NUTRITIONAL COMPOSITIONS WITH LARGE LIPID GLOBULE SIZE

Abstract
The present invention relates to a nutritional composition for infants and/or toddlers comprising a lipid component which has a large lipid globule size. The composition can be used to increase bone mineral content and/or bone mass density.
Description
FIELD OF THE INVENTION

The invention relates to the field of infant milk formula and growing up milks for improving bone health.


BACKGROUND

Breast-feeding is the preferred method of feeding infants. However, there are circumstances that make breast-feeding impossible or less desirable. In those cases infant formulae are a good alternative. The composition of modern infant formulae is adapted in such a way that it meets many of the special nutritional requirements of the fast growing and developing infant.


However, differences between breast feeding and feeding infant formulae exist. Breastfeeding in early life is associated with higher bone mass density and bone mineral content later in life during childhood and early adolescence compared with those who were bottle-fed. The implication of this observation is that osteoporosis prevention programs need to start very early in the life cycle. Adult degenerative bone disease (osteoporosis), a major public health problem in the West, has been linked to peak bone mass attained in young adult life. Following attainment of peak bone mass, bone mineral content falls and may descend below the safety level for clinical disease. Most interventions to reduce the incidence of clinical disease have been in middle life.


Human milk is the major source of energy for many infants during the first part of their lives. It has a high content of the saturated fatty acid palmitic acid (20-25%), which is primarily located in the sn-2 position of the triacylglycerols (˜70%). The n-1, 3 positions of vegetable fats, normally used in infant formulae, are rich in saturated fatty acids such as palmitate and stearate and are not appropriate to be used in infant nutrition. The triglycerides are digested in the infant by lipases which release the sn-1, 3 fatty acids. When these palmitic- and stearic acids are released from vegetable triglycerides they tend to create salts of dietary calcium. Calcium salts of saturated fatty acids are insoluble and tend to precipitate and to be secreted from the body. This results in the loss of crucial calcium. Formation of calcium soaps causes loss in faeces of energy as well as of calcium, and this loss can be so high that it can influence bone mineralization, i.e. normal skeletal and bone development of the infant, as well as other aspects of normal health and development in infants. Hence, advanced infant formulas include synthetically structured fats produced to mimic the unique structure and characteristics of human milk fat. Such structured fats include Betapole or InFat which provide 22% total palmitic acid of which 43% is at the sn-2 position and 25% palmitic acid, up to 68% of which are at the sn-2 position, respectively.


WO 2005/07373 relates to compositions comprising such synthetically structured triglycerides with high levels of mono- or polyunsaturated fatty acids at positions sn-1 and sn-3 of the glycerol backbone, for use in enhancing calcium absorption and in the prevention and/or treatment of disorders associated with depletion of bone calcium and bone density, prevention and treatment of osteoporosis, for the enhancement of bone formation and bone mass maximization and for the enhancement of bone formation in infants and young children.


WO 2007/097523 aims to provide a fat composition as a human milk substitute comprising a diglyceride in which unsaturated fatty acids are bonded in the 1,2-positions or 1,3-posiltions and a triglyceride containing a large amount of palmitic acid or stearic acid as a saturated fatty acid in the 2-position of the triglyceride.


WO 2005/051092 concerns a lipid preparation comprising a combination of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI), wherein the quantitative ratio between these glycerophospholipids essentially mimics their corresponding ratio in naturally occurring human milk fat.


Other infant formulae reduce the amount of palmitic acid to levels lower than that observed in human milk. EP 1252824 relates to a method for increasing the bone mineralization of an infant or toddler, comprises administering to said human a source of calcium and a fat blend that is low in palmitic acid.


SUMMARY OF THE INVENTION

The inventors surprisingly found that the lipid globule size in infant formulae affects the body composition later in life. Specific selection of the lipid globule size in infant formulae results in an increased bone mineral content (BMC) and increased bone mass density (BMD) later in life. Specific selection of the lipid globule size in infant formulae also results in an increased bone mass density and/or increased bone mineral content later in life. When early in life an infant formula of the present invention that comprised lipids with a larger lipid globule size than present in conventional infant formulae, was administered, it was observed that later in life the body composition was changed, resulting in increased bone mineral content and increased bone mass density.


The important difference between the two formulae was the size of the lipid globules, whereas the fatty acid profile was similar in both formulae and the amount of palmitic and stearic acid present at sn1 and sn3 positions in the fat was also similar. Both formulae further enabled a similar good growth and development early in life. Surprisingly the increase in BMD and/or BMC remained later in life when both groups received the same diet for a long period, indicating that early nutrition has an effect on BMD and/or BMC extending beyond the period in which it is actually administered. Early diet of the present invention has a programming effect on BMD and/or BMC.


Standard infant milk formulae have vegetable fat as lipid component. The lipid is homogenized in order to create a stable emulsion and the lipid globules are small, with a volume-weighted mode diameter of about 0.3-0.6 μm. Less than 55 volume %, typically less than 35 volume %, based on total lipid has a size between 2 and 12 μm. The lipid globules are for a large part covered with milk proteins, in particular with casein.


The present invention relates to infant formulae or growing up milks for toddlers comprising vegetable fats with a lipid globule size larger than that of standard infant formulae. The present composition comprises lipid globules with a lipid volume-weighted mode diameter of above 1.0 μm, preferably between 1.0 and 10 μm, and/or with at least 45, more preferably at least 55 volume % with a diameter of 2 to 12 μm based on total lipid. This can be achieved upon homogenizing of the lipid component comprising vegetable fat at lower pressures, preferably in the presence of polar lipids, in order to coat the enlarged lipid globules and make them more stable. It was found that the thus obtained oil in water emulsion is stable for at least 48 h. Especially when the formulae is dried to a powder and subsequently reconstituted with water to a ready to drink formula shortly before use, no disadvantageous effects regarding stability are observed.


It has now surprisingly been found that the size of the lipid globule administered early in life is one of the determinative factors which affect body composition, in particular bone mineral content and bone mass density and/or lean body mass, later in life. The present invention therefore can be used for food compositions intended for infants and/or toddlers in order to increase bone mineral content and/or increase bone mass density. The present invention therefore can be used for food compositions intended for infants and/or toddlers in order to prevent or reduce the risk for osteoporosis later in life, for the enhancement of bone formation and bone mass maximization and for the enhancement of bone formation in infants and young children.


The present invention also allows to formulate infant milk formulae with high levels of palmitic and stearic acid, as observed in human milk and with the use of natural lipids, i.e. without the use of synthetically made triglycerides, which are more expensive and subject to strict food legislations. The use of the synthetically made lipids with palmitic acid in the sn-2 position has the additional disadvantage of having direct diet effects regarding body weight, lean body mass and increasing fat mass. Surprisingly, it was found that while increasing BMD and BMC, advantageously fat mass and relative fat mass was decreased later in life using the lipid globules of the present invention.







DETAILED DESCRIPTION

The present invention thus concerns a method

    • for increasing bone mass density and/or increasing bone mineral content and or
    • preventing osteoporosis and/or osteopenia


said method comprising administering to a human subject a nutritional composition comprising

    • a) 10 to 50 wt. % vegetable lipids based on dry weight of the composition, and
    • b) lipid globules
      • i) with a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
      • ii) with a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.


For sake of clarity it is noted that the lipid globules as defined under b) comprise vegetable lipids as defined under a) or in other words that a) and b) overlap.


The present invention can also be worded as the use of lipid for the manufacture of a nutritional composition for increasing bone mass density and/or increasing bone mineral content, said nutritional composition comprising

    • a) 10 to 50 wt. % vegetable lipids based on dry weight of the composition, and
    • b) lipid globules
      • i) with a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
      • ii) with a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.


The present invention can also be worded as the use of lipid for the manufacture of a nutritional composition for preventing osteoporosis and/or osteopenia, said nutritional composition comprising

    • a) 10 to 50 wt. % vegetable lipids based on dry weight of the composition, and
    • b) lipid globules
      • i) with a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
      • ii) with a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid.


The present invention can also be worded as a nutritional composition comprising

    • a) 10 to 50 wt. % vegetable lipids based on dry weight of the composition, and
    • b) lipid globules
      • i) with a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
      • ii) with a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid


        for use in increasing bone mass density and/or increasing bone mineral content.


The present invention can also be worded as a nutritional composition comprising

    • a) 10 to 50 wt. % vegetable lipids based on dry weight of the composition, and
    • b) lipid globules
      • i) with a volume-weighted mode diameter above 1.0 μm, preferably between 1.0 and 10 μm, and/or
      • ii) with a diameter of 2 to 12 μm in an amount of at least 45, more preferably at least 55 volume % based on total lipid for use in preventing osteoporosis and/or osteopenia.


In one embodiment, the present method further is for preventing obesity, or in other words, the nutritional composition is further for prevention of obesity or the nutritional composition is for further use in prevention of obesity.


Bone Mass Density, Bone Mineral Content, Osteoporosis


The present composition is preferably administered to a human subject with an age below 36 months, preferably below 18 months, more preferably below 12 months, even more preferably below 6 months.


Bone mass density (BMD) refers to the amount of matter per cubic centimeter of bones. Herein the term “bone mass” refers to the mass of bone mineral. In adults a low BMD is a strong predictor for osteoporosis and/or osteopenia. In infants a higher BMD is related to increased length, and lower risk fracture. Early optimal growth is predicting increased length in adulthood. Bone mineral content (BMC) refers to bone mineral content as a measure of bone strength. During growth BMC is a more relevant parameter than BMD, because it factors out most of the component of bone accumulation that is associated with change in bone size. So, in infancy, when assessing bone parameters, BMC is the more relevant parameter.


