Obfuscated performance of a predetermined function

Information

  • Patent Grant
  • 10944545
  • Patent Number
    10,944,545
  • Date Filed
    Monday, March 31, 2014
    10 years ago
  • Date Issued
    Tuesday, March 9, 2021
    3 years ago
  • Inventors
    • Wiener; Michael
  • Original Assignees
  • Examiners
    • Dada; Beemnet W
    • Choy; Ka Shan
    Agents
    • Rimon PC
    • Kaufman; Marc
Abstract
A method of obfuscated performance of a predetermined function, wherein for the predetermined function there is a corresponding plurality of first functions so that, for a set of inputs for the function, a corresponding set of outputs may be generated by (a) representing the set of inputs as a corresponding set of values, wherein each value comprises at least part of each input of a corresponding plurality of the inputs, (b) generating a set of one or more results from the set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the set of values, and (c) forming each output as either a part of a corresponding one of the results or as a combination of at least part of each result of a corresponding plurality of the results; wherein the method comprises: obtaining, for each value in the set of values, one or more corresponding transformed versions of said value, wherein a transformed version of said value is the result of applying a bijection, that corresponds to said transformed version, to said value; and generating a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying a second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values of the respective set of one or more values for the corresponding first function.
Description

The present application is the United States national stage of International Application No. PCT/EP2014/056421, filed Mar. 31, 2014, the entire content of which is incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to a method of obfuscated performance of a predetermined function and a method of configuring a processor to implement a predetermined function in an obfuscated manner, and apparatus and computer programs for carrying out such methods.


BACKGROUND OF THE INVENTION

A “white box environment” is an execution environment in which a person can execute an amount of computer code (or software)—where the code implements a function F—and the person may inspect and modify the code (or be assumed to know the underlying algorithm that is being implemented) and/or, during execution of the code, the person may inspect and modify the values of data being used (i.e. the contents of the memory being used), the data flow and the process flow (or order of execution of instructions in the code).


Various techniques are known that enable provision or generation of code (that implements the function F) such that, even if the code is executed in a white-box environment, the person executing the code cannot determine the values of inputs to the function F and/or outputs of the function F and/or secret information used by the function F (or, at the very least, such a determination is rendered impractical or infeasible within a given amount of time).


It would be desirable to be able to provide an improved technique for providing or generating code that is suitable for deployment or execution within a white-box environment.


SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided a method of obfuscated performance of a predetermined function, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs for the function, a corresponding set of outputs may be generated by (a) representing the set of inputs as a corresponding set of values, wherein each value comprises at least part of each input of a corresponding plurality of the inputs, (b) generating a set of one or more results from the set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the set of values, and (c) forming each output as either a part of a corresponding one of the results or as a combination of at least part of each result of a corresponding plurality of the results; wherein the method comprises: obtaining, for each value in the set of values, one or more corresponding transformed versions of said value, wherein each transformed version of said value is the result of applying a respective bijection, that corresponds to said transformed version, to said value; and generating a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying a respective second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values in the set of one or more values corresponding to the first function, wherein, for the respective second function, there is a corresponding bijection for obtaining the respective result from said transformed result.


In some embodiments, said obtaining comprises: obtaining the set of values; and generating, for each value in the obtained set of values, said one or more corresponding transformed versions of said value, wherein each of said one or more corresponding transformed versions of said value is generated by applying said respective bijection, that corresponds to said transformed version, to said value. Obtaining the set of values may then comprise: obtaining the set of inputs; and generating the set of values from the set of inputs.


In some embodiments, said obtaining comprises receiving, at a first module that performs said obtaining and said generating, said one or more transformed versions of each value in said set of values from a second module.


In some embodiments, the method comprises: generating the set of results from the set of transformed results by applying, to each transformed result, the bijection that corresponds to the second function for that transformed result. The method may then comprise obtaining the set of outputs from the set of results.


In some embodiments, the method comprises outputting the set of transformed results, from a first module that performs said obtaining and said generating to a second module.


In some embodiments, for each value in the set of values, the at least part of each input of a corresponding plurality of the inputs comprises the whole of each input of the corresponding plurality of inputs.


In some embodiments, for each value in the set of values, the at least part of each input of a corresponding plurality of the inputs comprises a predetermined number of bits of each input of the corresponding plurality of inputs. The predetermined number may be 1.


In some embodiments, the predetermined function corresponds to a lookup table that maps an input in the set of inputs to a corresponding output in the set of outputs.


According to a second aspect of the invention, there is provided a method of configuring a processor to implement a predetermined function in an obfuscated manner, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs for the function, a corresponding set of outputs may be generated by (a) representing the set of inputs as a corresponding set of values, wherein each value comprises at least part of each input of a corresponding plurality of the inputs, (b) generating a set of one or more results from the set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the set of values, and (c) forming each output as either a part of a corresponding one of the results or as a combination of at least part of each result of a corresponding plurality of the results; wherein the method comprises: for each first function: specifying, for each value in the corresponding set of one or more values for the first function, a corresponding bijection; specifying a bijection for the first function; and based on the specified bijections, determining a second function that corresponds to the first function, wherein the second function, upon application to the one or more values of the respective set of one or more values for the first function when transformed under their corresponding bijections, outputs a transformed version, under the bijection for the first function, of the result corresponding to the first function; and configuring the processor to carry out the method of the above first aspect of the invention, using the determined section functions.


According to a third aspect of the invention, there is provided an apparatus arranged to carry out any one of the above methods.


According to a fourth aspect of the invention, there is provided a computer program which, when executed by a processor, causes the processor to carry out any one of the above methods. The computer program may be stored on a computer-readable medium.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 schematically illustrates an example of a computer system;



FIG. 2 schematically illustrates functions or operations involved in, and the flow of data for, the performance of a function F when carrying out the method of FIG. 3;



FIG. 3 is a flowchart illustrating a method for performance of the function F;



FIG. 4 schematically illustrates an example relationship between a set of inputs {x1, x2, . . . , xW} and a set of values {p1, . . . , pM};



FIGS. 5a-5c schematically illustrate how the method of FIG. 3 can be applied when the function F is a lookup table;



FIG. 6 schematically illustrates the relationship between various sub-functions when implementing an example function using the method of FIG. 3;



FIGS. 7a and 7b schematically illustrate how the method of FIG. 3 can be applied when the function F is a finite impulse response filter; and



FIG. 8 schematically illustrates a method for performing (or implementing) the function F in an obfuscated form according to embodiments of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the description that follows and in the figures, certain embodiments of the invention are described. However, it will be appreciated that the invention is not limited to the embodiments that are described and that some embodiments may not include all of the features that are described below. It will be evident, however, that various modifications and changes may be made herein without departing from the broader spirit and scope of the invention as set forth in the appended claims.


1—System Overview


FIG. 1 schematically illustrates an example of a computer system 100. The system 100 comprises a computer 102. The computer 102 comprises: a storage medium 104, a memory 106, a processor 108, an interface 110, a user output interface 112, a user input interface 114 and a network interface 116, which are all linked together over one or more communication buses 118.


The storage medium 104 may be any form of non-volatile data storage device such as one or more of a hard disk drive, a magnetic disc, an optical disc, a ROM, etc. The storage medium 104 may store an operating system for the processor 108 to execute in order for the computer 102 to function. The storage medium 104 may also store one or more computer programs (or software or instructions or code).


The memory 106 may be any random access memory (storage unit or volatile storage medium) suitable for storing data and/or computer programs (or software or instructions or code).


The processor 108 may be any data processing unit suitable for executing one or more computer programs (such as those stored on the storage medium 104 and/or in the memory 106), some of which may be computer programs according to embodiments of the invention or computer programs that, when executed by the processor 108, cause the processor 108 to carry out a method according to an embodiment of the invention and configure the system 100 to be a system according to an embodiment of the invention. The processor 108 may comprise a single data processing unit or multiple data processing units operating in parallel or in cooperation with each other. The processor 108, in carrying out data processing operations for embodiments of the invention, may store data to and/or read data from the storage medium 104 and/or the memory 106.


The interface 110 may be any unit for providing an interface to a device 122 external to, or removable from, the computer 102. The device 122 may be a data storage device, for example, one or more of an optical disc, a magnetic disc, a solid-state-storage device, etc. The device 122 may have processing capabilities—for example, the device may be a smart card. The interface 110 may therefore access data from, or provide data to, or interface with, the device 122 in accordance with one or more commands that it receives from the processor 108.


The user input interface 114 is arranged to receive input from a user, or operator, of the system 100. The user may provide this input via one or more input devices of the system 100, such as a mouse (or other pointing device) 126 and/or a keyboard 124, that are connected to, or in communication with, the user input interface 114. However, it will be appreciated that the user may provide input to the computer 102 via one or more additional or alternative input devices (such as a touch screen). The computer 102 may store the input received from the input devices via the user input interface 114 in the memory 106 for the processor 108 to subsequently access and process, or may pass it straight to the processor 108, so that the processor 108 can respond to the user input accordingly.


The user output interface 112 is arranged to provide a graphical/visual and/or audio output to a user, or operator, of the system 100. As such, the processor 108 may be arranged to instruct the user output interface 112 to form an image/video signal representing a desired graphical output, and to provide this signal to a monitor (or screen or display unit) 120 of the system 100 that is connected to the user output interface 112. Additionally or alternatively, the processor 108 may be arranged to instruct the user output interface 112 to form an audio signal representing a desired audio output, and to provide this signal to one or more speakers 121 of the system 100 that is connected to the user output interface 112.


Finally, the network interface 116 provides functionality for the computer 102 to download data from and/or upload data to one or more data communication networks.


It will be appreciated that the architecture of the system 100 illustrated in FIG. 1 and described above is merely exemplary and that other computer systems 100 with different architectures (for example with fewer components than shown in FIG. 1 or with additional and/or alternative components than shown in FIG. 1) may be used in embodiments of the invention. As examples, the computer system 100 could comprise one or more of: a personal computer; a server computer; a mobile telephone; a tablet; a laptop; a television set; a set top box; a smartcard; a games console; other mobile devices or consumer electronics devices; etc.


2—Implementation, and Performance, of a Predetermined Function

As will be described in more detail below, embodiments of the invention involve, or relate to, a predetermined function F. The function F may be any function (or operation or procedure or mapping or calculation or algorithm) that is arranged to operate on (or process) one or more inputs to generate a corresponding output. Some specific examples of the function F are provided later, but it will be appreciated that embodiments of the invention are not limited to the specific examples discussed below.


As shall be described in more detail below, the function F is a function for which one or more corresponding functions (referred to herein as “sub-functions” for ease of reference) F1, . . . , FN can be defined so that, for a set of inputs {x1, . . . , xW} for the function F, a set of outputs {y1, . . . , yV} from the function F that corresponds to the set of inputs {x1, . . . , xW} may be generated by:


(a) representing the set of inputs {x1, . . . , xW} as a corresponding set of values {p1, . . . , pM}, wherein each value pj (j=1, . . . , M) comprises at least part of each input of a corresponding plurality of the inputs;


(b) generating a set of one or more results {q1, . . . , qN} from the set of values {p1, . . . , pM}, by applying each sub-function Fj (j=1, . . . , N) to a corresponding set of one or more values in the set of values {p1, . . . , pM} to generate a respective result qj; and


(c) forming each output yi as either a part of a corresponding one of the results or as a combination of at least part of each result of a corresponding plurality of the results.


