nutrient selected from the group consisting of a probiotic, an iron source, beta-glucan, and combinations thereof.
  • 9. The composition of claim 1, further comprising a nutrient selected from the group consisting of lutein, cholesterol, resveratrol, and mixtures thereof.
  • 10. The nutritional composition of claim 1, wherein the nutritional composition is an infant formula.
  • 11. A nutritional composition, comprising per 100 kcal: (i) between about 6 g and about 22 g of a carbohydrate source;(ii) between about 1 g and about 7 g of a protein source;(iii) between about 1.3 g and about 7.2 g of a fat source; and(iv) a neurologic component comprising: (a) between about 0.1 mg and about 5 mg of kaempferol;(b) between about 3 mg and about 200 mg of fisetin; or(c) a mixture of (a) and (b).
  • 12. The nutritional composition of claim 11, further comprising per 100 kcal between about 9.60×105 cfu and about 3.80×108 cfu of probiotic.
  • 13. The nutritional composition of claim 11, further comprising per 100 kcal between about 0.3 g and about 1.2 g of prebiotic.
  • 14. The nutritional composition of claim 11, wherein the nutritional composition further comprises per 100 kcal between about 4 mg and about 50 mg of docosahexaenoic acid.
  • 15. A method for promoting brain and nervous system health, comprising: providing to a target subject, a nutritional composition comprising a carbohydrate source, a protein source, a fat source, and a neurologic component, wherein the neurologic component is kaempferol, fisetin, or a mixture thereof.
  • 16. The method of claim 16, wherein the target subject is a pediatric subject.
  • 17. The method of claim 16, wherein the nutritional composition is an infant formula.
  • 18. The method of claim 16, wherein nutritional composition further comprising a long chain polyunsaturated fatty acid.
  • 19. The method of claim 19, wherein the long chain polyunsaturated fatty is docosahexaenoic acid, arachidonic acid, or a combination thereof.
  • 20. The method of claim 16, wherein the nutritional composition further comprises at least one nutrient selected from the group consisting of a probiotic, a prebiotic, β-glucan, and an iron source.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of U.S. application Ser. No. 13/273,635, filed on Oct. 14, 2011, and Ser. No. 13/739,787, filed on Jan. 11, 2013, the contents of which are hereby incorporated by reference in their entirety.

Continuation in Parts (1)
Number Date Country
Parent 13273635 Oct 2011 US
Child 14109458 US