The terms “bone mineralization” and “bone mass accretion” are being used interchangeably within this application. Thus within the present specification and claims, they should be considered as synonyms. “Bone mineralization ” should also be considered synonymous with increasing, enhancing or improving “bone strength”, “bone mineral density”, “bone mineral content”, “bone mass”, “bone accretion”, etc.


BMD and BMC are typically determined by ultrasound, radiographic absorptiometry, single energy X-ray absorptiometry (SXA), peripheral dual energy X-ray absorptiometry (PDXA, dual energy X-ray absorptiometry (DEXA), single photon absorptiometry (SPA), dual energy radioactive photon absorptiometry (DPA) and quantitative computerized tomography (QCT). Preferably BMD and/or BMC is measured by DEXA.


In the context of this invention, increase in BMD is defined as an increase of at least 2%, preferably at least 4%, when compared to a control not receiving the nutrition of the present invention. For example as determined in a comparative study in an animal model as described in example 2.


In the context of this invention, increase in BMC is defined as an increase of at least 5%, preferably at least 7%, when compared to a control not receiving the nutrition of the present invention. For example as determined in a comparative study in an animal model as described in example 2.


The term “osteopenia,” as used herein, refers to decreased bone mass below a threshold that compromises the structural integrity of the skeletal bone. An ‘osteopenic’ condition is a condition in which the bone mass density is decreased compared to a young normal control value. “Young normal” known as the “T-score” compares BMD to optimal or peak density of a 30-year old healthy adult and determines the fracture risk, which increases as BMD falls below young normal levels. The World Health Organization (WHO) has set the values for interpreting T-scores and defined osteoporosis and osteopenia based on these values: Osteopenia, on the other hand, is defined as a T-score between −1 and −2.5.


Osteoporosis is a disease of bone that leads to an increased risk of fracture. In osteoporosis the bone mass density (BMD) is reduced, bone microarchitecture is disrupted, and the amount and variety of non-collageneous proteins in bone is altered. Osteoporosis is defined by the World Health Organization (WHO) as a bone mass density with a T-score below −2.5.


Obesity


Obesity in the present invention relates to an excess of body fat mass. Fat mass is also known as adipose tissue or fat tissue. An adult human person suffers from obesity if over 25 wt. % (for a man) or over 30 wt. % (for a woman) of body weight is fat mass. Obesity is sometimes referred to as adiposity.


Suitable ways to determine % body fat mass are underwater weighing, skin fold measurement, bioelectrical impedance analysis, computed tomography (CT/CAT scan), magnetic resonance imaging (MRI/NMR), ultrasonography and dual energy X-ray absorptiometry (DEXA). A preferred method is DEXA measurement. In the context of this invention body fat mass is determined by DEXA.


Lipid Component


The present composition comprises lipid. The lipid provides preferably 30 to 60% of the total calories of the composition. More preferably the present composition comprises lipid providing 35 to 55% of the total calories, even more preferably the present composition comprises lipid providing 40 to 50% of the total calories. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises 2.1 to 6.5 g lipid per 100 ml, more preferably 3.0 to 4.0 g per 100 ml. Based on dry weight the present composition preferably comprises 10 to 50 wt. %, more preferably 12.5 to 40 wt. % lipid, even more preferably 19 to 30 wt. % lipid.


Lipids include polar lipids (such as phospholipids, glycolipids, sphingomyelin, and cholesterol), monoglycerides, diglycerides, triglycerides and free fatty acids. Preferably the composition comprises at least 85 wt. % triglycerides based on total lipids.


The lipid of the present invention comprises vegetable lipids. The presence of vegetable lipids advantageously enables an optimal fatty acid profile, high in (poly)unsaturated fatty acids and/or more reminiscent to human milk fat. Using lipids from cow's milk alone, or other domestic mammals, does not provide an optimal fatty acid profile. Preferably the present composition comprises at least one, preferably at least two lipid sources selected from the group consisting of linseed oil (flaxseed oil), rape seed oil (such as colza oil, low erucic acid rape seed oil and canola oil), salvia oil, perilla oil, purslane oil, lingonberry oil, sea buckthorn oil, hemp oil, sunflower oil, high oleic sunflower oil, safflower oil, high oleic safflower oil, olive oil, black currant seed oil, echium oil, coconut oil, palm oil and palm kernel oil. Preferably the present composition comprises at least one, preferably at least two lipid sources selected from the group consisting of linseed oil, canola oil, coconut oil, sunflower oil and high oleic sunflower oil. Commercially available vegetable lipids are typically offered in the form a continuous oil phase. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises 2.1 to 6.5 g vegetable lipid per 100 ml, more preferably 3.0 to 4.0 g per 100 ml. Based on dry weight the present composition preferably comprises 10 to 50 wt. %, more preferably 12.5 to 40 wt. % vegetable lipid, even more preferably 19 to 30 wt. %. Preferably the composition comprises 50 to 100 wt. % vegetable lipids based on total lipids, more preferably 70 to 100 wt. %, even more preferably 75 to 97 wt. %. It is noted therefore that the present composition also may comprise non-vegetable lipids. Suitable and preferred non-vegetable lipids are further specified below.


Lipid Globule Size


According to the present invention, lipid is present in the composition in the form of lipid globules, emulsified in the aqueous phase. The lipid globules comprise a core and a coating. The core comprises vegetable fat and preferably comprises at least 90 wt. % triglycerides and more preferably essentially consists of triglycerides. The coating comprises phospholipids and/or polar lipids. Not all phospholipids and/or polar lipids that are present in the composition need necessarily be comprised in the coating, but preferably a major part is. Preferably more than 50 wt. %, more preferably more than 70 wt, %, even more preferably more than 85 wt. %, most preferably more than 95 wt. % of the phospholipids and/or polar lipids that are present in the composition are comprised in the coating of lipid globules. Not all vegetable lipids that are present in the composition need necessarily be comprised in the core of lipid globules, but preferably a major part is, preferably more than 50% wt. %, more preferably more than 70 wt. %, even more preferably more than 85 wt. %, even more preferably more than 95 wt. %, most preferably more than 98 wt. % of the vegetable lipids that are present in the composition are comprised in the core of lipid globules.


The lipid in the present composition according to the invention is present in the form of lipid globules, emulsified in the aqueous phase. The lipid globules of the present invention have

    • 1. a volume-weighted mode diameter above 1.0 μm, more preferably above 3.0 μm, more preferably 4.0 μm or above, preferably between 1.0 and 10 μm, more preferably between 2.0 and 8.0 μm, even more preferably between 3.0 and 8.0 μm, most preferably between 4.0 and 8.0 μm and/or
    • 2. a size distribution in such a way that at least 45 volume %, preferably at least 55 volume %, even more preferably at least 65 volume %, even more preferably at least 75 volume % has a diameter between 2 and 12 μm. More preferably at least 45 volume %, preferably at least 55 volume %, even more preferably at least 65 volume %, even more preferably at least 75 volume % has a diameter between 2 and 10 μm. Even more preferably at least 45 volume %, preferably at least 55 volume %, even more preferably at least 65 volume %, even more preferably at least 75 volume % has a diameter between 4 and 10 μm


The percentage of lipid globules is based on volume of total lipid. The mode diameter relates to the diameter which is the most present based on volume of total lipid, or the peak value in a graphic representation, having on the X-as the diameter and on the Y-as the volume (%). The volume of the lipid globule and its size distribution can suitably be determined using a particle size analyzer such as a Mastersizer (Malvern Instruments, Malvern, UK), for example by the method described in Michalski et al, 2001, Lait 81: 787-796.


Polar Lipids


The present invention preferably comprises polar lipids. Polar lipids are amphipathic of nature and include glycerophospholipids, glycosphingolipids, sphingomyelin and/or cholesterol. More preferably the composition comprises phospholipids (the sum of glycerophospholipids and sphingomyelin). Polar lipids in the present invention relate to the sum of glycerophospholipids, glycospingolipids, sphingomyelin and cholesterol. The presence of polar lipids helps to maintain the lipid globules emulsified in the aqueous composition. This is especially important when the lipid globule size is large.


The present composition preferably comprises glycerophospholipids. Glycerophospholipids are a class of lipids formed from fatty acids esterified at the hydroxyl groups on carbon-1 and carbon-2 of the backbone glycerol moiety and a negatively-charged phosphate group attached to carbon-3 of the glycerol via an ester bond, and optionally a choline group (in case of phosphatidylcholine, PC), a serine group (in case of phosphatidylserine, PS), an ethanolamine group (in case of phosphatidylethanolamine, PE), an inositol group (in case of phosphatidylinositol, PI) or a glycerol group (in case of phosphatidylglycerol, PG) attached to the phosphate group. Lysophospholipids are a class of phospholipids with one fatty acyl chain. Preferably the present composition contains PC, PS, PI and/or PE, more preferably at least PC. Preferably the glycerophospholipids comprise negatively charged phospholipids in particular PS and/or PI. Negatively charged glycerophospholipids advantageously improve the stability of the oil in water emulsion.


The present composition preferably comprises glycosphingolipids. The term glycosphingolipids as in the present invention particularly refers to glycolipids with an amino alcohol sphingosine. The sphingosine backbone is O-linked to a charged headgroup such as ethanolamine, serine or choline backbone. The backbone is also amide linked to a fatty acyl group. Glycosphingolipids are ceramides with one or more sugar residues joined in a β-glycosidic linkage at the 1-hydroxyl position. Preferably the present composition contains gangliosides, more preferably at least one ganglioside selected from the group consisting of GM3 and GD3.


The present composition preferably comprises sphingomyelin. Sphingomyelins have a phosphorylcholine or phosphorylethanolamine molecule esterified to the 1-hydroxy group of a ceramide. They are classified as phospholipid as well as sphingolipid, but are not classified as a glycerophospholipid nor as a glycosphingolipid.