Thus, in the description below, the following terminology is used:

    • xi: An input for the function F and, in particular, the ith input in a set of inputs {x1, . . . , xW}.
    • W: The number of inputs for the function F to be processed together according to embodiments of the invention. W is an integer greater than 1.
    • yi: An output from the function F and, in particular, the ith output in a set of outputs {y1, . . . , yV} from the function F that corresponds to the set of inputs {x1, . . . , xW}.
    • V: The number of outputs from the function F that correspond to the set of inputs {x1, . . . , xW} for the function F. V is an integer greater than or equal to 1.
    • pj: A value generated from the set of inputs {x1, . . . , xW} for the function F and, in particular, the jth value in a set of values {p1, . . . , pM} generated from the set of inputs {x1, . . . , xW}.
    • M: The number of values generated from the set of inputs {x1, . . . , xW} for the function F. M is an integer greater than 1.
    • qj: A result generated from one or more values in the set of values {p1, . . . , pM} via a corresponding sub-function Fj and, in particular, the jth result in a set of results {q1, . . . , qN}.
    • N: The number of results generated from the set of values {p1, . . . , pM}. N is an integer greater than or equal to 1.
    • Fj: The sub-function used to generate the jth result qj. Whilst the term “sub-function” is used herein, it will be appreciated that Fj is a function in its own right and is not necessarily a subroutine or a specific part of the predetermined function F.


In some embodiments, V=W, and yi=F(xi) for i=1, . . . , W. In other embodiments, the function F is arranged to process a number of inputs together to form a single output. As one example, the function F may have three input parameters (or operands), so that y1=F(x1, x2, x3), y2=F(x4, x5, x6), y3=F(x7, x8, x9), . . . , in which case V=W/3; as another example, the function F may have two input parameters (or operands), so that y1=F(x1, x2), y2=F(x2, x3), y3=F(x3, x4), . . . , in which case V=W−1. It will be appreciated that other relationships between the outputs yi and the inputs xi (and, therefore, other relationships between W and V) exist and embodiments of the invention are not limited to any specific relationships.


In some embodiments, the operation/processing performed for the function F is the same regardless of which input(s) xi is provided to the function F. For example, in the exemplary function above in which yi=F(xi) for i=1, . . . , W, the output yi may be calculated based on xi independent of the index i—i.e. for 1≤i<k≤W, yi=F(xi)=F(xj)=yj if xi=xj. Similarly, in the exemplary function above in which y1=F(x1, x2), y2=F(x2, x3), y3=F(x3, x4), . . . , the output yi may be calculated based on xi and xi+1 independent of the index i—i.e. for 1≤i<k<W, yi=F(xi, xi+1)=F(xj, xj+1)=yj if xi=xj and xi+1=xj+1. However, in other embodiments, the operation/processing performed for the function F may be different depending on which input(s) xi is provided to the function F. This may be viewed as the operation/processing performed for the function F being dependent on the index i. For example the function F may be defined as yi=F(xi)=xi+i for i=1, . . . , W. Similarly, the function F may be defined as yi=F(xi, xi+1)=ixi−3+(xi+1+i)/2. Similarly, the function F may be defined as yi=F(xi, xi+1)=Mixi+Mi+1xi+1 where Mi and Mi+1 are matrices for multiplication with input vectors xi and xi+1. Other examples of such functions are, of course, possible.


As shall be described later, all computer-implemented functions F can be implemented in the manner set out above, so that embodiments of the invention are applicable to all predetermined computer-implemented functions F.


Embodiments of the invention are described below now with reference to FIGS. 2 and 3. FIG. 3 is a flowchart illustrating a method 300 for performance of the function F, and FIG. 2 schematically illustrates functions or operations involved in, and the flow of data for, the performance of the function F when carrying out the method 300.


The method 300 begins at a step 302, at which a set of inputs {x1, x2, . . . , xW} is obtained. The set of inputs {x1, x2, . . . , xW} may be obtained, at least in part, by receiving one or more of the inputs for the set of inputs {x1, x2, . . . , xW}—for example, a first module that is implementing the step 302 may have one or more of the inputs xi for the set of inputs {x1, x2, . . . , xW} provided to it from a second module as inputs to the first module. Additionally or alternatively, the set of inputs {x1, x2, . . . , xW} may be obtained, at least in part, by accessing or retrieving one or more of the inputs for the set of inputs {x1, x2, . . . , xW}—for example, a module that is implementing the step 302 may access or read one or more of the inputs xi from a memory (such as the memory 106). Thus, the term “obtain” as used herein shall be taken to mean “receive” (or “have provided” in a “passive” way) or “access” (or “retrieve” or “read” in more of an “active” way) or a combination of both receiving and accessing.


For the set of inputs {x1, x2, . . . , xW}, W is an integer greater than 1—thus, a plurality of inputs x1, x2, . . . , xW is obtained.


One or more of the inputs x1, x2, . . . , xW may be obtained separately (for example, the inputs x1, x2, . . . , xW may be obtained one at a time, so that, for example, input xi+1 is obtained after input xi for i=1, . . . , W−1). Additionally or alternatively, two or more of the inputs x1, x2, . . . , xW may be obtained together as a group (for example, the inputs x1, x2, . . . , xW may be obtained as a single amount of data comprising the whole set {x1, x2, . . . , xW}, for example by accessing or reading a block of memory that is storing the plurality of inputs x1, x2, . . . , xW). It will be appreciated that the inputs x1, x2, . . . , xW may be obtained in other ways/groupings.


Each input x1, x2, . . . , xW is a value (or quantity or data element or operand) that is a suitable operand or parameter for the function F. For example, if the function F is to process K-bit integers, then each of the inputs x1, x2, . . . , xW is a K-bit integer.


The set of inputs {x1, x2, . . . , xW} will be processed together, so that a corresponding set of outputs {y1, y2, . . . , yV} can be obtained (or determined or calculated), as will become apparent from the description below. Here, the number of outputs, V, generated from the set of inputs {x1, x2, . . . , xW} is an integer greater than or equal to 1. In some embodiments, V=W; in other embodiments, V≠W.


As used herein, the term “set” means a group or collection of elements in a particular order for example, the set {x1, x2, x3, x4, . . . , xW} is different from the set {x2, x1, x3, x4, . . . , xW} if x1 is different from x2. Thus, a set (as used herein) may be viewed as a vector or sequence or list or array of elements, i.e. the elements of the set are in particular order (the order being represented by the index/subscript).


Next, at a step 304, a set of values {p1, . . . , pM} is generated from the set of inputs {x1 . . . , xW}. Here, M is an integer greater than 1, so that a plurality of values p1, . . . , pM is generated from the set of inputs {x1, . . . , xW}.


At the step 304, the set of values {p1, . . . , pM} is generated according to {p1, . . . , pM}=D({x1, . . . , xW}), where D is an invertible function that maps a set of W inputs xi to a set of M values. Herein, the function D shall be referred to as the “distribution function”. In particular, the function D is a predetermined function that has the property that each value pj (j=1, . . . , M) comprises at least part of each input of a corresponding plurality of the inputs. Put another way, for each value pj (j=1, . . . , M), there is a corresponding set of mj distinct indices {αj,1, . . . , αj,mj} (where 1≤αj,k≤W for 1≤k≤mj and where mj>1) such that pj comprises at least part of each of







x

α

j
,
1



,





,


x

α

j
,

m
j




.






Thus,







p
j

=


D
j



(


x

α

j
,
1



,





,

x

α

j
,

m
j





)







for a function Dj that corresponds to (or defines, at least in part) the distribution function D. For value pj (j=1, . . . , M), the at least part of the kth input that belongs to the corresponding set of mj inputs (i.e. input xαj,k) shall be denoted as part Sj,k (1≤k≤mj). This is described in more detail below.


For each value pj (j=1, . . . , M), the corresponding plurality of inputs







x

α

j
,
1



,





,

x

α

j
,

m
j









may be any 2 or more of the inputs x1, . . . , xW and, in particular, the corresponding plurality of the inputs may be all of the set of inputs {x1, . . . , xW} (so that mj=W) or a proper subset of the set of inputs {x1, . . . , xW} (so that mj<W). The number mj of inputs in the corresponding plurality of inputs may differ between values pj. Thus, in some embodiments, mj1=mj2 for all 1≤j1<j2≤M; in other embodiments, there are indices j1 and j2 for which mj1≠mj2.


For each value pj(j=1, . . . , M), the part Sj,k of the kth input that belongs to the corresponding set of mj inputs (i.e. of input xαj,k) may be any part of that input xαj,k and, in particular, may be all of that input xαj,k or a part of that input xαj,k (e.g. one bit or a plurality of bits, which may or may not be adjacent in the bit-representation of that input xαj,k). Additionally, the parts Sj,k1 and Sj,k2 of the kith and k2th inputs respectively that belong to the corresponding set of mj inputs (i.e. of inputs








x

α

j
,

k
1









and






x

α

j
,

k
2





)





may be defined as the same parts of their respective inputs, or may be different parts of their respective inputs.



FIG. 4 schematically illustrates an example relationship between the set of inputs {x1, x2, . . . , xW} and the set of values {p1, . . . , pM}. In this example, W=3 (so that there are three inputs xi), M=4 (so that there are four values pj that are generated at the step 304), and each of the inputs is an 8-bit number. As can be seen:

    • The input x1 has three parts S1,1, S2,3 and S3,3 which contribute, respectively, to values p1, p2 and p3. Thus, x1 is an example of an input that does not contribute to all of the values pj (as it does not contribute to the value p4).
    • The input x2 has four parts S2,1, S1,2, S4,2 and S3,2 which contribute, respectively, to values p2, p1, p4 and p3. Thus, x2 is an example of an input that does contribute to all of the values pj. In FIG. 4, the part S1,2 is shown as being made up of two sections S1,2a and S1,2b—the reason for this is described shortly.
    • The input x3 has four parts S2,2, S4,1, S3,1 and S1,3 which contribute, respectively, to values p2, p4, p3 and p1. Thus, x3 is another example of an input that does contribute to all of the values pj. Note that the part S3,1 is not a contiguous part of x3—thus, in FIG. 4, the part S3,1 is illustrated as being formed from two separated sections of x3 (labeled S3,1a and S3,1b). It will be appreciated that a part Sj,k may be made up of any number of separated sections of an input xi.
    • The value p1 is formed from the parts S1,1, S1,2 and S1,3. In FIG. 4, the parts S1,1, S1,2 and S1,3 and not simply concatenated in order to form the value p1—for example, the part S1,2 is split into two sections S1,2a and S1,2b which are separated from each other (by the part S1,3) when forming the value p1. It will be appreciated that a part Sj,k may be separated into any number of separated sections when forming a value pj.
    • The value p2 is formed from the parts S2,1, S2,2 and S2,3.
    • The value p3 is formed from the parts S3,1, S3,2 and S3,3 (where the part S3,1 is made up of sections S3,1a and S3,1b of the input x3).
    • The value p4 is formed from the parts S4,1 and S4,2. Thus, the value p4 is an example of a value pj that does not receive contribution from all of the inputs xi.


Each part Sj,k is some or all of one of the inputs xi. If the part Sj,k is all of the input xi, then Sj,k=xi. Alternatively, if the part Sj,k is only some of the input xi, then this means that, given a representation (e.g. binary, decimal, hexadecimal, etc.) of the input xi, then Sj,k comprises some of the symbols in that representation (e.g. some of the bits, or some of the decimal or hexadecimal values/symbols, of the representation). For example, with reference to FIG. 4, the input x1 is an 8-bit value that assumes the value 37 and so has a binary representation of (00100101)—then a part may be one or more of these particular bits (e.g. “0010” taken as the first four bits to form the part S1,1, or “01” taken as the last two bits to form the part S2,3, or indeed, “111” taken as the 3rd, 6th and 8th bits to form a different part, etc.). Thus, a part Sj,k of an input xi may be viewed as comprising one or more components or elements or sections or symbols of a representation of that input xi.


