A General Synthesis of Terminal and Internal Arylalkynes by the Palladium-Catalyzed Reaction of Alkynylzinc Reagents with Aryl Halides by Anthony O. King and Ei-ichi, J. Org. Chem., (1978) 43/2: p. 358. |
Conversion of Methyl Ketones into Terminal Acetylenes and (E)-Tri-substituted Olefins of Terpenoid Origin by Ei-ichi, et al., J. Org. Chem., (1980) 45/12: p. 2526. |
Sporn et al. in J. Amer. Acad. Derm.., (1986) 15:756-764. |
“A Convenient Synthesis of Ethynylarenes and Diethynylarenes” by S. Takahashi et al. Synthesis (1980) p.627-630. |
Shudo et al. in Chem. Phar. Bull., (1985) 33:404-407. |
Kagechika et al. in J. Med. Chem., (1988) 31:2182-2192. |
Chemistry and Biology of Synthetic Retinoids by Marcia I. Dawson and William H. Okamura, published by CRC press Inc., 1990, p.334-335, 354. |
Synthesis of 2,2′-Diacyl-1,1′-Biaryls. Regiocontrolled Protection of . . . by Mervic, et al, J. Org. Chem.,(1980) No. 45, p.4720-4725. |
A Dopamine Receptor Model and Its Application in the Design of a New Class of Rigid Pyrrolo[2,3-g]isoquinoline Antipsychotics, Gary L. Olson et al. American Chemical Societe, (1981) 24/9:1026-1031. |
6.2.3 Conformational Restriction, Williams, et al., Drug Discovery and Development, The Humana Press, (1987) pp. 54-55. |
V. Retinoid Structure-Biological Activity Relationships, Chemistry and Biology of Synthetic Retinoids, (1990) pp. 324-356. |
Davis et al. J. Organomettalic Chem (1990) 387:381-390. |
“Effects of 13-Cis-Retinoic Acid, All Trans-Retinoic Acid, and Acitretin on the Proliferation, Lipid Synthesis and Keratin Expression of Cultured Human Sebocytes in Vitro” C.C. Zouboulis, The Journal of Investigative Dermatology, (1991) 96/5:792-797. |
“Organ Maintenance of Human Sebaceous Glands: in Vitro Effects of 13-Cis Retinoic Acid and Testosterone”, John Ridden, et al., Journal of Cell Science (1990) 95:125-136. |
“Characterization of Human Sebaceous Cells in Vitro”, Thomas I. Doran, et al. The Journal of Investigative Dermatology, (1991) 96/3:. |
“Synthesis and Evaluation of Stilbene and Dihydrostilbene Derivatives as Potential Anticancer Agents That Inhibit Tubulin Polymerization” by Cushman, Mark et al. J. Med. Chem., (1991), 34:2579-2588. |
“Synthesis and Evaluationof New Pretoein Tyrosine Kinase Inhibitors. Part 1. Pyridine-Containing Stilbenes and Amides” by Cushman, Mark et al. Bioorganic & Medicinal Chemistry Letters, (1991) 1/4:211-214. |
“Di- and Tri-methoxystyryl Derivatives of Heterocyclic Nitrogen Compounds” by Bahner,C. T. et al. Arzneim-Forsch./Drug Res, (1981)31 (I), Nr. 3. |
“Retinobenzoic acids. 3. Structure-Activity Relationships of Retinoidal Azobenzene-4-Carboxylic Acids and Stilbene-4- Carboxylic Acids” by H. Kagechika et al., Journal of Medicinal Chemistry, (1989), 32:1098-1108. |
Eyrolles, L. et al. “Retinoid Antagonists: Molecular Design Based on the Ligand Superfamily Concept” Med. Chem. Res., (1992) 2:361-367. |
Liu, S. S. et al. “Systemic Pharmacokinetics of Acetylenic Retinoids in Rats”, Drug Metabolism and Disposition, (1990) 18/6: 1071-1077. |
Chemical Abstracts, vol. 122, No. 13,Mar. 27, 1995 abstract No. 151373m, (S. Kaku et al.). |
Chemical Abstracts, vol. 117, No. 13, Sep. 28, 1992 abstract No. 124091j, (S. Sun et al.). |
European Journal of Biochemistry, vol. 212, No. 1, 1993, Berlin, pp. 13-26, XP000618300 (S. Keidel et al.). |
Journal of Medicinal Chemistry, vol. 39, No. 16, Aug. 2, 1996, pp. 3035-3038, Min Teng et al. |
Journal of Medicinal Chemistry, vol. 37, No. 10, May 13, 1994, pp. 1508-1517, Laurence Eyrolles. |
Biochemical and Biophysical Research Communications, vol. 155, No. 1, 1988, pp. 503-508. |
Chemical Abstracts, vol. 121, No.9, 1994. |
Database WPI, Section CH, Week 9416, Derwent Publications Ltd. London, GB; Class B05, AN 94-128759 and JP 6078266A, see English language abstract in Derwent. |
Journal of Medicinal Chemistry, vol. 38, No. 16, Aug. 4, 1995, pp. 3163-3173. |
Weiner, et al., “A phase I trial of topically applied trans -retinoic acid in cervical dysplasia-clinical efficacy”, Investigational New Drugs, 4:241-244, 1996. |
Jones, et al., “A dose-response study of 13-cis-retinoic acid in acne vulgaris”, British Journal of Dermatology, (1983) 108, 333-343. |
Fekrat, et al., “The Effect of Oral 13-cis-retinoic Acid on Retinal Redetachment after Surgical Repair in Eyes with Proliferative Vitreoretinopathy”, Opthalmology, vol. 102, No. 3 (Mar. 1995), pp. 412-418. |
Nagpal, et al., “Separation of Transactivation and AP1 Antagonism Functions of Retinoic Acid Receptor α”, The Journal of Biological Chemistry, 270/2(1995): 923-927. |
Allegretto, et al., “Transactivation Properties of Retinoic Acid and Retinoid X Receptors in Mammalian Cells and Yeast”, The Journal of Biological Chemistry, vol. 268, No. 35 (Dec. 15, 1993), pp. 26625-26633. |
Gruapner, et al., “6′-Substituted Naphthalene-2-Carboxylic Acid Analogs, A New Class of Retinoic Acid Receptor Subtype-Specific Ligands,” Biochemical and Biophysical Research Communications, vol. 179, No. 3 (Sep. 30, 1991), pp. 1554-1561. |
Moore, et al., “Retinoic Acid and Interferon in Human Cancer: Mechanistic and Clinical Studies,” Seminars in Hematology, 31/4, Suppl 5 (Oct. 1994), pp. 31-37. |