Sphingolipids are in the present invention defined as the sum of sphingomyelin and glycosphingolipids. Phospholipids are in the present invention defined as the sum of sphingomyelin and glycerophospholipids. Preferably the phospholipids are derived from milk lipids. Preferably the weight ratio of phospholipids : glycosphingolipids is from 2:1 to 10:1, more preferably 2:1 to 5:1.


Preferably the present composition comprises phospholipids. Preferably the present composition comprises 0.2 to 20 wt. % phospholipids based on total lipid, more preferably 0.5 to 20 wt. % phospholipids based on total lipid, more preferably 0.5 to 10 wt. %, more preferably 1 to 10 wt. %, even more preferably 3 to 8 wt. %. Preferably the present composition comprises 0.1 to 10 wt. % glycosphingolipids based on total lipid, more preferably 0.5 to 5 wt. %, even more preferably 2 to 4 wt %. Preferably the present composition comprises 0.3 to 20 wt. % (glycosphingolipids plus phospholipids) based on total lipid, more preferably 0.5 to 20 wt. % (glycosphingolipids plus phospholipids) based on total lipid, more preferably 1 to 10 wt. %.


The present composition preferably comprises cholesterol. The present composition preferably comprises at least 0.005 wt. % cholesterol based on total lipid, more preferably at least 0.02 wt. %, more preferably at least 0.05 wt. %., even more preferably at least 0.1 wt. %. Preferably the amount of cholesterol does not exceed 10 wt. % based on total lipid, more preferably does not exceed 5 wt. %, even more preferably does not exceed 1 wt. % of total lipid.


Preferably the present composition comprises 0.3 to 25 wt. % polar lipids based on total lipid, wherein the polar lipids are the sum of phospholipids, glycosphingolipids, and cholesterol, more preferably 0.6 to 25 wt. % polar lipids based on total lipid, more preferably 0.6 to 12 wt. %, more preferably 1 to 10 wt. %, even more preferably 3 to 10 wt. % polar lipids based on total lipid, wherein the polar lipids are the sum of phospholipids, glycosphingolipids, and cholesterol.


Preferred sources for providing the phospholipids, glycosphingolipids and/or cholesterol are egg lipids, milk fat, buttermilk fat and butter serum fat (such as beta serum fat). A preferred source for phospholipids, particularly PC, is soy lecithin and/or sunflower lecithin. The present composition preferably comprises phospholipids derived from milk. Preferably the present composition comprises phospholipids and glycosphingolipids derived from milk. Preferably also cholesterol is obtained from milk. Polar lipids derived from milk include the polar lipids isolated from milk lipid, cream lipid, butter serum lipid (beta serum lipid), whey lipid, cheese lipid and/or buttermilk lipid. The buttermilk lipid is typically obtained during the manufacture of buttermilk. The butter serum lipid or beta serum lipid is typically obtained during the manufacture of anhydrous milk fat from butter. Preferably the phospholipids, glycosphingolipids and/or cholesterol are obtained from milk cream. The composition preferably comprises phospholipids, glycosphingolipids and/or cholesterol from milk of cows, mares, sheep, goats, buffalos, horses and camels. It is most preferred to use a lipid extract isolated from cow's milk. The size of the lipid globules of the present invention are more comparable to that of human milk which are coated with a milk fat globule membrane comprising polar lipids and membrane proteins. The use of polar lipids from milk fat advantageously comprises the polar lipids from milk fat globule membranes, which are more reminiscent to the situation in human milk. The concomitant use of polar lipids derived from domestic animals milk and trigycerides derived from vegetable lipids therefore enables to manufacture lipid globules with an architecture more similar to human milk, while at the same time providing an optimal fatty acid profile. Suitable commercially available sources for milk polar lipids are BAEF, SM2, SM3 and SM4 powder of Corman, Salibra of Glanbia, and LacProdan MFGM-10 or PL20 from Arla. Preferably the source of milk polar lipids comprises at least 4 wt. % phospholipids based on total lipid, more preferably 7 to 75 wt. %, most preferably 20 to 70 wt. % phospholipids based on total lipid. Preferably the weight ratio phospholipids to protein is above 0.10, more preferably above 0.20, even more preferably above 0.3. Preferably at least 25 wt. %, more preferably at least 40 wt. %, most preferably at least 75 wt. % of the polar lipids is derived from milk.


Fatty Acid Composition


Herein LA refers to linoleic acid and/or acyl chain (18:2 n6); ALA refers to a-linolenic acid and/or acyl chain (18:3 n3); LC-PUFA refers to long chain polyunsaturated fatty acids and/or acyl chains comprising at least 20 carbon atoms in the fatty acyl chain and with 2 or more unsaturated bonds; DHA refers to docosahexaenoic acid and/or acyl chain (22:6, n3); EPA refers to eicosapentaenoic acid and/or acyl chain (20:5 n3); ARA refers to arachidonic acid and/or acyl chain (20:4 n6); DPA refers to docosapentaenoic acid and/or acyl chain (22:5 n3); PA refers to palmitic acid and/or acyl chain (16:0); SA refers to stearic acid and/or acyl chain (18:0).


Preferably the composition comprises PA and/or SA. PA is a major component of human milk lipids. Preferably the composition comprises at least 16 wt. %, more preferably at least 19 wt. % based on total fatty acids, even more preferably at least 20 wt. %. Preferably the composition comprises less than 35 wt. % based on FA, more preferably less than 30 wt. %. A too high content of PA results in excessive calcium soap formation and has a negative effect on BMD and/or BMC. Preferably the palmitic acid in the lipids is for over 75 wt. %, more preferably 90 wt. % in the sn-1 or sn-3 position. The present invention also allows to formulate infant milk formulae with high levels of palmitic and stearic acid, as observed in human milk and with the use of natural lipids, i.e. without the use of synthetically made triglycerides with PA or SA on the sn-2 position, which are more expensive and subject to strict food legislations. The use of the synthetically made lipids with palmitic acid in the sn-2 position has the additional disadvantage of having direct diet effects by increasing body weight, lean body mass and fat mass early in life.


A high weight ratio of dietary LA to ALA is associated with a lower bone mass density. Therefore, LA preferably is present in a sufficient amount in order to promote a healthy growth and development, yet in an amount as low as possible to prevent a decrease in BMD. The composition therefore preferably comprises less than 15 wt. % LA based on total fatty acids, preferably between 5 and 14.5 wt. %, more preferably between 6 and 10 wt. %. Preferably the composition comprises over 5 wt. % LA based on fatty acids. Preferably ALA is present in a sufficient amount to promote a healthy growth and development of the infant. The present composition therefore preferably comprises at least 1.0 wt. % ALA based on total fatty acids. Preferably the composition comprises at least 1.5 wt. % ALA based on total fatty acids, more preferably at least 2.0 wt. %. Preferably the composition comprises less than 10 wt. % ALA, more preferably less than 5.0 wt. % based on total fatty acids. The weight ratio LA/ALA preferably is well balanced in order to improve BMD, while at the same time ensuring a normal growth and development. Therefore, the present composition preferably comprises a weight ratio of LA/ALA between 2 and 15, more preferably between 2 and 7, more preferably between 4 and 7, more preferably between 3 and 6, even more preferably between 4 and 5.5, even more preferably between 4 and 5.


Preferably the present composition comprises n-3 LC-PUFA, since n-3 LC-PUFA improve peak bone mass density. More preferably, the present composition comprises EPA, DPA and/or DHA, even more preferably DHA. Since a low concentration of DHA, DPA and/or EPA is already effective and normal growth and development are important, the content of n-3 LC-PUFA in the present composition, preferably does not exceed 15 wt. % of the total fatty acid content, preferably does not exceed 10 wt. %, even more preferably does not exceed 5 wt. %. Preferably the present composition comprises at least 0.2 wt. %, preferably at least 0.5 wt. %, more preferably at least 0.75 wt. %, n-3 LC-PUFA of the total fatty acid content.


As the group of n-6 fatty acids, especially arachidonic acid (AA) and LA as its precursor, counteracts the group of n-3 fatty acids, especially DHA and EPA and ALA as their precursor, the present composition comprises relatively low amounts of AA. The n-6 LC-PUFA content preferably does not exceed 5 wt. %, more preferably does not exceed 2.0 wt. %, more preferably does not exceed 0.75 wt. %, even more preferably does not exceed 0.5 wt. %, based on total fatty acids. Since AA is important in infants for optimal functional membranes, especially membranes of neurological tissues, the amount of n-6 LC-PUFA is preferably at least 0.02 wt. % more preferably at least 0.05 wt. %, more preferably at least 0.1 wt. % based on total fatty acids, more preferably at least 0.2 wt. %. The presence of AA is advantageous in a composition low in LA since it remedies LA deficiency. The presence of, preferably low amounts, of AA is beneficial in nutrition to be administered to infants below the age of 6 months, since for these infants the infant formulae is generally the only source of nutrition.


Preferably, in addition to the vegetable lipid, a lipid selected from fish oil (preferably tuna fish oil) and single cell oil (such as algal, microbial oil and fungal oil) is present. These sources of oil are suitable as LC-PUFA sources. Preferably as a source of n-3 LC-PUFA single cell oil, including algal oil and microbial oil, is used.