Whilst FIG. 4 illustrates the parts of an input xi as not overlapping each other, it will be appreciated that two or more of the parts of an input xi could overlap each other, i.e. a part Sj1,k1 of the input xi that is used to form the value pj1 may overlap (or even be identical to) a part Sj2,k2 of the input xi that is used to form the value pj2.


Each value pj (j=1, . . . , M) is formed from its respective parts Sj,k (k=1, . . . , mj) by combining those parts, for example by concatenation/merging/mixing/etc. As will be described later (with reference to the examples shown in FIGS. 7a and 7b), a value pj may comprise additional components/data, in addition to the parts Sj,k (k=1, . . . , mj). For example, the value pj may comprise one or more “spacer bits” (which could be initially set to 0) in front of one or more (potentially all) of the parts Sj,k (k=1, . . . , mj)—such spacer bits enable calculations to be performed on the value pj with room inherently built in for carry bits (for example, if two values pj1 and pj2 are to be added together).


Some specific examples of the distribution function D (and therefore the functions Di) shall be provided later, and it will be appreciated that embodiments of the invention are not limited to the specific examples discussed below. However, to help the understanding at this stage, an example of the distribution function D is as follows:

    • Assume each input xi (i=1, . . . , W) is an M-bit value, so that the binary representation of input xi is bi,1bi,2 . . . bi,M for bits bi,j.
    • The value pj (j=1, . . . , M) is obtained by concatenating the jth bits of the inputs xi (i=1, . . . , W), so that, for example, the binary representation of value pj is b1,jb2,j . . . bW,j (although it will be appreciated that other orderings are possible and the orderings may vary between values pj).
    • Hence, the function Dj is defined by pj=D(x1, . . . , xW)=b1,jb2,j . . . bW,j.
    • In this case, mj=W and αj,k=k for j=1, . . . , M and k=1, . . . , W.
    • Thus, in this example of the distribution function D, for each value pj (j=1, . . . , M), the corresponding plurality of the inputs is the full set of inputs x1, . . . , xW, and the part Sj,k taken from the kth input xαj,k in the corresponding plurality of the inputs is the kth bit of that input xαj,k.


It will be appreciated that, at the step 304, the set of values {p1, . . . , pM} is a representation of the set of inputs {x1, . . . xW}, the representation being according to the distribution function D. A value pj may be generated as an amount of data (e.g. in the memory 106) distinct from the set of inputs {x1, . . . , xW} (so that the value pj is stored in addition to the set of inputs {x1, . . . , xW} and at a distinct address in memory from the set of inputs {x1, . . . , xW}). However, it will be appreciated that the module implementing the step 304 may determine (or generate) a value pj from the existing amounts of data already being stored to represent the set of inputs {x1, . . . , xW}, for example by specifying that value pj is made up from amounts of data at specific memory addresses, where those memory address store the respective parts of the relevant inputs xi (in which case these specific memory addresses implicitly define or represent the distribution function D). Thus, when the value pj is subsequently used, the module making use of the value pj could simply refer to the specific memory addresses that store the respective parts of the relevant inputs xi—in this case, the step of explicitly generating the values pj may be omitted, as that module implicitly uses values pj by virtue of using the correct memory addresses.


Thus, the step 304 may be viewed as a step (either implicit or explicit) of representing the set of inputs {x1, . . . , xW} as the set of values {p1, . . . , pM}.


Next, at a step 306, a set of results {q1, . . . , qN} is generated from the set of values {p1, . . . , pN}. Here, N is an integer greater than or equal to 1.


In particular, for j=1, . . . , N, there is a corresponding set of nj distinct indices {βj,1, . . . , βj,nj} (where 1≤βj,k≤M for 1≤k≤nj, and nj≤1) so that qj is calculated as a function of the set of nj values







p

β

j
,
1



,





,

p

β

j
,

n
j









according to a predetermined function Fj, i.e.







q
j

=



F
j



(


p

β

j
,
1



,





,

p

β

j
,

n
j





)


.






Here, the function Fj corresponds to (or defines, at least in part) the function F—thus, the function Fj may be viewed as a sub-function corresponding to the function F.


Examples of how the functions F1, . . . , FN are defined and used shall be given later.


Next, at a step 308, the set of outputs {y1, . . . , yV} that corresponds to the set of inputs {x1, . . . , xW} is generated from the set of results {q1, . . . , qN}. In particular, the set of outputs {y1, . . . , yV} is generated according to {y1, . . . , yV}=E({q1, . . . , qN}), where E is an invertible function that maps a set of N results qj to a set of V outputs. Herein, the function E shall be referred to as the “separation function”. In particular, the function E is a predetermined function that has the property that each output yi either is a part of a corresponding one of the results or is a combination of at least part of each result of a corresponding plurality of the results. Put another way, for each value yi (i=1, . . . , V), there is a corresponding set of vi distinct indices {γi,1, . . . , γi,vi} (where 1≤γi,k≤V for 1≤k≤vi and vi≥1) such that yi comprises at least part of each of







q


γ

i
,
1








,





,


q

γ

i
,

v
i




.






Thus,







y
i

=


E
i



(


q


γ

i
,
1








,





,

q

γ

i
,

v
i





)







for a function Ei that corresponds to (or defines, at least in part) the separation function E. The production of the set of outputs {y1, . . . , yV} from the set of results {q1, . . . , qN} via the separation function E (defined by its corresponding functions E1, . . . , EV) operates in an analogous way to the production of the set of values {p1, . . . , pM} from the set of inputs {x1, . . . , xW} via the distribution function D (defined by its corresponding functions D1, . . . , DM), so that the description above for the step 304 applies analogously to the step 308.


In some embodiments, when N=M and W=V, the separation function E is the inverse of the distribution function D.


In essence, then, instead of processing a single input to generate a corresponding output y (where this processing is independent of any of the other inputs), a plurality of inputs x1, . . . , xW are processed together to generate a corresponding plurality of outputs y1, . . . , yV by: (a) generating′values p1, . . . , pM, where each pi is dependent on multiple ones of the inputs; (b) processing the values p1, . . . , pM using functions F1, . . . , FN (that are based on the function F) to generate results q1, . . . , qN; and (c) separating out the outputs y1, . . . , yV from the generated results q1, . . . , qN.


2.1—Example 1: General Lookup Table

An initial example will aid understanding the method 300 as described above. Consider a predetermined a lookup table that is implemented by the function F. An example of how the method 300 can be applied to such a function F is described below with reference to FIGS. 5a-5c.


Assume that the input to the lookup table F is an input x that is an M-bit value, where the kth bit of x is bk so that the binary representation of x is bMbM-1 . . . b2b1, (so that bk is 0 or 1 for k=1, . . . , M). In the example described below, M=8, so that the binary representation of x is b8b7b6b5b4b3b2b1. Assume also that the output from the lookup table F (i.e. the value looked-up in response to receiving the input x) is an output y that is an N-bit value, where the kth bit of y is ck so that the binary representation of y is cNcN-1 . . . c2c1, (so that ck is 0 or 1 for k=1, . . . , N). In the example described below, N=8, so that the binary representation of y is c8c7c6c5c4c3c2c1. This is schematically illustrated in FIG. 5a. It will be appreciated, of course, that the input x may comprise a different number of bits and that the output y may comprise a different number of bits (which may be different from the number of bits for the input x), so that having x and y both as 8-bit values is purely for illustrative purposes.


It will be appreciated that each of the output bits ck can be calculated or expressed as a respective logical expression Bk applied to the input bits bi i.e. ck=Bk(b1, b2, . . . , bM). This is schematically illustrated in FIG. 5b in respect of the output bit c4.


The function Bk can be expressed using one or more logical AND's (an AND is represented herein by custom character), zero or more logical OR's (an OR is represented herein by custom character) and zero or more logical NOT's (a NOT is represented herein by custom character). In particular, suppose that the lookup table results in output bit ck assuming the value 1 for n input values X1, . . . , Xn (i.e. when x assumes the value of any one of X1, . . . , Xn), and that for all other possible values for input x, ck assumes the value 0. For each i=1, . . . , n, let Ri be a corresponding logical expression defined by Ri(b1, b2, . . . , bM)=b′Mcustom characterb′M-1custom characterb′M-2custom character . . . custom characterb′3custom characterb′2custom characterb′1 (i.e. an AND of expressions b′j for j=1, . . . , M), where, for j=1, . . . , M, b′j=bj if the jth bit bj of the input value Xi is a 1 and b′j=custom characterbj if the jth bit bj of the input value Xi is a 0. For example, for the 8-bit input value Xi=53 in decimal, or (00110101) in binary, then Ri(b1, b2, . . . , bM)=custom characterb8custom charactercustom characterb7custom characterb6custom characterb5custom charactercustom characterb4custom characterb3custom charactercustom characterb2custom characterb1. Thus, Ri(b1, b2, . . . , bM) only evaluates to the value 1 for an input value of 53. Then, Bk can be defined as R1vR2v . . . vRn, i.e. by OR-ing the expressions Ri (i=1, . . . , n) together (if n=1, then no OR's are necessary). Then Bk only evaluates to the value 1 for an input that assumes the value of one of X1, X2, . . . , Xn. For example, suppose n=3 and c4 only assumes the value of 1 if the input x takes the value 31 (=(00011111) in binary), 53 (=(00110101) in binary) or 149 (=(10010101) in binary). Then:

R1(b1,b2, . . . ,bM)=custom characterb8custom charactercustom characterb7custom charactercustom characterb6custom characterb5custom characterb4custom characterb3custom characterb2custom characterb1
R2(b1,b2, . . . ,bM)=custom characterb8custom charactercustom characterb7custom characterb6custom characterb5custom charactercustom characterb4custom characterb3custom charactercustom characterb2custom characterb1
R3(b1,b2, . . . ,bM)=b8custom charactercustom characterb7custom charactercustom characterb6custom characterb5custom charactercustom characterb4custom characterb3custom charactercustom characterb2custom characterb1

so that B4 can be expressed as

B4(b1,b2, . . . ,bM)=(custom characterb8custom charactercustom characterb7custom charactercustom characterb6custom characterb5custom characterb4custom characterb3custom characterb2custom characterb1)v(custom characterb8custom charactercustom characterb7custom characterb6custom characterb5custom charactercustom characterb4custom characterb3custom charactercustom characterb2custom characterb1)v(b8custom charactercustom characterb7custom charactercustom characterb6custom characterb5custom charactercustom characterb4custom characterb3custom charactercustom characterb2custom characterb1)v


There are, of course, more efficient or optimized ways of expressing Bk, i.e. with fewer logical operations. For example, one could express B4 above as follows:

B4(b1,b2, . . . , bM)=b1custom characterb3custom characterb5custom charactercustom characterb7custom character((custom characterb8custom charactercustom characterb6custom characterb4custom characterb2)custom character(custom characterb8custom characterb6custom charactercustom characterb4custom charactercustom characterb2)custom character(b8custom charactercustom characterb6custom charactercustom characterb4custom charactercustom characterb2))

and further more optimized expressions are possible. Indeed, in general, it is expected that an optimized expression may contain between 10% and 20% of the above “naïve” logical expression generated by simply OR-ing together the sub-expressions Ri.


Thus, the lookup table F may be considered to be implemented by the functions B1, . . . , BN, so that given an input x=bMbM-1 . . . b2b1, the corresponding output y=cNcN-1 . . . c2c1 is defined by ck=Bk(b1, b2, . . . , bM) for k=1, . . . , N.


Although implementing the lookup table F by using N separate Boolean expressions B1, . . . , BN may introduce a performance penalty, this can be largely mitigated by performing data-level parallelism. In particular, given a set of inputs {x1, x2, . . . , xW}, a set of M values {p1, . . . , pM} may be obtained or generated, where each value pk is a W-bit value, where the wth bit of value pk is the kth bit of input xw (for w=1, . . . , W and k=1, . . . , M). In other words, the set of inputs {x1, x2, . . . , xW} may be expressed or represented as a set of M values {p1, . . . , pM}. This is illustrated schematically in FIG. 5c, where the input values x1, . . . , xW are shown as the rows of the matrix on the left of FIG. 5c, and the values p1, . . . , pM are shown as the columns of the matrix on the left of FIG. 5c. FIG. 5c similarly shows how the set of outputs {y1, y2, . . . , yV} (that corresponds to the set of inputs {x1, x2, . . . , xW}) may be represented or expressed as a set of N results {q1, . . . , qN}—here V=W given the nature of F being a lookup table. In particular, each intermediate result qk is a V-bit value, where the vth bit of intermediate result qk is the kth bit of output yv (for v=1, . . . , V and k=1, . . . , N).


Thus, in this example, the distribution function D used at the step 304 of FIG. 3 is a function that maps a set of inputs {x1, x2, . . . , xW} to a set of values {p1, . . . , pM} by setting each value pk to be a W-bit value, where the wth bit of value pk is the kth bit of input xw (for w=1, . . . , W and k=1, . . . , M). Note that, with the distribution function D, each value pj comprises at least part (namely a single bit) of each input of a corresponding plurality of the inputs (the corresponding plurality of inputs in this example is the whole set of inputs {x1, x2, . . . , xW}). Similarly, in this example, the separation function E used at the step 308 of FIG. 3 is a function that maps a set of results {q1, q2, . . . , qN} to a set of outputs {y1, . . . , yV} by setting each output yv to be an N-bit value, where the kth bit of output yv is the vth bit of result qk (for v=1, and k=1, . . . , N). Note that, with the separation function E, each output yi comprises at least part (namely a single bit) of each result of a corresponding plurality of the results (the corresponding plurality of results in this example is the whole set of results {q1, q2, . . . , qN}).


In FIG. 5b, the function Bk mapped the bits (b1, . . . , bm) of a single input xi to the kth bit (ck) of the corresponding output yi. In FIG. 5c, where there are multiple inputs (x1, . . . , xW), the function Bk is replaced by a function Fk that maps the values p1, . . . , pM to the intermediate result qk. The function Fk is the same logical expression as the function Bk, except that, in the function Bk the operands (b1, . . . , bM) for the logical operations are single bits, whereas in the function Fk the operands (p1, . . . , pM) for the logical operations are multi-bit values. For the example given above where

B4(b1,b2, . . . , bM)=b1custom characterb3custom characterb5custom charactercustom characterb7custom character((custom characterb8custom charactercustom characterb6custom characterb4custom characterb2)custom character(custom characterb8custom characterb6custom charactercustom characterb4custom charactercustom characterb2)custom character(b8custom charactercustom characterb6custom charactercustom characterb4custom charactercustom characterb2))

the corresponding function F4 may be expressed as

F4(p1,p2, . . . ,pM)=p1custom characterp3custom characterp5custom charactercustom characterp7custom character((custom characterp8custom charactercustom characterp6custom characterp4custom characterp2)custom character(custom characterp8custom characterp6custom charactercustom characterp4custom charactercustom characterp2)custom character(p8custom charactercustom characterp6custom charactercustom characterp4custom charactercustom characterp2))

(where custom character, custom characterand custom characterin F4 are bit-wise AND, OR and NOT operations on multi-bit operands). For example, the kth bit of the intermediate value q4 is the result of applying the function B4 to the bits of the kth input xk, and this results (in the kth bit position) by applying the function F4 to the values p1, . . . , pM.


As processors are often arranged to perform logical operations on multi-bit operands, depending on the word-size of the processor (e.g. by having 32-bit or 64-bit AND, OR and NOT operators), a whole set of outputs {y1, y2, . . . , yW} can be obtained from the set of inputs {x1, x2, . . . , xW} at the same time. This helps mitigate the performance penalty incurred by implementing the lookup table using Boolean expressions.


2.2—Example 2: Particular Lookup Table

A particular example of the “general lookup table” concept set out above in section 2.1 is provided below for a specific example lookup table. This specific lookup table is quite small (for ease of explanation), but, as set out in section 2.1 above, it will be appreciated that the “general lookup table” concept can be applied to other, potentially larger, lookup tables.


Consider the following lookup table that defines the function F:
















Input
Output









0 = (000)
0 = (0000)



1 = (001)
3 = (0011)



2 = (010)
0 = (0000)



3 = (011)
15 = (1111) 



4 = (100)
5 = (0101)



5 = (101)
11 = (1011) 



6 = (110)
1 = (0001)



7 = (111)
2 = (0010)










Here, the input to the function F is a 3-bit number and the output is a 4-bit number. Thus, M=3 and N=4. The above table defines function B1, . . . , B4 as follows:

B4(b1,b2,b3)=(custom characterb3custom characterb2custom characterb1)custom character(b3custom charactercustom characterb2custom characterb1)
B3(b1,b2,b3)=(custom characterb3custom characterb2custom characterb1)custom character(b3custom charactercustom characterb2custom charactercustom characterb1)
B2(b1,b2,b3)=(custom characterb3custom charactercustom characterb2custom characterb1)custom character(custom characterb3custom characterb2custom characterb1)custom character(b3custom charactercustom characterb2custom characterb1)custom character(b3custom characterb2custom characterb1)
B1(b1,b2,b3)=(custom characterb3custom charactercustom characterb2custom characterb1)custom character(custom characterb3custom characterb2custom characterb1)custom character(b3custom charactercustom characterb2custom charactercustom characterb1)custom character(b3custom charactercustom characterb2custom characterb1)custom character(b3custom characterb2custom charactercustom characterb1)


so that functions F1, . . . , F4 (i.e. the sub-functions for function F) are defined by

F4(p1,p2,p3)=(custom characterp3custom characterp2custom characterp1)custom character(p3custom charactercustom characterp2custom characterp1)
F3(p1,p2,p3)=(custom characterp3custom characterp2custom characterp1)custom character(p3custom charactercustom characterp2custom charactercustom characterp1)
F2(p1,p2,p3)=(custom characterp3custom charactercustom characterp2custom characterp1)custom character(custom characterp3custom characterp2custom characterp1)custom character(p3custom charactercustom characterp2custom characterp1)custom character(p3custom characterp2custom characterp1)
Fi(p1,p2,p3)=(custom characterp3custom charactercustom characterp2custom characterp1)custom character(custom characterp3custom characterp2custom characterp1)custom character(p3custom charactercustom characterp2custom charactercustom characterp1)custom character(p3custom charactercustom characterp2custom characterp1)custom character(p3custom characterp2custom charactercustom characterp1)


Consider the set of five inputs {x1, x2, x3, x4, x5}, where x5=5=(101), x4=7=(111), x3=2=(010), x2=0=(000) and x1=4=(100)—i.e. W=5. Then the set of values {p1, p2, p3} are formed from the set of three inputs {x1, x2, x3} as discussed above, where each value pi is a W-bit value. Thus, p3=(11001), p2=(01100) and p1=(11000).


Then we note that the set of results {q1, q2, q3, q4} are formed from the set of values {p1, p2, p3} according to:










q
4

=



F
4



(


p
1

,

p
2

,

p
3


)


=




(


(
00110
)



(
01100
)



(
11000
)


)













(


(
11001
)



(
10011
)



(
11000
)


)







=




(
00000
)



(
10000
)








=



(
10000
)














q
3

=



F
3



(


p
1

,

p
2

,

p
3


)


=




(


(
00110
)



(
01100
)



(
11000
)


)













(


(
11001
)



(
10011
)



(
00111
)


)







=




(
00000
)



(
00001
)








=



(
00001
)














q
2

=



F
2



(


p
1

,

p
2

,

p
3


)


=




(


(
00110
)



(
10011
)



(
11000
)


)














(


(
00110
)



(
01100
)



(
11000
)


)













(


(
11001
)



(
10011
)



(
11000
)


)












(


(
11001
)



(
01100
)



(
11000
)


)







=




(
00000
)



(
00000
)



(
100000
)



(
01000
)








=



(
11000
)














q
1

=



F
1



(


p
1

,

p
2

,

p
3


)


=




(


(
00110
)



(
10011
)



(
11000
)


)














(


(
00110
)



(
01100
)



(
11000
)


)













(


(
11001
)



(
10011
)



(
00111
)


)













(


(
11001
)



(
10011
)



(
11000
)


)












(


(
11001
)



(
01100
)



(
00111
)


)







=




(
00000
)



(
00000
)



(
00001
)













(
10000
)



(
00000
)








=



(
10001
)








The set of five outputs {y1, y2, y3, y4, y5} are formed from the set of four results {q1, q2, q3, q4} as discussed above, which results in y5=(1011), y4=(0010), y3=(0000), y2=(0000) and y1=(0101).


2.3—Example 3: A Different Way of Implementing the Lookup Table of Example 2

The lookup table defined above in section 2.2 need not be implemented using the “general lookup table” concept set out above in section 2.1. There are many ways in which the method 300 of FIG. 3 can be applied to this lookup table (and, indeed, to lookup tables in general). One further example way is set out below, but it will be appreciated that other ways are also possible. Consider again the lookup table that defines the function F:
















Input
Output









0 = (000)
0 = (0000)



1 = (001)
3 = (0011)



2 = (010)
0 = (0000)



3 = (011)
15 = (1111) 



4 = (100)
5 = (0101)



5 = (101)
11 = (1011) 



6 = (110)
1 = (0001)



7 = (111)
2 = (0010)










Given a set of five inputs {x1, x2, x3, x4, x5}, where each input xi is a 3-bit value, define the distribution function D by:

p1=(bit 3 of x1)(bit 2 of x1)(bit 3 of x2)(bit 2 of x2)
p2=(bit 1 of x1)(bit 1 of x2)x3x4x5


Thus, given the set five inputs {x1, x2, x3, x4, x5} that assume values x5=5=(101), x4=7=(111), x3=2=(010), x2=0=(000) and x1=4=(100), the set of values {p1, p2} is formed from the set of three inputs {x1, x2, x3} as discussed above according to the distribution function D, so that p1=(1000) and p2=(00010111101).