Process for Obtaining Lipid Globules


The present composition comprises lipid globules. The lipid globule size can be manipulated by adjusting process steps by which the present composition is manufactured. A suitable and preferred way to obtain larger lipid globule sizes is to adapt the process of homogenization. In standard infant milk formula the lipid fraction (usually comprising vegetable fat, a small amount of polar lipids and fat soluble vitamins) is mixed into the aqueous fraction (usually comprising water, skimmed milk, whey, digestible carbohydrates such as lactose, water soluble vitamins and minerals and optionally non-digestible carbohydrates) by homogenization. If no homogenization was to take place, the lipid part would cream very quickly, i.e. separate from the aqueous part and collect at the top. Homogenization is the process of breaking up the fat phase into smaller sizes so that it no longer quickly separates from the aqueous phase but is maintained in a stable emulsion. This is accomplished by forcing the milk at high pressure through small orifices. However, the present inventors found that homogenization at a lower pressure than usually applied in the preparation of infant formula resulted in the larger lipid globules of the present invention, while maintaining a sufficiently stable emulsion.


The process comprises the following steps:


1 Mixing Ingredients


The ingredients of the composition are mixed, e.g. preferably blended. Basically a lipid phase, comprising the vegetable lipids, and an aqueous phase are added together. The ingredients of the aqueous phase may comprise water, skimmed milk (powder), whey (powder), low fat milk, lactose, water soluble vitamins and minerals. Preferably the aqueous phase comprises protein, digestible carbohydrates, and polar lipids, more preferably phospholipids. Preferably the aqueous phase comprises non-digestible oligosaccharides. Preferably the aqueous phase is set at a pH between 6.0 and 8.0, more preferably pH 6.5 to 7.5. Preferably the polar lipids, in particular the phospholipids are derived from milk. The presence of polar lipids advantageously results in more stable lipid globules. This is especially important in case of larger lipid globules.


Preferably the lipid phase comprises 50 to 100 wt. % vegetable lipids based on total weight of the lipid phase. Instead of in the aqueous phase, the polar lipids, more preferably the phospholipids, may also be present in the lipid phase or in both phases. Alternatively the polar lipids may be added separately to an aqueous and lipid phase. Preferably, the weight ratio of phospholipid to total lipid is from 0.2 to 20 wt. %, more preferably from 0.5 to 10 wt. %, even more preferably 3 to 8 wt. % 0.2.


The aqueous and lipid phase are preferably heated before adding together, preferably at a temperature of 40° C. to 80° C., more preferably 55° C. to 70° C., even more preferably 55° C. to 60° C. The mixture is also kept at this temperature and blended. A suitable way for blending is using an Ultra-Turrax T50 for about 30-60 s at 5000-10000 rpm. Subsequently demi-water may be added to this blend, to obtain the desired dry matter %. A desired dry matter % is for example 15%. Alternatively, the lipid phase is injected to the aqueous phase immediately prior to homogenization.


Minerals, vitamins, and stabilizing gums may be added at various points in the process depending on their sensitivity to heat. Mixing can for instance be performed with a high shear agitator. In the process of the present invention, skimmed milk (casein) is preferably not present in this step and added to the composition after homogenization of the fat fraction into the aqueous fraction (comprising compounds such as whey, whey protein, lactose).


2 Pasteurization


Preferably the mixture is then pasteurized. Pasteurization involves a quick heating step under controlled conditions which microorganisms cannot survive. A temperature of 60 to 80° C., more preferably 65 to 75° C., held for at least 15 s, usually adequately reduces vegetative cells of microorganisms. Several pasteurization methods are known and commercially feasible. Alternatively this step can also be performed before mixing as in step 1 and/or be replaced by the heating step to 60° C. in step 1.


3 Homogenization


Subsequently the optionally pasteurized mixture is homogenized. Homogenization is a process which increases emulsion uniformity and stability by reducing the size of the lipid globules in the formula. This process step can be performed with a variety of mixing equipment, which applies high shear to the product. This type of mixing breaks the lipid globules into smaller globules. The mixture obtained is preferably homogenized in two steps at high temperature and pressure, for example 60° C. at 30 to 100 and 5 to 50 bar respectively, with a total pressure of 35 to 150 bar. Alternatively, the mixture obtained is preferably homogenized in two steps at a lower temperature, between 15 and 40° C., preferably about 20° C. at 5 to 50 and 5 to 50 bar respectively, with a total pressure of 5 to 100 bar. This is remarkably lower than standard pressures, which typically are 250 to 50 bar, respectively, so a total pressure of 300 bar.


It will be dependent on the specific homogenizer used, which pressure to apply. A suitable way is to use a pressure of 100 bar in the first step and 50 bar in the second step in a Niro Suavi NS 2006 H Homogenizer at a temperature of 60° C. A suitable way is to use a pressure of 5 bar in the first step and 20 bar in the second step in a Niro Suavi NS 2006 H Homogenizer at a temperature of 20° C. Subsequently optionally other ingredients, not being lipid, may be added.


4 Sterilization


Subsequently, the emulsion obtained in step 3 is preferably sterilized. Preferably sterilization takes place in-line at ultra high temperature (UHT) and/or in appropriate containers to obtain a formula in the form of a sterile liquid. A suitable way for UHT treatment is a treatment at 120-130° C. for at least 20 s. Alternatively, the emulsion obtained in step 3 is concentrated by evaporation, subsequently sterilized at ultra high temperature and subsequently spray dried to give a spray dried powder which is filled into appropriate containers.


Alternatively this sterilization step is performed before the homogenization step. Preferably the composition obtained by the above process is spray dried afterwards.


The difference on coating of the lipid globules can further be derived from the zeta potential. Zeta potential (ζ potential) measures the difference in milliVolts (mV) in electrokinetic potential between the tightly bound layer around the surface and the distant zone of electroneutrality and is a measure of the magnitude of the repulsion or attraction between particles in a dispersion. Its value is also related to the stability of colloidal dispersions. A high absolute zeta potential will confer stability, i.e. the solution or dispersion will resist aggregation.


Digestible Carbohydrate Component


The composition preferably comprises digestible carbohydrate. The digestible carbohydrate preferably provides 30 to 80% of the total calories of the composition. Preferably the digestible carbohydrate provides 40 to 60% of the total calories. When in liquid form, e.g. as a ready-to-feed liquid, the composition preferably comprises 3.0 to 30 g digestible carbohydrate per 100 ml, more preferably 6.0 to 20, even more preferably 7.0 to 10.0 g per 100 ml. Based on dry weight the present composition preferably comprises 20 to 80 wt. %, more preferably 40 to 65 wt. % digestible carbohydrates.


Preferred digestible carbohydrate sources are lactose, glucose, sucrose, fructose, galactose, maltose, starch and maltodextrin. Lactose is the main digestible carbohydrate present in human milk. The present composition preferably comprises lactose. The present composition preferably comprises digestible carbohydrate, wherein at least 35 wt. %, more preferably at least 50 wt. %, more preferably at least 75 wt. %, even more preferably at least 90 wt. %, most preferably at least 95 wt. % of the digestible carbohydrate is lactose. Based on dry weight the present composition preferably comprises at least 25 wt. % lactose, preferably at least 40 wt. %.


Non-Digestible Oligosaccharides


Preferably the present composition comprises non-digestible oligosaccharides with a degree of polymerization (DP) between 2 and 250, more preferably 3 and 60. The non-digestible oligosaccharides advantageously improve mineral absorption, bone composition and architecture. The underlying mechanisms are via an increased solubility of minerals is presumed to be via an increased bacterial production of short-chain fatty acids in the intestine, and/or an enlargement of the intestinal absorption surface by promoting proliferation of enterocytes mediated by these short chain fatty acids. Therefore the non-digestible oligosaccharides are presumed to enhance the BMD and/or BMC increasing effects of the larger lipid globules of the composition according to the present invention.


The non-digestible oligosaccharide is preferably selected from the group consisting of fructo-oligosaccharides (such as inulin), galacto-oligosaccharides (such as transgalacto- oligosaccharides or beta-galacto-oligisaccharides), gluco-oligosaccharides (such as gentio-, nigero- and cyclodextrin-oligosaccharides), arabino-oligosaccharides, mannan-oligosaccharides, xylo-oligosaccharides, fuco-oligosaccharides, arabinogalacto-oligosaccharides, glucomanno-oligosaccharides, galactomanno-oligosaccharides, sialic acid comprising oligosaccharides and uronic acid oligosaccharides. Preferably the composition comprises gum acacia on combination with a non-digestible oligosaccharide.


Preferably the present composition comprises fructo-oligosaccharides, galacto-oligosaccharides and/or galacturonic acid oligosaccharides, more preferably galacto-oligosaccharides, most preferably transgalacto-oligosaccharides. In a preferred embodiment the composition comprises a mixture of transgalacto-oligosaccharides and fructo-oligosaccharides. Preferably the present composition comprises galacto-oligosaccharides with a DP of 2-10 and/or fructo-oligosaccharides with a DP of 2-60. The galacto-oligosaccharide is preferably selected from the group consisting of transgalacto-oligosaccharides, lacto-N-tetraose (LNT), lacto-N-neotetraose (neo-LNT), fucosyl-lactose, fucosylated LNT and fucosylated neo-LNT. In a particularly preferred embodiment the present method comprises the administration of transgalacto-oligosaccharides ([galactose]n-glucose; wherein n is an integer between 1 and 60, i.e. 2, 3, 4, 5, 6, . . . , 59 ,60; preferably n is selected from 2, 3, 4, 5, 6, 7, 8, 9, or 10). Transgalacto-oligosaccharides (TOS) are for example sold under the trademark Vivinal™ (Borculo Domo Ingredients, Netherlands). Preferably the saccharides of the transgalacto-oligosaccharides are β-linked.