Define the functions F1A, F1B, F1C, F2A, F2B, F3A, F3B, F3C, F3D and F3E as follows:

F1A(p1,p2)=(00) if (a)(p1custom character(1100)=(0000)) or (b) (p1custom character(1100)=(0100)) and (p2custom character(10000000000)=(00000000000)) or (c) (p1custom character(1100)=(1100))
F1A(p1,p2)=(01) if (p1custom character(1100)=(1000)) and (p2custom character(10000000000)=(00000000000))
F1A(p1,p2)=(10) if (p1custom character(1100)=(1000)) and (p2custom character(10000000000)=(10000000000))
F1A(p1,p2)=(11) if (p1custom character(1100)=(0100)) and (p2custom character(10000000000)=(10000000000))
F1B(p1,p2)=(00) if (a)(p1custom character(0011)=(0000)) or (b) (p1custom character(0011)=(0001)) and (p2custom character(01000000000)=(00000000000)) or (c) (p1custom character(0011)=(0011))
F1B(p1,p2)=(01) if (p1custom character(0011)=(0010)) and (p2custom character(01000000000)=(00000000000))
F1B(p1,p2)=(10) if (p1custom character(0011)=(0010)) and (p2custom character(01000000000)=(01000000000))
F1B(p1,p2)=(11) if (p1custom character(0011)=(0001)) and (p2custom character(01000000000)=(01000000000))
F1C(p2)=(00) if (a)(p2custom character(00110000000)=(00000000000)) or (b) (p2custom character(00111000000)=(00010000000)) or (c) (p2custom character(00110000000)=(00110000000))
F1C(p2)=(01) if (p2custom character(00111000000)=(00100000000))
F1C(p2)=(10) if (p2custom character(00111000000)=(00101000000))
F1C(p2)=(11) if (p2custom character(00111000000)=(00011000000))
F2A(p2)=(00) if (a)(p2custom character(00000110000)=(00000000000)) or (b) (p2custom character(00000111000)=(00000010000)) or (c) (p2custom character(00000110000)=(00000110000))
F2A(p2)=(01) if (p2custom character(00000111000)=(00000100000))
F2A(p2)=(10) if (p2custom character(00000111000)=(00000101000))
F2A(p2)=(11) if (p2custom character(00000111000)=(00000011000))
F2B(p2)=(00) if (a)(p2custom character(00000000110)=(00000000000)) or (b) (p2custom character(00000000111)=(00000000010)) or (c) (p2custom character(00000000110)=(00000000110))
F2B(p2)=(01) if (p2custom character(00000000111)=(00000000100))
F2B(p2)=(10) if (p2custom character(00000000111)=(00000000101))
F2B(p2)=(11) if (p2custom character(00000000111)=(00000000011))
F3A(p1,p2)=(00) if (a)(p1custom character(1100)=(0000)) and (p2custom character(10000000000)=(00000000000)) or (b) (p1custom character(1100)=(0100)) and (p2custom character(10000000000)=(00000000000))
F3A(p1,p2)=(01) if (a)(p1custom character(1100)=(1000)) and (p2custom character(10000000000)=(00000000000)) or (b) (p1custom character(1100)=(1100)) and (p2custom character(10000000000)=(00000000000))
F3A(p1,p2)=(10) if (a)(p1custom character(1100)=(1100)) and (p2custom character(10000000000)=(10000000000))
F3A(p1,p2)=(11) if (a)(p1custom character(1100)=(0000)) and (p2custom character(10000000000)=(10000000000)) or (b) (p1custom character(1100)=(0100)) and (p2custom character(10000000000)=(10000000000)) or (c) (p1custom character(1100)=(1000)) and (p2custom character(10000000000)=(10000000000))
F3B(p1,p2)=(00) if (a)(p1)custom character(0011)=(0000)) and (p2custom character(01000000000)=(00000000000)) or (b) (p1custom character(0011)=(0001)) and (p2custom character(01000000000)=(00000000000))
F3B(p1,p2)=(01) if (a)(p1custom character(0011)=(0010)) and (p2custom character(01000000000)=(00000000000)) or (b) (p1custom character(0011)=(0011)) and (p2custom character(01000000000)=(00000000000))
F3B(p1,p2)=(10) if (a)(p1custom character(0011)=(0011)) and (p2custom character(01000000000)=(01000000000))
F3B(p1,p2)=(11) if (a)(p1custom character(0011)=(0000)) and (p2custom character(01000000000)=(01000000000)) or (b) (p1custom character(0011)=(0001)) and (p2custom character(01000000000)=(01000000000)) or (c) (p1custom character(0011)=(0010)) and (p2custom character(01000000000)=(01000000000))
F3C(p2)=(00) if (a)(p2custom character(00111000000)=(00000000000)) or (b) (p2custom character(00111000000)=(00010000000))
F3C(p2)=(01) if (a)(p2custom character(00111000000)=(00100000000)) or (b) (p2custom character(00111000000)=(00110000000))
F3C(p2)=(10) if (a)(p2custom character(00111000000)=(00111000000))
F3C(p2)=(11) if (a)(p2custom character(00111000000)=(00001000000)) or (b) (p2custom character(00111000000)=(00011000000)) or (c) (p2custom character(00111000000)=(00101000000))
F3D(p2)=(00) if (a)(p2custom character(00000111000)=(00000000000)) or (b) (p2custom character(00000111000)=(00000010000))
F3D(p2)=(01) if (a)(p2custom character(00000111000)=(00000100000)) or (b) (p2custom character(00000111000)=(00000110000))
F3D(p2)=(10) if (a)(p2custom character(00000111000)=(00000111000))
F3D(p2)=(11) if (a)(p2custom character(00000111000)=(00000001000)) or (b) (p2custom character(00000111000)=(00000011000)) or (c) (p2custom character(00000111000)=(00000101000))
F3E(p2)=(00) if (a)(p2custom character(00000000111)=(00000000000)) or (b) (p2custom character(00000000111)=(00000000010))
F3E(p2)=(01) if (a)(p2custom character(00000000111)=(00000000100)) or (b) (p2custom character(00000000111)=(00000000110))
F3E(p2)=(10) if (a)(p2custom character(00000000111)=(00000000111))
F3E(p2)=(11) if (a)(p2custom character(00000000111)=(00000000001)) or (b) (p2custom character(00000000111)=(00000000011)) or (c) (p2custom character(00000000111)=(00000000101))


Then define the sub-functions F1, F2 and F3 by:


F1(p1, p2)=F1A(p1, p2)F1B(p1, p2)F1C(p2), i.e. the concatenation of the outputs of F1A(p1, p2) and F1B(p1, p2) and F1c(p2);


F2(p2)=F2A(p2)F2B(p2) i.e. the concatenation of the outputs of F2A(p2) and F2B(p2); and

    • F3(p1, p2)=F3A(p1, p2)F3B(p1, p2)F3C(p2)F3D(p2)F3E(p2), i.e. the concatenation of the outputs of F3A(p1, p2) and F3B(p1, p2) and F3C(p2) and F3D(p2) and F3E(p2).


Then if q1=F1 (p1, p2) and q2=F2(p2) and q3=F3(p1, p2), then for p1=(1000), p2=(00010111101) as derived above, q1=(010000), q2=(0010) q3=(0100001011). The roles of the functions F1A, F1B, F1C, F2A, F2B, F3A; F3B, F3C, F3D and F3E relative to the results q1, q2 and q3 is illustrated schematically in FIG. 6.


Define the separation function E as follows:

y1=(bit 6 of q1)(bit 5 of q1)(bit 10 of q3)(bit 9 of q3)
y2=(bit 4 of q1)(bit 3 of q1)(bit 8 of q3)(bit 7 of q3)
y3=(bit 2 of q1)(bit 1 of q1)(bit 6 of q3)(bit 5 of q3)
y4=(bit 4 of q2)(bit 3 of q2)(bit 4 of q3)(bit 3 of q3)
y5=(bit 2 of q2)(bit 1 of q2)(bit 2 of q3)(bit 1 of q3)


Then based on q1=(010000), q2=(0010) q3=(0100001011) as derived above, y1=(0101), y2=(0000), y3=(0000), y4=(0010) and y5=(1011).


2.4—Example 4: Any Deterministic Function

Any computer-implemented function can be implemented as a lookup table (albeit a potentially large lookup table). Even if the output of the function is dependent on time, then the time value can be considered to be an input to the lookup table too. Thus, using the principles of section 2.1 above, any computer-implemented function F can be implemented using the method 300 of FIG. 3.


2.5—Example 5: Finite Impulse Response Filters

A further example of the method 300 will be described below, where this example does not rely on the “lookup table principles” described in section 2.1 above. Thus, this example serves to show that, whilst any computer-implemented function can be implemented as a lookup table so that the “lookup table principles” described in section 2.1 above can be used to create a corresponding implementation in the form of the method 300, other (potentially more efficient) implementations of the function F in the form of the method 300 can be achieved via other routes.


Consider a finite impulse response (FIR) filter that is implemented by the function F. In particular, given a sequence (or set) of inputs x1, x2, . . . , the FIR filter generates a corresponding sequence (or set) of outputs yL, yL+1, . . . according to:







y
n

=




i
=
0


L
-
1





δ
i



x

n
-
i









(where L is the length of the filter and δ0, δ1, . . . , δL−1 are the filter weights/taps). A specific example is used below, where L=3 and δ012=⅓, so that








y
n

=



x
n

+

x

n
-
1


+

x

n
-
2



3


,





although it will be appreciated that other example FIR filters could be implemented analogously.


Given a set of inputs {x1, x2, x3, x4, x5} (so W=5), a set of values {p1, p2, p3} is formed (so M=3). In particular, value pj is formed by concatenating: (a) one or more first spacer 0-bits; (b) input xj; (c) one or more second spacer 0-bits; (d) input xj+1; (e) one or more third spacer 0-bits; and (f) input xj+2. This is illustrated schematically in FIG. 7a. As can be seen, each of the values pj comprises at least part of each of a corresponding plurality of inputs from the set of inputs {x1, x2, x3, x4, x5}—in particular, for value pj, the corresponding plurality of inputs from the set of inputs are the inputs xj, xi+1, xj+2, and the part of each of these inputs that contributes to the value pj is the whole of that input. The spacer 0-bits are to enable carry bits to be included when performing additions of the values p1, p2 and p3 for the calculations set out below.


From the set of values {p1, p2, p3}, a set of results {q1} is formed (so N=1). In particular, q1=F1(p1, p2, p3)=(p1+p2+p3)/3.


From the set of results {q1}, a set of outputs {y3, y4, y5} is formed (so V=3) In particular, the result q1 comprises outputs y3, y4, y5, where y3 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x1, y4 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x2, and y5 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x3. This is illustrated schematically in FIG. 7a.


As a slight modification of this example, given a set of inputs {x1, x2, . . . , x8} (so W=8), a set of values {p1, p2, p3, p4} is formed (so M=4). In particular, value pj is formed by concatenating: (a) one or more first spacer 0-bits; (b) input xj; (c) one or more second spacer 0-bits; (d) input xj+2; (e) one or more third spacer 0-bits; and (f) input xj+4. This is illustrated schematically in FIG. 7b. As can be seen, each of the values pj comprises at least part of each of a corresponding plurality of inputs from the set of inputs {x1, x2, . . . , x8}—in particular, for value pj, the corresponding plurality of inputs from the set of inputs are the inputs xj, xj+2, xj+4, and the part of each of these inputs that contributes to the value pj is the whole of that input. The spacer 0-bits are to enable carry bits to be included when performing additions of the values p1, p2, p3 and p4 for the calculations set out below.


From the set of values {p1, p2, p3, p4}, a set of results {q1, q2} is formed (so N=2). In particular, q1=F1(p1, p2, p3)=(p1+p2+p3)/3 and q2=F2(p2, p3, p4)=(p2+p3+p4)/3.


From the set of results {q1, q2}, a set of outputs {y3, y4, . . . , y8} is formed (so V=6). In particular, the result q1 comprises outputs y3, y5, y7, where y3 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x1, y5 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x3, and y7 occupies the space/part in q1 that corresponds to the space/part in p1 that was occupied by x5; the result q2 comprises outputs y4, y6, y8, where y4 occupies the space/part in q2 that corresponds to the space/part in p1 that was occupied by x1, y6 occupies the space/part in q2 that corresponds to the space/part in p1 that was occupied by x3, and y8 occupies the space/part in q2 that corresponds to the space/part in p1 that was occupied by x5 This is illustrated schematically in FIG. 7b.


2.6—Example 6: A Set of Lookup Tables

Example 1, as set out in section 2.1 above, illustrated a function F that implements a single look-up table. In other words, for each input xi i=1, . . . , W, an output yi is generated by setting yi to be the result of looking-up xi in a lookup table. In Example 1, the same lookup table was used regardless of the value of the index i. Suppose, instead, that for each input xi i=1, . . . , W, an output yi is generated by setting yi to be the result of looking-up xi in a corresponding lookup table LTi, where the lookup tables LTi may vary based on the index i, i.e. there may be indices i and j for which LTi≠LTj. Thus yi=F(xi)=LTi(xi).


Again, one can assume that the input to a lookup table LTi is an input xi that is an M-bit value, where the kth bit of xi is bi,k so that the binary representation of xi is bi,Mbi,M-1 . . . bi,2bi,1, (so that bi,k is 0 or 1 for k=1, . . . , M). In the example described below, M=8, so that the binary representation of xj is bi,8bi,7bi,6bi,5bi,4bi,3bi,2bi,1. Assume also that the output from the lookup table LTi (i.e. the value looked-up in response to receiving the input xi) is an output yi that is an N-bit value, where the kth bit of yi is ci,k so that the binary representation of yi is ci,Nci,N-1 . . . ci,2ci,1, (so that ci,k is 0 or 1 for k=1, . . . , N). In the example described below, N=8, so that the binary representation of yi is ci,8ci,7ci,6ci,5ci,4ci,3ci,2ci,1. As with Example 1, this is schematically illustrated in FIG. 5a (except that the subscript i is not shown in FIG. 5a). It will be appreciated, of course, that the input xi may comprise a different number of bits and that the output yi may comprise a different number of bits (which may be different from the number of bits for the input xi), so that having xi and yi both as 8-bit values is purely for illustrative purposes.


It will be appreciated that each of the output bits ci,k can be calculated or expressed as a respective logical expression Bi,k applied to the bits of the input xi i.e. ci,k=Bi,k(bi,1, bi,2, . . . , bi,M). Again, as with Example 1, this is schematically illustrated in FIG. 5b (except that the subscript i is not shown in FIG. 5b). The logical expression Bi,k can be determined in the same manner as set out in the description for determining the function Bk for Example 1, with reference to lookup table LTi.


Thus, the lookup table LTi may be considered to be implemented by the functions Bi,1, . . . , Bi,N, so that given an input xi=bi,mbi,M-1 . . . bi,2bi,1, the corresponding output yi=ci,Nci,N-1 . . . ci,2ci,1 is defined by ci,k=Bi,k(bi,1, bi,2, . . . , bi,M) for k=1, . . . , N and i=1, . . . , W.


As with Example 1, given a set of inputs {x1, x2, . . . , xW}, a set of M values {p1, . . . , pM} may be obtained or generated, where each value pk is a W-bit value, where the wth bit of value pk is the kth bit of input xw (for w=1, . . . , W and k=1, . . . , M). In other words, the set of inputs {x1, x2, . . . , xW} may be expressed or represented as a set of M values {p1, . . . , pM}. This is illustrated schematically in FIG. 5c, where the input values x1, . . . , xW are shown as the rows of the matrix on the left of FIG. 5c, and the values p1, . . . , pM are shown as the columns of the matrix on the left of FIG. 5c. FIG. 5c similarly shows how the set of outputs {y1, y2, . . . , yV} (that corresponds to the set of inputs {x1, x2, . . . , xW}) may be represented or expressed as a set of N results {q1, . . . , qN}—here V=W given the nature of F. In particular, each intermediate result qk is a V-bit value, where the vth bit of intermediate result qk is the kth bit of output yv (for v=1, . . . , V and k=1, . . . , N).


Thus, in this example, the distribution function D used at the step 304 of FIG. 3 is a function that maps a set of inputs {x1, x2, . . . , xW} to a set of values {p1, . . . , pM} by setting each value pk to be a W-bit value, where the wth bit of value pk is the kth bit of input xw (for w=1, . . . , W and k=1, . . . , M). Note that, with the distribution function D, each value pj comprises at least part (namely a single bit) of each input of a corresponding plurality of the inputs (the corresponding plurality of inputs in this example is the whole set of inputs {x1, x2, . . . , xW}). Similarly, in this example, the separation function E used at the step 308 of FIG. 3 is a function that maps a set of results {q1, q2, . . . , qN} to a set of outputs {y1, . . . , yV} by setting each output yv to be an N-bit value, where the kth bit of output yv is the vth bit of result qk (for v=1, . . . , V and k=1, . . . , N). Note that, with the separation function E, each output yi comprises at least part (namely a single bit) of each result of a corresponding plurality of the results (the corresponding plurality of results in this example is the whole set of results {q1, q2, . . . , qN}).


Functions Fk (k=1, . . . , N) that calculate, respectively the results qk (k=1, . . . , N) may be defined as follows. For k=1, . . . , N, and for v=1, . . . , V, the vth bit of result qk=Fk(p1, . . . , pM) is defined as Bv,k(p1,v, p2,v, . . . , pM,v), where pi,j is the jth bit of value pi for i=1, . . . , M and j=1, . . . , W.


2.7—Example 7: A Specific Example

Consider the situation in which W=4, M=2 and the function F is defined as follows: yi=F(xi)=xi+i mod(4). Then the function F can be considered as implementing 4 lookup tables LTi i=1, . . . , 4, namely:


F(x1)=x1+1 mod(4)=LT1(x1), so that LT1 is defined as the table
















Input (x1)
Output (y1)









0 = (00)
1 = (01)



1 = (01)
2 = (10)



2 = (10)
3 = (11)



3 = (11)
0 = (00)










F(x2)=x2+2 mod(4)=LT2(x2), so that LT2 is defined as the table
















Input (x2)
Output (y2)









0 = (00)
2 = (10)



1 = (01)
3 = (11)



2 = (10)
0 = (00)



3 = (11)
1 = (01)










F(x3)=x3+3 mod(4)=LT3(x3), so that LT3 is defined as the table
















Input (x3)
Output (y3)









0 = (00)
3 = (11)



1 = (01)
0 = (00)



2 = (10)
1 = (01)



3 = (11)
2 = (10)










F(x4)=x4+4 mod(4)=LT4(x4), so that LT4 is defined as the table
















Input (x4)
Output (y4)









0 = (00)
0 = (00)



1 = (01)
1 = (01)



2 = (10)
2 = (10)



3 = (11)
3 = (11)










One can then use the procedure set out in Example 6 to define values {p1, p2} and functions F1 and F2 that will determine results {q1, q2}.


2.8—Example 8: Another Specific Example

Consider the situation in which W=V=2, M=N=3 and the function F operates on inputs x1 and x2 (whose binary representations are (x1,3x1,2x1,1) and (x2,3x2,2x2,1) respectively) to yield outputs y1 and y2 (whose binary representations are (y1,3y1,2y1,1) and (y2,3y2,2y2,1) respectively) according to the affine transformation Y=F(x1, x2)=MX+B, where







X
=

(




x

1
,
1







x

1
,
2







x

1
,
3







x

2
,
1







x

2
,
2







x

2
,
3





)


,

Y
=

(




y

1
,
1







y

1
,
2







y

1
,
3







y

2
,
1







y

2
,
2







y

2
,
3





)


,





M is a 6×6 binary matrix, and B is a 6×1 binary matrix, where addition is modulo 2. As an example, let






M
=



(



1


0


0


1


1


0




0


0


0


0


1


1




1


0


1


0


0


0




0


1


1


0


0


0




0


0


0


0


1


0




1


0


0


0


0


1



)






and





B

=

(



0




0




1




0




1




1



)







so that

y1,1=x1,1⊕x2,1⊕x2,2
y1,2=x2,2⊕x2,3
y1,3=x1,1⊕x1,3⊕1
y2,1=x1,2⊕x1,3
y2,2=x2,2⊕1
y2,3=x1,1⊕x2,3⊕1


This is another example of where the predetermined function F applies different processing to obtain y1 from one or more of the inputs (here, x1 and x2) than it applies to obtain y2 from those inputs.


Define values p1, p2 and p3 as values whose binary representations are: p3=(p3,2p3,1)=(x1,3x2,2), p2=(p2,3p2,2p2,1)=(x1,2x2,1x1,3), p1=(p1,2p1,1)=(x1,1x2,3). This defines the distribution function D.


Define results q1, . . . , q6 as q1=y1,1, q2=y1,2, q3=y1,3, q4=y2,1, q5=y2,2, q6=y2,3. This defines the separation function E.


Then functions F1, . . . , F6 can be defined as follows:

q1=F1(p1,p2,p3)=p1,2⊕p2,2⊕p3,1
q2=F2(p1,p3)=p3,1⊕p1,1
q3=F3(p1,p3)=p1,2⊕p3,2⊕1
q4=F4(p2)=p2,3⊕p2,1
q5=F5(p2,p3)=p3,1⊕1 or p3,2⊕p2,1⊕p3,1⊕1
q6=F6(p1)=p1,2⊕p1,1⊕1


3—Obfuscation via Bijective Functions

Embodiments of the invention aim to be able to execute code, that implements the function F, securely in a so-called white-box environment. A “white box environment” is an execution environment in which a person can execute an amount of computer code (or software)—where the code implements the function F—and the person may inspect and modify the code (or be assumed to know the underlying algorithm that is being implemented) and/or, during execution of the code, the person may inspect and modify the values of data being used (i.e. the contents of the memory being used), the data flow and the process flow (or order of execution of instructions in the code). Embodiments of the invention therefore aim to be able to provide or generate code (that implements the function F) such that, even if the code is executed in a white-box environment, the person executing the code cannot determine the values of inputs to the function F and/or outputs of the function F and/or secret information used by the function F.


In the following, one or more bijective functions (or transformations or transforms) will be used. A bijective function is a function that is injective (i.e. is a 1-to-1 mapping) and that is surjective (i.e. maps onto the whole of a particular range of values). If the domain of possible input, values for the function T is domain Dom, and if the function T is an injective function (so that T(a)=T(b) if and only if a=b), then T is a bijective function from Dom onto the range T(Dom)={T(a): aϵDom}.


An initial simple example will help understand how the use of bijective functions T can help achieve the above aim. In this example, the bijective functions T are linear transformations in a Galois field GF(Ψn) for some prime number Ψ and positive integer n, i.e. T: GF(Ψn)→GF(Ψn). For example, if the processor executing the code uses Z-bit registers for its data (e.g. Z=32), then a Z-bit number may be viewed as an element of the Galois field GF(2Z), so that Ψ=2 and n=Z.


Consider a predetermined function G that operates on elements s1 and s2 in the Galois field GF(Ψn) according to r=G(s1, s2)=s1+s2, where + is addition in the Galois field GF(Ψn). In this Galois field GF(Ψn), the addition s1+s2 is the same as an XOR operation, so that r=G(s1, s2)=s1⊕s2. Let s1*, s2* and r* be transformed versions of s1, s2 and r according to respective linear transformations T1, T2 and T3 in the Galois field GF(Ψn), so that s1*=T1(s1)=a·s1+b, s2*=T2(s2)=c·s2+d and r*=T3(r)=e·r+f for arbitrary non-zero constants a, c, and e in the Galois field GF(Ψn), and arbitrary constants b, d and f in the Galois field GF(Ψn) (so that constants a, c, and e may be randomly chosen from GF(Ψn)/{0} and constants b, d, and f may be randomly chosen from GF(Ψn)). Then r*=e·(s1+s2)+f=e·(a−1(s1*+b)+c−1(s2*+d))+f=g·s1*+h·s2*+i, where g=e·a−1, h=e·c−1 and i=e·(a−1b+c−1d)+f.