Fructo-oligosaccharide is a non-digestible oligosaccharide comprising a chain of β linked fructose units with a DP or average DP of 2 to 250, more preferably 10 to 100. Fructo-oligosaccharide includes inulin, levan and/or a mixed type of polyfructan. An especially preferred fructo-oligosaccharide is inulin. Fructo-oligosaccharide suitable for use in the compositions is also already commercially available, e.g. Raftiline® HP (Orafti). Uronic acid oligosaccharides are preferably obtained from pectin degradation. Uronic acid oligosaccharides are preferably galacturonic acid oligosaccharides. Hence the present composition preferably comprises a pectin degradation product with a DP between 2 and 100. Preferably the pectin degradation product is prepared from apple pectin, beet pectin and/or citrus pectin. Preferably the composition comprises transgalacto-oligosaccharide, fructo-oligosaccharide and a pectin degradation product. The weight ratio transgalacto-oligosaccharide:fructo-oligosaccharide:pectin degradation product is preferably (20 to 2):1:(1 to 3), more preferably (12 to 7):1:(1 to 2).


Preferably, the composition comprises of 80 mg to 2 g non-digestible oligosaccharides per 100 ml, more preferably 150 mg to 1.50 g, even more preferably 300 mg to 1 g per 100 ml. Based on dry weight, the composition preferably comprises 0.25 wt. % to 20 wt. %, more preferably 0.5 wt. % to 10 wt. %, even more preferably 1.5 wt. % to 7.5 wt. %. A lower amount of non-digestible oligosaccharides will be less effective in preventing BMC and/or BMD, whereas a too high amount will result in side-effects of bloating and abdominal discomfort.


Protein Component


The present composition preferably comprises proteins. The protein component preferably provides 5 to 15% of the total calories. Preferably the present composition comprises a protein component that provides 6 to 12% of the total calories. More preferably protein is present in the composition below 9% based on calories, more preferably the composition comprises between 7.2 and 8.0% protein based on total calories, even more preferably between 7.3 and 7.7% based on total calories. Human milk comprises a lower amount of protein based on total calories than cow's milk. The protein concentration in a nutritional composition is determined by the sum of protein, peptides and free amino acids. Based on dry weight the composition preferably comprises less than 12 wt. % protein, more preferably between 9.6 to 12 wt. %, even more preferably 10 to 11 wt. %. Based on a ready-to-drink liquid product the composition preferably comprises less than 1.5 g protein per 100 ml, more preferably between 1.2 and 1.5 g, even more preferably between 1.25 and 1.35 g.


The source of the protein should be selected in such a way that the minimum requirements for essential amino acid content are met and satisfactory growth is ensured. Hence protein sources based on cows' milk proteins such as whey, casein and mixtures thereof and proteins based on soy, potato or pea are preferred. In case whey proteins are used, the protein source is preferably based on acid whey or sweet whey, whey protein isolate or mixtures thereof and may include α-lactalbumin and β-lactoglobulin. More preferably, the protein source is based on acid whey or sweet whey from which caseino-glyco-macropeptide (CGMP) has been removed. Removal of CGMP from sweet whey protein advantageously reduces the threonine content of the sweet whey protein. A reduced threonine content is also advantageously achieved by using acid whey. Optionally the protein source may be supplemented with free amino acids, such as methionine, histidine, tyrosine, arginine and/or tryptophan in order to improve the amino acid profile. Preferably α-lactalbumin enriched whey protein is used in order to optimize the amino acid profile. Using protein sources with an optimized amino acid profile closer to that of human breast milk enables all essential amino acids to be provided at reduced protein concentration, below 9% based on calories, preferably between 7.2 and 8.0% based on calories and still ensure a satisfactory growth. If sweet whey from which CGMP has been removed is used as the protein source, it is preferably supplemented by free arginine in an amount of from 0.1 to 3 wt. % and/or free histidine in an amount of from 0.1 to 1.5 wt. % based on total protein.


Casein is advantageously present. During digestion of casein casein phosphopeptode (CPP) is released which improves BMD and/or BMC. CPP improves calcium absorption in the small intestine. Preferably the composition comprises at least 3 wt. % casein based on dry weight. Preferably the casein is intact and/or non-hydrolyzed.


Preferably the composition comprises calcium. Calcium is the major cation of bone mineral. Preferably the composition comprises at least 200 mg calcium based on 100 g dry weight, more preferably at least 300 mg, even more preferably at least 350 mg/100 g dry weight. Preferably the composition comprises less than 1500 mg calcium per 100 g dry weight, more preferably less than 1000 mg even more preferably less than 800 mg/100 g dry weight.


Preferably the composition comprises phosphate. Phosphate is the major anion of bone mineral. Preferably the composition comprises at least 100 mg phosphate based on 100 g dry weight, more preferably at least 150 mg, even more preferably at least 200 mg/100 g dry weight. Preferably the composition comprises less than 1000 mg phosphate per 100 g dry weight, more preferably less than 500 mg even more preferably less than 350 mg/100 g dry weight. Preferably the weight ratio calcium to phosphate is between 2.5 and 1.0, more preferably between 2.0 and 1.5. A balanced calcium phosphate ratio beneficially effects BMD and/or BMC in infants.


Preferably the composition comprises vitamin D. Vitamin D regulates the calcium and phosphorus levels in the blood by promoting their absorption from food in the intestines, and by promoting re-absorption of calcium in the kidneys, which enables normal mineralization of bones. It is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts. Preferably the composition comprises at least 3 μg vitamin D based on 100 g dry weight, more preferably at least 5 μg, even more preferably at least 8 μg/100 g dry weight. Preferably the composition comprises less than 100 μg vitamin D per 100 g dry weight, more preferably less than 50 μg, even more preferably less than 20 μg/100 g dry weight.


Nutritional Composition


The present composition is particularly suitable for providing the daily nutritional requirements to a human with an age below 36 months, particularly an infant with the age below 24 months, even more preferably an infant with the age below 18 months, most preferably below 12 months of age. The present composition comprises a lipid, a protein and a digestible carbohydrate component wherein the lipid component preferably provides 30 to 60% of total calories, the protein component preferably provides 5 to 20% of the total calories and the digestible carbohydrate component preferably provides 25 to 75% of the total calories. Preferably the present composition comprises a lipid component providing 35 to 50% of the total calories, a protein component provides 6 to 12% of the total calories and a digestible carbohydrate component provides 40 to 60% of the total calories. The amount of total calories is determined by the sum of calories derived from protein, lipids and digestible carbohydrates.


The present composition is not human breast milk. The present composition comprises vegetable lipids. The compositions of the invention preferably comprise other fractions, such as vitamins, minerals according to international directives for infant formulae.


Preferably the composition is a powder to be reconstituted with water. It was surprisingly found that the size and the coating with polar lipids of the lipid globules remained the same after the drying step and subsequent reconstitution. The presence of larger lipid globules may have a slightly negative effect on the long term stability of the liquid composition. However, separation of the lipid and aqueous layers was not observed within 48 h, which is much longer than the time between reconstituting the powder to a ready to drink liquid and the consumption of it, which will be less than 24 h and typically within 1 h. The composition being in a powder form has therefore an additional advantage in the present invention with large lipid globules.


In order to meet the caloric requirements of the infant, the composition preferably comprises 50 to 200 kcal/100 ml liquid, more preferably 60 to 90 kcal/100 ml liquid, even more preferably 60 to 75 kcal/100 ml liquid. This caloric density ensures an optimal ratio between water and calorie consumption. The osmolarity of the present composition is preferably between 150 and 420 mOsmol/l, more preferably 260 to 320 mOsmol/l.


Preferably the composition is in a liquid form, with a viscosity below 35 mPa·s, more preferably below 6 mPa·s as measured in a Brookfield viscometer at 20° C. at a shear rate of 100 s−1. Suitably, the composition is in a powdered from, which can be reconstituted with water to form a liquid, or in a liquid concentrate form, which should be diluted with water. When the composition is in a liquid form, the preferred volume administered on a daily basis is in the range of about 80 to 2500 ml, more preferably about 450 to 1000 ml per day.


Infant


Bone growth is very fast during infancy. Hence, the present composition is therefore advantageously administered to a human of 0-36 months, more preferably to a human of 0-18 months, more preferably to a human of 0-12 months, even more preferably to a human of 0-6 months.


Preferably the composition is to be used in infants which are prematurely born or which are small for gestational age. These infants experience after birth a catch up growth, which is an extra risk for developing a too low BMD and/or BMC later in life.


Application


The present composition is preferably administered orally to the infant. According to the present invention the BMD and/or BMC increase, particularly at the age above 5 years, particularly above 13 years, more particularly above 18 years.


The inventors surprisingly found that when mice were fed, during infancy and childhood, a food composition comprising enlarged lipid globules, a different and significant effect on body composition later in life was observed compared to mice which during infancy and childhood had been fed a food composition having a similar fatty acid composition, but a smaller lipid globule size. At day 42, a day corresponding to childhood in a human setting, no difference was observed in growth (weight) between the two groups, but from day 42 both groups were fed a Western style diet which was high in fat and high in palmitic acid. Surprisingly at day 70 and 126, which are a time points corresponding to early adulthood and adulthood respectively in humans, the mice, which had previously consumed the food composition of the present invention before turning to the Western style diet, had a significantly increased bone mineral content and increased bone mass density than mice which had received a control composition during infancy. This indicates that early nutrition has an effect on BMD and/or BMC extending beyond the period in which it is actually administered. In one embodiment the effect on BMD and/or BMC occurs later in life. With later in life is meant an age exceeding the age at which the diet is taken, preferably with at least one year.


The important difference between the two formulae was the size of the lipid globules. The fatty acid profile was similar in both formulae and the amount of palmitic and stearic acid present at sn1 and sn3 positions in the fat was also similar. Both formulae further enabled a similar good growth and development early in life. Despite the improved fat absorption, an increased fat mass was not observed, even an increase in lean body mass was observed. The present inventors believe that the difference in lipid globule architecture, in particularly the size, between the composition of the present invention and conventional infant formulae on bone health cannot be explained by an effect on improved calcium absorption via a decrease of palmitic and/or stearic acid calcium soap formation as known from the prior art with structured lipids. Furthermore, the use of such lipids exerted a different effect on body composition, such as body weight, lean body mass and fat mass, as shown in example 4.