Thus, given the transformed versions s1*=T1(s1) and s2*=T2(s2) of the inputs s1 and s2, it is possible to calculate the transformed version r*=T3(r) of the result r without having to remove any of the transformations (i.e. without having to derive s1 and/or s2 from the versions s1* and s2*). In particular, having defined the transformations T1, T2 and T3 by their respective parameters (a and b for T1, c and d for T2, e and f for T3), a transformed version G* of the function G can be implemented according to G*(s1*, s2*)=g·s1*+h·s2*+i, where g=e·a−1, h=e·c−1 and i=e·(a−1b+c−1d)+f, so that r*=G*(s1*, s2*) can be calculated without determining/revealing s1 or s2 as an intermediate step in the processing. The result r can then be obtained from the transformed version r*=G*(s1*, s2*) of the result r, as r=e−1(r*+f))—thus, a linear transformation T4 (which is the inverse of T3) can be used to obtain the result r from the transformed version r*, where r=T4(r*)=e−1r*+e−1f. Alternatively, the transformed version r* of the result r could be an input to a subsequent function. In other words, given the function G that operates on inputs s1 and s2 to produce a result r, if transformations T1, T2 and T3 are specified (e.g. randomly, by choosing the parameters for the transformations randomly, or based on some other parameters/data), then a transformed version G* of the function G can be generated/implemented, where the function G* operates on transformed inputs s1*=T1(s1) and s2*=T2(s2) to produce a transformed result r*=T3(r) according to r*=g·s1*+h·s2*+i. If a person implements the function G* in a white-box environment, then that person cannot identify what operation the underlying function G is performing, nor can the person determine the actual result r nor in inputs s1 and s2 (since these values are never revealed when performing the function G*).


Note that it is possible for one or both of T1 and T2 to be the identity transformation (i.e. T1 is the identity transformation if T1(s1)=s1 for all values of s1, so that a=1 and b=0 in the above example, and T2 is the identity transformation if T2(s2)=s2, so that c=1 and d=0 in the above example). If this is the case, then the person implementing the function G* can identify the value assumed by the input s1 (if T1 is the identity transformation) and/or the value assumed by the input s2 (if T2 is the identity transformation). However, so long as T3 is not the identity transformation, then that person cannot identify what operation the underlying function G is performing, nor can the person determine the actual result r.


Similarly, it is possible for T3 to be the identity transformation (i.e. T3 is the identity transformation if T3(r)=r for all values of r, so that e=1 and f=0 in the above example). If this is the case, then the person implementing the function G* can identify the value assumed by the output r. However, so long as one or both of T1 and T2 are not the identity transformation, then that person cannot identify what operation the underlying function G is performing, nor can the person determine one or both of the initial inputs s1 and s2.


It will be appreciated that other functions G could be implemented as a corresponding “transformed version” G*, where the input(s) to the function G* are transformed versions of the input(s) to the function G according to respective injective (1-to-1) transformations and the output(s) of the function G* are transformed versions of the output(s) of the function G according to respective injective transformations. The transformations need not necessarily be linear transformations as set out above, but could be any other kind of injective transformation. Thus, given a function G that has u inputs s1, . . . , su and v outputs r1, . . . , rv, a transformed version G* of the function G can be implemented, where G* has transformed versions s1*, . . . , s*u of the inputs s1, . . . , su as its input and outputs transformed versions r1*, . . . , rv* of the outputs r1, . . . , rv, where si*=Ti(si) and ri*=Ti+u(ri) for injective functions T1, . . . , Tu+v. It is possible that two or more of the functions Ti might be the same as each other. The fact that this can be done for any function G is discussed below.


As set out below, the XOR operation, along with conditional branching on constants, forms a system which is Turing complete. This means that any mathematical function can be implemented using only (a) zero or more XOR operations and (b) zero or more conditional branchings on constants.


A Turing machine is a notional device that manipulates symbols on a strip of tape according to a table of rules. Despite its simplicity, a Turing machine can be adapted to simulate the logic of any computer algorithm. The Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols which the machine can read and write, one at a time, using a tape head. Operation is fully determined by a finite set of elementary instructions such as “in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1, change into state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6” etc. More precisely, a Turing machine consists of:

    • 1. A tape which is divided into cells, one next to the other. Each cell contains a symbol from some finite alphabet. The alphabet contains a special blank symbol (here written as ‘B’) and one or more other symbols. The tape is assumed to be arbitrarily extendable to the left and to the right, i.e. the Turing machine is always supplied with as much tape as it needs for its computation. Cells that have not been written to before are assumed to be filled with the blank symbol.
    • 2. A head that can read and write symbols on the tape and move the tape left and right one (and only one) cell at a time.
    • 3. A state register that stores the current state of the Turing machine, one of finitely many states. There is one special start state with which the state register is initialized.
    • 4. A finite table (occasionally called an action table or transition function) of one or more instructions (each usually expressed as a respective quintuple siaj→si1aj1dk) that specifies that: if the Turing machine is currently in the state si and has currently read the symbol aj from the tape (i.e. the symbol currently under the head is aj), then the Turing machine should carry out the following sequence of operations:
      • Write aj1 in place of the current symbol aj. (Symbol aj1 could be the blank symbol).
      • Control the position of the head, as described by dk. dk can have values: ‘L’ to indicate moving the head one cell left, ‘R’ to indicate moving the head one cell right; or ‘N’ to indicate not moving the head, i.e. staying in the same place.
      • Set the current state to be the state specified by si1 (which may be the same as, or different from, si).


Turing machines are very well-known and shall, therefore, not be described in more detail herein.


If it can be shown that any possible 5-tuple in the action table can be implemented using the XOR operation and conditional branching on constants, then we know that a processing system based on the XOR operation and conditional branching on constants is Turing complete (since any function or computer program can be implemented or modelled as a Turing machine, and all of the 5-tuples in the action table of that Turing machine can be implemented using the XOR operation and conditional branching on constants).


Consider the following mappings between the elements in the Turing machine and those in a system that uses only XORs and conditional branching on constants:

    • (a) The alphabet size of the Turing machine is set to the size Ψn of the alphabet GF(Ψn).
    • (b) Each state is implemented as a block of code with an identifier (used to jump to). Hence, the next state in the Turing machine can be realized by the Go To statement, conditioned on the current state and the content of the memory (i.e. conditional branching based on constants).
    • (c) The tape can be implemented as a memory holding the binary representation of the elements in the alphabet. Hence, the movements in the tape can be realized by changing the address pointing to the memory.
    • (d) A global variable, referred to as “Address”, is used to point to the memory location equivalent to the tape section under the head.
    • (e) We read the memory content using its address. To write into the memory, we XOR the memory content with a constant that yields the desired value.


The following pseudo-code shows a typical state implementation (for the state with identifier “i”); where values X1, X2, . . . , Xq are constants and “Addr” is the pointer to a memory location. The example shown below illustrates the three possibilities of incrementing, decrementing and not-changing the address “Addr” variable.















Block i:



 {


 Mem = Memory(Addr)
// Read data stored on the tape at the current



address Addr


 Begin switch(Mem)







  case 1: {Memory(Addr) = XOR(Mem,X1), Addr++, Go to Block j1}









// If the data read equals 1, then write the



value 1⊕X1 to the tape, move the head to the



right, and go to state j1







  case 2: {Memory(Addr) = XOR(Mem,X2), Addr−−, Go to Block j2}









// If the data read equals 2, then write the



value 2⊕X2 to the tape, move the head to the



left, and go to state j2







    .


    .


    .


  case q: {Memory(Addr) = XOR(Mem,Xq), Addr, Go to Block jq}









// If the data read equals q, then write the



value q⊕Xq to the tape, keep the head at its



current position, and go to state jq







  end switch (Mem)


  }









Thus, any possible 5-tuple in the action table can be implemented using the XOR operation and conditional branching. Hence, a system based on the XOR operation and conditional branching is Turing complete, i.e. any Turing machine can be implemented using only XORs (for point (e) above) and conditional jumps (for point (b) above).


As shown above, it is possible to perform an operation in the transformed domain (via the function G*) that is equivalent to r=s1⊕s2 without ever removing the transformations on r*, s1* or s2*. A conditional jump is implemented using the capabilities of the programming language. This means that it is possible to implement any mathematical operation in the transformed domain without ever removing the transformations on the data elements being processed. In other words, given any function G that has u inputs s1, . . . , su (u≥1) and v outputs r1, . . . , rv, (v≥1), a transformed version G* of the function G can be implemented, where G* is a function that has transformed versions s1*, . . . , s*u of the inputs s1, . . . , su as its input(s) and that outputs transformed versions, r1*, . . . , rv* of the output(s) r1, . . . , rv, where si*=Ti(si) and ri*=Ti+u(ri) for injective functions T1, . . . , Tu+v. It is possible that two or more of the functions Ti might be the same as each other. As set out above, the injective functions T1, . . . , Tu+v may be defined (e.g. randomly generated injective functions), and, given the particular injective functions T1 . . . , Tu+v that are defined, a particular transformed version G* of the function G results (or is defined/obtained/implemented).


The use of bijective functions T to obfuscate the implementation of a predetermined function, and the various methods of such use, are well-known in this field of technology—see, for example: “White-Box Cryptography and an AES Implementation”, by Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. Van Oorschot, in Selected Areas in Cryptography: 9th Annual International Workshop, SAC 2002, St. John's, Newfoundland, Canada, Aug. 15-16, 2002; “A White-Box DES Implementation for DRM Applications”, by Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot, in Digital Rights Management: ACM CCS-9 Workshop, DRM 2002, Washington, D.C., USA, Nov. 18, 2002; U.S. 61/055,694; WO2009/140774; U.S. Pat. Nos. 6,779,114; 7,350,085; 7,397,916; 6,594,761; and 6,842,862, the entire disclosures of which are incorporated herein by reference.


4—Obfuscated Performance, and Implementation, of a Predetermined Function

As will be described in more detail below, embodiments of the invention relate to a predetermined function F. Some embodiments relate to obfuscated performance (or execution or running) of the function F. The function F may be performed, for example, by the system 100 (for example by the processor 108 executing a computer program that implements, amongst other things, the function F). Other embodiments relate to configuring a processor to implement the function F in an obfuscated manner (such as arranging the processor 108 to execute a suitable computer program). Embodiments of the invention aim to be able to execute code, that implements the function F, securely in a white-box environment.


The function F is a function as described in section 2 above, namely one for which one or more corresponding functions (referred to herein as “sub-functions”) F1, . . . , FN can be defined so that, for a set of inputs {x1, . . . , xW} for the function F, a set of outputs {y1, . . . , yV} from the function F that corresponds to the set of inputs {x1, . . . , xW} may be generated by:


(a) representing the set of inputs {x1, . . . , xW} as a corresponding set of values {p1, . . . , pM}, wherein each value pj (j=1, . . . , M) comprises at least part of each input of a corresponding plurality of the inputs;


(b) generating a set of one or more results {q1, . . . , qN} from the set of values {p1, . . . , pM}, by applying each sub-function Fj (j=1, . . . , N) to a corresponding set of one or more values in the set of values {p1, . . . , pM} to generate a respective result qj; and


(c) forming each output yi as either a part of a corresponding one of the results or as a combination of at least part of each result of a corresponding plurality of the results.


Thus, the function F is a function that can be implemented according to the method 300 of FIG. 3. As discussed above, all computer-implemented functions F can be implemented, or expressed, in the manner set out above, so that embodiments of the invention are applicable to all predetermined computer-implemented functions F.



FIG. 8 schematically illustrates a method 800 for performing (or implementing) the function F in an obfuscated form according to embodiments of the invention, i.e. for performing (or implementing) the function F in a secured manner suitable for a white-box environment. The method 800 is the same as the method 300, except that the step 306 of the method 300 is replaced by steps 802, 804 and 806 in the method 800. As the steps 302, 304 and 308 are the same in the method 800 as they are in the method 300, they shall not be described again herein.


To recap, at the step 306 of the method 300, the set of values {p1, . . . , pM} was processed, using the sub-functions F1, . . . , FN, so as to generate the set of results {q1, . . . , qN}. In embodiments of the invention, transformed versions of the functions F1, . . . , FN are used instead of the functions F1, . . . , FN.


In particular, as discussed above, for each j=1, . . . , N, there is a corresponding set of nj distinct indices {βj,1, . . . , βj,nj} (where 1≤βj,k≤M for 1≤k≤nj, and nj≥1) so that qj is calculated as a function of the set of nj values







p

β

j
,
1



,





,

p

β

j
,

n
j









according to a predetermined function Fj, i.e.







q
j

=



F
j



(


p

β

j
,
1



,





,

p

β

j
,

n
j





)


.