The present invention therefore can be used for food compositions intended for infants and/or toddlers in order to increase bone mineral content and/or increase bone mass density. The present invention therefore can be used for food compositions intended for infants and/or toddlers in order to prevent or reduce the risk for osteoporosis later in life, for the enhancement of bone formation and bone mass maximization and for the enhancement of bone formation in infants and young children. Also qualifications like ‘enhances bone strength’ or ‘for stronger bones’ and the like are encompassed by the use or method according to the present invention.


The present invention also allows to formulate infant milk formulae with high levels of palmitic and stearic acid, as observed in human milk and with the use of natural lipids, i.e. without the use of synthetically made triglycerides, which are more expensive and subject to strict food legislations


In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”.


EXAMPLE 1
Process for Preparing an IMF with Larger Lipid Globule Size
Example 1 A

Infant formulae were prepared by dissolving using demineralised whey powder, lactose, whey protein concentrate, skim milk powder, galacto-oligosaccharides, minerals and vitamin pre-mix in demineralised water to a dry weight content of 22.5 g/100g and heating the water phase at 65° C.


The oil blend was prepared using over 98 wt. % vegetable oils, an oil comprising LC-PUFA, oil soluble vitamins and antioxidants. Both the water phase and the oil blend were heated to 65° C. prior to mixing. The oil blend was added to the water phase and blended with an Ultra-Turrax T50 for about 30-60 s at 5000-1000 rpm. The dry weight of this mixture was about 26%. The product was UHT treated for 30 s at 125° C. and subsequently cooled to 20° C.


For infant formula 1 the homogenization pressure was 200 and 50 bar, respectively in a Niro Suavi NS 2006 H homogenizer. For infant formula 2 this mixture was homogenized in two steps at a pressure of 5 and 20 bar respectively in a Niro Suavi NS 2006 H homogenizer. The products were dried to a powder by spray drying. Long chain inulin was blended dry into the powder. The amount of vegetable glycerophospholipids was 0.2 wt. % based on total fat for diet 1 and 2.


The size of the lipid globules was measured with a Mastersizer 20000 (Malvern Instruments, Malvern UK) and shown in Table 1. It was checked with confocal laser scanning microscopy that the lipid globules were not coated with phospholipids, before spray drying. As fluorescent probes Annexin V Alexa Fluor 488 (In Vitrogen molecular probes) for labeling phospholipids, and Nile Red (Sigma-Aldrich) for labeling triglycerides, were used. After labeling the milk samples Vectrahield mounting medium (Vector laboratories inc., Burliname USA) for reducing particle movement and photo-bleaching was added. Observations were made using a Zeiss Laser Scanning Microscope with excitation wavelengths of 488/543/633 nm and emission filters set at band pass 505-530, and band pass 560-615.









TABLE 1







Lipid globule characteristics of different milks










Volume Mode
Volume % with a diameter


IMF
diameter μm
between 2 and 12 μm












1, Standard IMF
0.5
5.1


2, Experimental IMF (large
4.0
72.2


lipid globules)









After 5 months storage at room temperature the size of the lipid globules in diet 1 had not changed, with a volume mode diameter of 0.5. Also the volume mode diameter of diet 2 was rather stable being 4.8 μm.


Example 1 B

An infant formula was prepared comprising per kg powder 4800 kcal, 248 g lipid, 540 g digestible carbohydrates, 55 g non-digestible oligosaccharides and 103 g protein. The composition was prepared using BAEF powder (Corman, Goé, Belgium), a vegetable oil blend, demineralised whey powder, lactose, non-digestible oligosaccharides (galacto-oligosaccharides and long chain fructo-oligosaccharides in a weight ratio of 9/1). Also vitamins, minerals, trace elements as known in the art were used.


The amount of BAEF was such that 7.24 wt. % phospholipids (from BAEF) based on total lipids were present in the composition. Based on a small amounts of phospholipids in the oil blend, the total amount of phospholipids was 7.39 wt. % based on total lipid. BAEF also supplied a small amount of cholesterol (about 0.08 wt. % based on total lipid of the infant formula) and glycosphingolipids (about 1.65% glycosphingolipids based on total lipid of the infant formula). The BAEF powder was mixed with galacto-oligosaccharides, lactose, vitamin pre-mixtures and mineral premixes in water, at room temperature, by stirring. Potassium hydroxide was used to set the pH at 6.8-7.0. The dry weight matter of the mixture was about 27%. The mixture was heated to 60° C. The vegetable oil blend was also heated to 60° C. and added to the water phase and blended with an Ultra-Turrax T50 for about 30-60 s at 5000-10000 rpm. Subsequently demi-water was added to achieve a dry matter content of about 15%.


Subsequently the oil-water mixture was homogenised at a pressure of 100 bar in a first step and 50 bar in a second step in a Niro Suavi NS 2006 H Homogenizer. The temperature was 60° C. Subsequently demineralized whey powder was added to arrive at a final dry matter content of 18%. The product was UHT treated at 125° C. for 30 s. The product was dried to a powder by spray drying. Maltodextrin together with long chain inulin was blended dry into the powder. The size of the lipid globules was measured with a Mastersizer 20000 (Malvern Instruments, Malvern UK). The volumetric mode diameter was 7.3 μm. A second, much smaller peak was present at 0.52 μm. The volume % of lipid globules with a size between 2 and 12 m was 71% based on total lipid volume. It was checked with confocal laser scanning microscopy that the larger lipid globules of the present invention were coated with phospholipids, before spray drying and after reconstitution of the spray dried powder with water. In both cases the lipid globules were covered with a layer of phospholipids. As fluorescent probes Annexin V Alexa Fluor 488 (In Vitrogen molecular probes) for labeling the phospholipids, and Nile Red (Sigma-Aldrich) for labeling triglycerides, were used. After labeling the milk samples Vectrahield mounting medium (Vector laboratories inc., Burliname USA) for reducing particle movement and photo-bleaching was added. Observations were made using a Zeiss Laser Scanning Microscope with excitation wavelengths of 488/543/633 nm and emission filters set at band pass 505-530, and band pass 560-615. Also the size of the lipid globules was the same before drying and after reconstitution of the spray dried powder with water.


As a control the lipid globules of a standard infant formula (Nutrilon 1) did not show labeling with phospholipids as observed with the confocal laser scanning microscopy. Instead the globules were covered with protein, as determined with the fluorescent protein stain Fast Green FCF. The volumetric modal diameter of the lipid globules in this standard infant milk formula was measured to be 0.5 μm. A second much smaller peak was present at 8.1 μm. The volume % of lipid globules with a size between 2 and 12 m was 34% based on total lipid volume.









TABLE 2







Lipid globule characteristics of different milks











Volume Mode
Volume % with a diameter
ζ potential



diameter μm
between 2 and 12 μm
(mV)














Standard infant
0.5
34
−22.4


milk formula


(Nutrilon 1)


Infant milk
7.3
71
−16


formula of the


invention


Human milk
5.3
98
−13.8









Also human milk was analyzed and showed a volumetric modal diameter of the lipid globules of 5.3 μm. The volume % of lipid globules with a size between 2 and 12 m was 98% based on total lipid volume. The lipid globules were covered with a layer of phospholipids.


The zeta potentials and volume weighted mean diameters were also measured. The results are shown in table 2.


EXAMPLE 2
Programming Effect of Lipid Globule Size on Adult Body Composition

Offspring of C57/BL6 dams were weaned from day 15 on. The experimental weaning diets were continued until day 42. From day 42 to day 126 all pups were fed the same diet based on AIN-93G diet with an adjusted lipid fraction (containing 10 wt. % lipid of which 50 wt. % lard and 1% cholesterol, based on total lipid), which is representative for a Western style diet.


The experimental diets that were used for weaning were:

    • 1) an infant milk formula (IMF) based control diet. This diet comprised 282 g standard IMF per kg, IMF 1 of example 1A, i.e. small lipid globules. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.
    • 2) an IMF based diet of the present invention. This diet differed from diet 1 in that it comprised 282 g IMF 2 of example 1A, i.e. comprised lipid globules larger than the control. All lipid present in the diet was derived from the IMF.


At day 42, all mice switched to a “Western style diet” comprising 10 wt. % lipid until day 98. The fatty acid composition of the two experimental was the same with calculated linoleic acid (LA) of 14% based on total fatty acids, with alpha linolenic acid (ALA) of 2.6 in based on total fatty acids and with LA/ALA of 5.4. The amount of DHA was 0.2 wt. % and the amount of ARA was 0.35 wt. %. The fatty acid composition of the Western style diet shown in table 5.


The mice were weighed twice a week. The food intake was determined once a week during the entire experiment. To determine body composition (i.e., BMC, BMD, fat mass (FM) and fat-free mass (FFM)) DEXA scans (Dual Energy X-ray Absorbiometry) were performed under general anesthesia at 6, 10 and 14 weeks of age, 42, 70, and 98 days after birth respectively, by densitometry using a PIXImus imager (GE Lunar, Madison, Wis., USA). At the age of 98 days the male mice were sacrificed.


Results

No effect on growth (body weight) and food intake was observed during the experimental period between the groups. Moreover, the development of body weight and fat mass (determined with DEXA) was not significantly different at day 42 (end of the diet intervention period). There was a direct diet effect on BMC. Mice receiving diet 2 with large lipid globules showed a higher BMC.


A subsequent treatment with a Western style diet between day 42 and day 98 of all groups resulted in clear differences in body composition at the end of the experiment (day 98), see Table 3. There was no difference in effects on BMD at day 98. However, on day 98 the BMC was higher in mice receiving the lipid with large lipid globules (diet 2 versus diet 1). This is indicative that the effects on BMC are maintained later in life when receiving a diet with large lipid globules early in life and that this increased bone mineral content is accompanied by at least the same quality of bone as expressed as BMD. Interestingly, the fat mass and relative fat mass developed later in life was reduced in the mice which had received the diet with the larger lipid globules during their infancy and childhood, compared to mice which had received the control diet.









TABLE 3







Bone Mineral Content, Bone Mass Density,


Fat Mass and relative Fat Mass.










Parameter
Day
Diet 1
Diet 2















Body weight g
42
25.84
(046)
26.10
(0.30)


(s.e.)
70
30.93
(0.69)
30.19
(0.55)



98
33.98
(0.99)
33.60
(0.68)


Lean Body mass g
42
20.83
(0.30)
20.52
(0.21)


(s.e.)
70
20.34
(0.37)
22.19
(0.69)



98
22.89
(0.43)
22.73
(0.42)


Bone mineral content g
42
0.461
(0.009)
0.475
(0.011)*


Mean (s.e.)
70
0.475
(0.007)
0.537
(0.018)*



98
0.538
(0.009)
0.551
(0.012)*


Bone Mass Density
42
0.049
(0.001)
0.050
(0.001)


g/cm2
70
0.054
(0.001)
0.055
(0.001)


Mean (s.e.)
98
0.057
(0.001)
0.058
(0.001)


Fat mass g
42
4.42
(0.19)
4.19
(0.13)


Mean (s.e.)
70
5.94
(0.39)
5.58
(0.27)



98
8.35
(0.67)
7.29
(0.37)


Fat % of body weight
42
17.43
(0.49
16.98
0.48


Mean (s.e.)
70
22.40
(0.99
20.07
0.80



98
26.31
(1.33)
24.18
(0.83)





*P < 0.05






These results demonstrate that the BMC and/or BMD in later life clearly is increased by an early in life diet with increased lipid globule size alone. It is concluded that food comprising lipid globules with an altered lipid architecture program and/or imprint the body early in life in such a way that later at life a healthier body composition has developed, with increased BMD and/or BMC, which prevents and/or reduces the risk for osteoporosis.


EXAMPLE 3
Programming Effect of Lipid Globule Size on Adult Body Composition

Offspring of C57/BL6 dams were weaned from day 15 on. The experimental weaning diets were continued until day 42. From day 42 to day 126 all pups were fed the same diet based on AIN-93G diet with an adjusted lipid fraction (containing 10 wt. % lipid of which 50 wt. % lard and 1% cholesterol, based on total lipid), which is representative for a Western style diet.


The experimental diets that were used for weaning were:

    • 1) an infant milk formula (IMF) based control diet. This diet comprised 282 g standard IMF (Nutrilon 1) per kg, with the lipid globule size as mentioned in example 1A. The rest of the diet was AIN-93G protein, carbohydrates and fibre. All lipid present in the diet was derived from the IMF.
      • 2) an IMF based diet of the present invention. This diet differed from diet 1 in that it comprised 282 g IMF of example 1A, i.e. comprised lipid globules larger than the control. All lipid present in the diet was derived from the IMF.


At day 42, all mice switched to a “Western style diet” comprising 10 wt. % lipid until day 126.


The composition of the diets is given in table 4. The fatty acid composition of the two experimental and cafeteria diet is shown in table 5. The fatty acid profile of the two experimental diets was very similar.









TABLE 4







composition of experimental diets per kg











Diet 1,
Diet 2, IMF of
Western



Control IMF
the invention
style diet














Kcal
3922
3922
4016


Lipid (g)
70
70
100


Phospholipids (g)
0.12
5.16
n.d.


Cholesterol (g)
0.00
0.06
1


Digestible
644
644
600


Carbohydrates (g)


Lactose (g)
145.9
145.9
0


Sucrose, glucose (g)
85
85
150


Maltodextrin (g)
360
360
450


Fiber (g)
47.5
47.5
47.5


Protein
179
179
179





n.d. = not determined






The mice were weighed twice a week. The food intake was determined once a week during the entire experiment. To determine body composition (i.e., fat mass (FM) and fat-free mass (FFM)) DEXA scans (Dual Energy X-ray Absorbiometry) were performed under general anesthesia at 6, 10 and 14 weeks of age, 42, 70, 98 and 126 days after birth respectively, by densitometry using a PIXImus imager (GE Lunar, Madison, Wis., USA). At the age of 126 days the male mice were sacrificed and organs were dissected and weighed (i.e. fat tissues, liver, Muscle tibialis). Blood was analyzed for leptin, resistin, and (fasting) insulin.









TABLE 5







Fatty acid composition of the experimental diets











Diet 1,
Diet 2, IMF of
Western



Control IMF
the invention
style diet














C12:0
9.4
8.7
5.3


C14:0
4.4
5.3
2.7


C16:0
18.7
21.3
23.1


C18:0
3.5
5.2
9.0


C18:1 n-9
39.9
37.7
40.5


C18:2 n-6 (LA)
15.7
12.6
11.9


C18:3 n-3 (ALA)
2.4
2.1
1.3


Others
6.0
7.1
6.7


n-6
16.0
12.9
11.9


n-3
2.4
2.1
1.3


n-6/n-3
6.58
6.12
9.1


LA/ALA
6.46
6.00
9.15


SFA
39.3
44.4
41.9


MFA
42.1
39.8
42.3


PUFA
18.3
14.9
13.2









Results

No significant difference regarding growth (body weight) and food intake was observed during the experimental period between the two groups.


A subsequent exposure to a Western style diet between day 42 and day 126 of all groups resulted in clear differences in body composition at the end of the experiment (day 126), see Table 6.


Both the BMC and BMD developed later in life were increased in the mice which had received the diet with the larger lipid globules during their infancy and childhood, compared to mice which had received the control diet. The overall body weight was comparable between the two groups. The experimental group had an increased lean body mass.









TABLE 6







Body weight, lean body mass, bone mineral content


and bone mass density in time in mice receiving


control or experimental diet during infancy.












Diet 1,
Diet 2, IMF of


Parameter
Day
Control IMF
the invention















Bodyweight g
42
23.50
(0.45)
24.24
(0.51)


Mean (s.e.)
70
29.88
(0.46)
30.16
(0.77)



98
33.32
(0.57)
33.69
(0.95)



126
34.47
(0.80)
34.15
(1.16)


Lean body mass g
42
18.96
(0.34)
19.96
(0.40)*


Mean (s.e.)
70
21.31
(0.42)
22.32
(0.48)



98
22.22
(0.49)
23.91
(0.45)*



126
23.30
(0.43)
24.19
(0.53)*


Bone Mineral Content g
42
0.364
(0.005)
0.383
(0.009)


Mean (s.e.)
70
0.436
(0.007)
0.474
(0.013)*



98
0.468
(0.011)
0.501
(0.013)*



126
0.482
(0.000)
0.523
(0.012)*


Bone Mass Density
42
0.046
(0.000)
0.048
(0.001)*


g/cm2
70
0.051
(0.001)
0.053
(0.001)


Mean (s.e.)
98
0.052
(0.001)
0.055
(0.001)



126
0.052
(0.001))
0.055
(0.001)


Fat mass g
42
3.78
(0.13)
3.77
(0.21)


Mean (s.e.)
70
7.84
(0.35)
7.13
(0.65)



98
10.68
(0.53)
9.19
(0.79)*



126
10.48
(0.67)
9.11
(0.90)*


Fat % of body weight
42
16.59
(0.45)
15.83
(0.68)


Mean (s.e.)
70
26.89
(1.07)
23.81
(1.61)



98
32.38
(1.42)
27.25
(1.67)*



126
30.78
(1.42)
26.67
(1.77)*





*P < 0.05 compared to control group






The amount of palmitic acid is 18.7% in control and 21.3% in the experimental group, so it is even higher in the experimental group. About 25% of the fat in the experimental diet is derived from cow's milk fat, having about 37.8% of the palmitic acid in the sn-2 position thus having about 72.2% palmitic acid in the sn-1 and sn-3 position. The vegetable fat has about 7.5% of its palmitic acid residues in the sn-2 position and thus 92.5% in the sn-1 and sn-3 position. So, in the control diet 18.7*0.925=17.3% of the palmitic acid residues are present on the sn-1 and sn-3 positions, based on total fatty acids and in the experimental group (0.25*0.772*21.3)+(0.75*0.925*21.3)=18.1% of the palmitic acid is present in the sn-1 and sn-3 positions based on total fatty acids. Since palmitic acid residues at the sn-1 and sn-3 position are associated with decreased calcium absorption, decreased fat absorption and decreased BMD and/or BMC, it is very surprising that an increased BMD and/or BMC was observed when the experimental diet was taken during early growth.


These results demonstrate that the BMC and/or BMD in later life clearly is increased by an early in life diet with increased lipid globule size. It is concluded that food comprising lipid globules with an altered lipid architecture program and/or imprint the body early in life in such a way that later at life a healthier body composition has developed, with increased BMD and/or BMC, which prevents and/or reduces the risk for osteoporosis. When comparing the outcome of experiment 2 and 3, the effects at day 98 are relatively higher in experiment 3, indicative for a further improved effect when the lipid globules are coated with polar lipids, more preferably milk derived polar lipids.


Interestingly, at the same time the development of fat mass (being not significantly different at day 42, the end of the diet intervention period) the fat mass and relative fat mass developed later in life was reduced in the pups which had received the diet with the larger lipid globules during their infancy and childhood, compared to pups which had received the control diet.


EXAMPLE 4

In parallel an experiment was performed wherein the effects of an IMF with standard vegetable lipid was compared with IMF wherein the lipid component comprises structured triglycerides with an increased amount of palmitic acid in the sn-2 position. From literature it is known that upon using such lipids, less free palmitic acid is formed, resulting in less formation of insoluble calcium palmitate, thereby increasing the bioavailability of calcium and palmitic acid. The experimental set up was similar as in example 3. The tested diets were based on AIN93-G comprising the same carbohydrate and protein component. The diet comprised 7% lipid, wherein diet 1 comprised the palm oil, coconut oil, rapeseed oil, sunflower oil, and high oleic acid sunflower oil. In diet 2 part about 70 wt % of the fat was Betapol 45 (Lipid Nutrition, The Netherlands) a lipid in which about 45% of the palmitic acid is esterified in the sn-2 position of the triglyceride instead of the 7.5% typical for vegetable fats. The fatty acid composition of the diets is very similar, see Table 7.









TABLE 7







Fatty acid composition of the diets










Diet 1, Control IMF
Diet 2, betapol















C12:0
11.5
11.5



C14:0
4.6
4.3



C16:0
17.1
17.1*



C18:0
3.0
2.8



C18:1 n-9
36.0
38.7



C18:2 n-6 (LA)
14.0
14.0



C18:3 n-3 (ALA)
2.6
2.6



Others
11.2
9.3







*Increased fraction position at the sn-2 position of the lipid.






Results are shown in table 8. The diet comprising more palmitic acid on the sn-2 position increased body weight, lean body mass and fat mass on day 42. These effects were maintained later in life. An increase later in life on bone mineral content and bone mineral density was also observed. This differs from the effect of the large lipid globules of example 2 and 3, where a concomitant decrease in fat mass and no effect on overall body weight was observed later in life and wherein the direct diet effects (i.e. effects on day 42) on body weight, lean body mass and fat mass were much less.









TABLE 8







Bone Mineral Content, Bone Mass density,


Fat mass and relative fat mass.











Day
Diet 1
Diet 2
















Body weight g
42
23.8
(0.55)
24.7
(0.63)


Mean (s.e.)
70
26.8
(0.72)
30.3
(0.86)*



98
28.1
90.67)
31.8
(1.49)*


Lean body mass g
42
18.0
(0.81)
20.7
(0.41)


Mean (s.e)
70
20.0
(0.33)
22.7
(0.54)*



98
21.3
90.48)
22.9
(0.77)*


Bone mineral content g
42
0.410
(0.013)
0.411
(0.010)


Mean (s.e.)
70
0.504
(0.008)
0.535
(0.014)



98
0.557
(0.016)
0.583
(0.18)


Bone mineral density
42
0.045
(0.001)
0.046
(0.001)


g/cm2
70
0.053
(0.001)
0.054
(0.001)


mean (s.e.)
98
0.053
(0.001)
0.055
(0.001)


Fat mass g
42
3.7
(0.22)
4.3
(0.14)


Mean (s.e.)
70
5.1
(0.22)
5.9
(0.44)



98
5.1
(0.23)
5.4
(0.62)


Fat % of body weight
42
17.0
(0.39)
17.6
(0.57)


Mean (s.e.)
70
20.3
(0.57)
20.4
(0.91)



98
19.2
(0.78)
18.8
(1.33)





*p < 0.05






EXAMPLE 5
Infant Nutrition with Larger Lipid Globules Size

An infant formula comprising per kg powder 4810 kcal, 255 g lipid, 533 g digestible carbohydrates, 58 g non-digestible oligosaccharides (galacto-oligosaccharides and long chain fructo-oligosaccharides in a weight ratio of 9/1), 96 g protein, and vitamins, minerals, trace elements as known in the art.


The lipid composition is such that 0.57 wt. % of the lipid is composed of phospholipids. The composition comprises about 0.17 wt. % glycosphingolipids based on total lipid. The composition comprises about 0.006 wt. % cholesterol based on total lipids. As a source of phospholipids, glycosphingolipids and cholesterol SM-2 powder (Corman, Goé, Belgium) is used. About 97-98% of the lipid is vegetable lipid, the rest being milk fat, fish oil and microbial oil. The amount of LC-PUFA is about 0.64 wt. % based on total fatty acids. The LA/ALA ratio is 5.2.


Homogenization was performed similar as in example 1. The volumetric mode diameter was above 1 μm. The volume % of lipid globules with a size between 2 and 12 m was above 45% based on total lipid volume.

Claims
  • 1-19. (canceled)
  • 20. A method of increasing bone mass density and/or increasing bone mineral content, comprising administering to a human subject at risk of developing osteoporosis or in need of enhancement of bone formation and/or bone mass maximization, a composition comprising 10 to 50 wt. % vegetable lipids, based on dry weight of the composition, wherein the vegetable lipids are comprised in lipid globules having: i) a volume-weighted mode diameter above 1.0 μm, and/orii) a diameter of 2 to 12 μm in an amount of at least 45 volume % based on total lipid, wherein the increasing bone mass density and/or increasing bone mineral content occurs later in life.
  • 21. The method according to claim 20, wherein the lipid globules have: i) a volume-weighted mode diameter of 1.0-10 μm, and/orii) a diameter of 2 to 12 μm in an amount of at least 55 volume % based on total lipid.
  • 22. The method according to claim 20, wherein the administration is to a human subject between 0 and 36 months of age.
  • 23. The method according to claim 20, wherein the increasing bone mass density and/or increasing bone mineral content occurs in a human subject of 36 months of age or older.
  • 24. The method according to claim 23, wherein the increasing bone mass density and/or increasing bone mineral content occurs in a human subject above 5 years of age.
  • 25. The method according to claim 24, wherein the composition comprises 0.5-10 wt. % phospholipids, based on total lipid.
  • 26. The method according to claim 25, wherein the phospholipids are derived from milk lipids.
  • 27. The method according to claim 20, wherein the composition comprises glycosphingolipids, cholesterol, or both.
  • 28. The method according to claim 27, wherein the composition comprises 0.6 to 12 wt. % polar lipids based on total lipid, wherein the polar lipids are the sum of phospholipids, glycosphingolipids and cholesterol.
  • 29. The method according to claim 27, wherein the composition comprises glycosphingolipids.
  • 30. The method according to claim 20, wherein the composition comprises gangliosides.
  • 31. The method according to claim 20, wherein the composition comprises sphingomyelin.
  • 32. The method according to claim 21, wherein the lipid globules have a volume-weighted mode diameter of 4.0 μm or above.
  • 33. The method according to claim 32, wherein at least 75 volume % of the lipid globules have a diameter between 4 to 10 μm, based on total lipid.
  • 34. The method according to claim 21, wherein the lipid globules have a diameter of 2 to 12 μm in an amount of at least 75 volume % based on total lipid.
  • 35. The method according to claim 34, wherein at least 75 volume % of the lipid globules have a diameter between 4 to 10 μm, based on total lipid.
  • 36. The method according to claim 20, wherein the composition has a fatty acid profile with a linoleic acid to alpha-linolenic acid weight ratio between 4 and 7.
  • 37. The method according to claim 20, wherein the lipids comprise at least 16 wt. % palmitic acid based on total fatty acids.
  • 38. The method according to claim 37, wherein over 75 wt. % of the palmitic acid is in the sn-1 or sn-3 position.
  • 39. The method according to claim 20, wherein the composition further comprises at least one lipid selected from the group consisting of fish oil, marine oil, algal oil, fungal oil and microbial oil.
  • 40. The method according to claim 20, wherein the composition further comprises non-digestible oligosaccharides.
  • 41. The method according to claim 20, wherein the composition is a powder suitable for making a liquid composition after reconstitution with an aqueous solution.
  • 42. The method according to claim 41, wherein the aqueous solution is water.
  • 43. A method of treating osteoporosis and/or ostopenia, comprising administering to a human subject at risk of developing osteoporosis and/or ostopenia a composition comprising 10 to 50 wt. % vegetable lipids, based on dry weight of the composition, wherein the vegetable lipids are comprised in lipid globules having: i) a volume-weighted mode diameter above 1.0 μm, and/orii) a diameter of 2 to 12 μm in an amount of at least 45 volume % based on total lipid.
  • 44. The method according to claim 43, wherein the lipid globules have: i) a volume-weighted mode diameter of 1.0-10 μam, and/orii) a diameter of 2 to 12 μm in an amount of at least 55 volume % based on total lipid.
  • 45. A method of treating obesity, comprising administering to a human subject at risk of developing obesity a composition comprising 10 to 50 wt. % vegetable lipids, based on dry weight of the composition, wherein the vegetable lipids are comprised in lipid globules having: i) a volume-weighted mode diameter above 1.0 μm, and/orii) a diameter of 2 to 12 μm in an amount of at least 45 volume % based on total lipid.
  • 46. A nutritional composition comprising 10 to 50 wt. % vegetable lipids based on dry weight of the composition and 0.6 to 12 wt. % polar lipids based on total lipid weight, wherein the polar lipids are phospholipids, glycosphingolipids and cholesterol, and wherein the vegetable lipids are comprised in lipid globules having: i) a volume-weighted mode diameter above 1.0 μm, and/orii) a diameter of 2 to 12 μm in an amount of at least 45 volume % based on total lipid.
Priority Claims (1)
Number Date Country Kind
PCT/NL2008/050792 Dec 2008 NL national
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/133,929, filed Aug. 25, 2011, which is a National Stage Application of PCT/NL09/50756, filed Dec. 11, 2009, which claims priority to International Application No. PCT/NL2008/050792, filed Dec. 11, 2008, the disclosure of which have been incorporated by reference herein in their entirety.

Continuations (1)
Number Date Country
Parent 13133929 Aug 2011 US
Child 13914405 US