Therefore, at the step 802, for each j=1, . . . , N, transformed versions







p

β

j
,
1


*

,





,

p

β

j
,

n
j



*






of the nj values







p

β

j
,
1



,





,

p

β

j
,

n
j









are obtained, using respective infective transforms Tj,1, . . . , Tj,nj, i.e. pβj,k*=Tj,k(pβj,k) for j=1, . . . , M and k=1, . . . , nj.


It will be appreciated that all of the transforms Tj,k may be different from each other for j=1, . . . , M and k=1, . . . , nj. However, it will be appreciated that some or all of the transforms Tj,k may be the same as each other for j=1, . . . , M and k=1, . . . , nj. For example, there may be a single transform T such that Tj,k=T for j=1, . . . , M and k=1, . . . , nj. Similarly, there may be M different transforms T′1, . . . , T′M, so that Tj,k=T′i if βj,k=i, i.e. each value pi is only transformed by one transform T′i. In some embodiments, at least one of the values pi is transformed by two or more different transforms to obtain two or more corresponding different transformed versions of the value pi. Other embodiments may make use of different mixes/combinations of transforms.


As discussed above in section 3, the transforms Tj,k (j=1, . . . , M and k=1, . . . , nj) may be any injective functions (so that Tj,k is a 1-1 function over the domain of the possible values that pj may assume). In some embodiments, some or all of the transforms Tj,k (j=1, . . . , M and k=1, . . . , nj) are linear transformations (such as those set out in section 3 above), but it will be appreciated that this need not be the case. Each transform Tj,k (j=1, . . . , M and k=1, . . . , nj) is predetermined, and may be defined, for example, by randomly selecting one or more parameters that define the transform or based on other data/parameters—for example, if transform Tj,k is a linear transform so that pβj,k*=Tj,k(pβj,k)=aj,kpβj,k+bj,k for a non-zero constant aj,k and a constant bj,k, then aj,k and bj,k may be randomly chosen (prior to performing the method 800).


At the step 804, transformed versions F1*, . . . , FN* of the sub-functions F1, . . . , FN are used to generate a set of transformed results {q1*, . . . , qN*}. In particular,







q
j
*

=


F
j
*



(


p

β

j
,
1


*

,





,

p

β

j
,

n
j



*


)







for j=1, . . . , N.


At the step 806, the set of results {q1, . . . , qN} is obtained from the set of transformed results {q1*, . . . , qN*}. In particular, for j=1, . . . , N, the result qj is calculated by applying a transform {tilde over (T)}j to the transformed result qj*, so that qj={tilde over (T)}j(qj*). It will be appreciated that all of the transforms {tilde over (T)}j may be different from each other, for j=1, . . . , N. However, it will be appreciated that some or all of the transforms {tilde over (T)}j may be the same as each other, for j=1, . . . , N.


As discussed above in section 3, the transforms {tilde over (T)}j (j=1, . . . , N) may be any injective functions (so that {tilde over (T)}j is a 1-1 function over the domain of the possible values that qj* may assume). In some embodiments, one or more of the transforms {tilde over (T)}j (j=1, . . . , N) are linear transformations (such as those set out in section 3 above), but it will be appreciated that this need not be the case. Each transform {tilde over (T)}j (j=1, . . . , N) is predetermined, and may be defined, for example, by randomly selecting one or more parameters that define the transform or based on other data/parameters—for example, if transform {tilde over (T)}j is a linear transform so that qj={tilde over (T)}j (qj*)=ajqj*+bj for a non-zero constant aj and a constant bj, then aj and bj may be randomly chosen (prior to performing the method 800).


The initial sub-function Fj (j=1, . . . , N) has nj inputs pβj,1, . . . , pβj,nj and an output qj. Thus, given the associated transforms Tj,1, . . . , Tj,nj, and {tilde over (T)}j, the transformed version Fj* of the function Fj may be defined (as set out in section 3 above), where the function Fj* has nj inputs







p

β

j
,
1


*

,





,

p

β

j
,

n
j



*






and an output qj*, where pβj,k*=Tj,k(pβj,k) for j=1, . . . , M and k=1, . . . , nj and qj*={tilde over (T)}j−1(qj).


Thus, for j=1, . . . , N, the result qj is effectively calculated as:










q
j

=





T
j

~



(

q
j
*

)








=





T
j

~



(


F
j
*



(


p

β

j
,
1


*

,





,

p

β

j
,

n
j



*


)


)








=





T
j

~



(


F
j
*



(



T

j
,
1




(

p

β

j
,
1



)


,





,


T

j
,

n
j





(

p

β

j
,

n
j




)



)


)









The transformed version Fj* of the function Fj may be determined at the time that the transforms Tj,1, . . . , Tj,nj and {tilde over (T)}j are determined/set, so that the transformed version Fj* is then ready for subsequent use when carrying out the method 800.


Note that in some embodiments of the invention, the step 302 is optional in the method 800. In particular, when an entity or a module performs or implements the function F, that entity or module may receive or obtain the set of values {p1, . . . , pM} instead of receiving or obtaining the set of inputs {x1, . . . , xW} at the step 302. For example, a first entity or module may perform or implement the function F in an obfuscated manner as set out above, and a second entity or module may be arranged to determine the set of values {p1, . . . , pM} from the set of inputs {x1, . . . , xW} and then provide the set of values {p1, . . . , pM} to the first entity or module. In such cases, the first entity or module performs the method 800 without the optional step 302.


Additionally, the step 304 is optional in the method 800. In particular, when an entity or a module performs or implements the function F, that entity or module may receive or obtain the set of transformed values {pβj,k*: j=1, . . . , M and k=1, . . . , nj} instead of receiving or obtaining the set of values {p1, . . . , pM} at the step 304. For example, a first entity or module may perform or implement the function F in an obfuscated manner as set out above, and a second entity or module may be arranged to determine the set of transformed values {pβj,k*: j=1, . . . , M and k=1, . . . , nj} and provide this set to the first entity or module. In such cases, the first entity or module performs the method 800 without the optional steps 302 and 304.


This can arise in a number of ways. For example, the second entity or module may obtain the set of inputs {x1, . . . , xW} and derive the set of values {p1, . . . , pM} (or may simply obtain the set of values {p1, . . . , pM}) and may then determine the set of transformed values {pβj,k*: j=1, . . . , M and k=1, . . . , nj} and provide this set of transformed values to the first entity or module. Alternatively, the original set of values {p1, . . . , pM} may, itself, never have been obtained. For example, suppose that the intention is to perform the function H=F° G, so that H(x)=F(G(x)). Then both the function G and the function F can be implemented using embodiments of the invention. When implementing the function G, a set of transformed results will be produced (at the step 804 for the function G). One or more of these transformed results could then be used in the set of transformed values for the function F—thus, the step 804 for the function G may form part of the step 802 for the function F (without needing to perform the steps 302 and 304 for the function F).


Similarly in some embodiments of the invention, the step 308 is optional in the method 800. In particular, when an entity or a module performs or implements the function F, that entity or module may simply output the set of results {q1, . . . , qN} instead of outputting the set of outputs {y1, . . . , yW} at the step 308. For example, a first entity or module may perform or implement the function F in an obfuscated manner as set out above, and a second entity or module may be arranged to determine the set of outputs {y1, . . . , yW} from the set of results {q1, . . . , qN} provided by the first entity or module. In such cases, the first entity or module performs the method 800 without the optional step 308.


Additionally, the step 806 is optional in the method 800. In particular, when an entity or a module performs or implements the function F, that entity or module may output the set of transformed results {q1*, . . . , qN*}. For example, a first entity or module may perform or implement the function F in an obfuscated manner as set out above and provide the set of transformed results {q1*, . . . , qN*} to a second entity or module that may be arranged to determine the set of outputs {y1, . . . , yW} from the set of transformed results {q1*, . . . , qN*} itself. In such cases, the first entity or module performs the method 800 without the optional steps 806 and 308.


Indeed, the set of outputs {y1, . . . , yN} and, indeed, the set of results {q1, . . . , qN}, need not necessarily be derived or obtained. For example, suppose that the intention is to perform the function H=G° F., so that H(x)=G(F(x)). Then both the function G and the function F can be implemented using embodiments of the invention. When implementing the function F, a set of transformed results will be produced (at the step 804 for the function F). One or more of these transformed results could then be used in the set of transformed values for the function G. Thus, the set of transformed results generated when implementing the function F may be used directly as inputs to the function G without deriving the corresponding set of results and/or set of outputs for the function F—i.e., the step 804 for the function F may form part of the step 802 for the function G (without needing to perform the steps 806 and 308 for the function F).


As can be seen from the above, embodiments of the invention make use of the synergy between (a) having the values pj (j=1, . . . , M) dependent on multiple inputs xi and (b) using transformed versions Fj* of the sub-functions Fj (j=1, . . . , N). In particular, suppose that the function F were a function that generates output yi based on input xi, so that yi=F(xi). It would have been possible to implement the function F as a transformed function F* as set out above. However, in doing so, each input xi in the set of inputs {x1, . . . , xW} would have been processed separately (e.g. a transformed output yi* would have been generated as yi*=F*(xi*), i.e. as a function of a transformed input xi* for i=1, . . . , W). Such separate processing makes the task of an attacker easier, where the attacker wishes to determine the input xi and/or the output yi and/or one or more secret values used by the function F (e.g. a cryptographic key). For example, calculation of the values xi* as set out above could be implemented via a loop, such as:

















For i = 1 to W



  yi*=F*(xi*)



Next i










The presence of such loops is detectable by, and exploitable by attackers. In contrast, as embodiments of the invention are based around operations on values pj (that inherently are each dependent on multiple inputs xi), the task of the attacker is made harder. For example, looped processing (as set out above) can be avoided or minimized, making it harder for an attacker to be successful in their attack.


What is more, efficiency gains can be achieved, as multiple outputs are effectively determined at the same time. In particular, having the values pj (j=1, . . . , M) dependent on multiple inputs xi, the full bit-width of the processing system can be leveraged. For example, if the inputs xi are 8-bit values and the processor is a 32-bit processor, then each value pj could (for example) be made up of 4 different inputs), thereby making better use of the processor's capabilities. This helps mitigate the performance loss sometime experienced when performing obfuscation using transforms as set out in section 3 above.


5—Modifications

It will be appreciated that the methods described have been shown as individual steps carried out in a specific order. However, the skilled person will appreciate that these steps may be combined or carried out in a different order whilst still achieving the desired result.


It will be appreciated that embodiments of the invention may be implemented using a variety of different information processing systems. In particular, although the figures and the discussion thereof provide an exemplary computing system and methods, these are presented merely to provide a useful reference in discussing various aspects of the invention. Embodiments of the invention may be carried out on any suitable data processing device, such as a personal computer, laptop, personal digital assistant, mobile telephone, set top box, smartcard, television, server computer, etc. Of course, the description of the systems and methods has been simplified for purposes of discussion, and they are just one of many different types of system and method that may be used for embodiments of the invention. It will be appreciated that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or elements, or may impose an alternate decomposition of functionality upon various logic blocks or elements.


It will be appreciated that the above-mentioned functionality may be implemented as one or more corresponding modules as hardware and/or software. For example, the above-mentioned functionality may be implemented as one or more software components for execution by a processor of the system. Alternatively, the above-mentioned functionality may be implemented as hardware, such as on one or more field-programmable-gate-arrays (FPGAs), and/or one or more application-specific-integrated-circuits (ASICs), and/or one or more digital-signal-processors (DSPs), and/or other hardware arrangements. Method steps implemented in flowcharts contained herein, or as described above, may each be implemented by corresponding respective modules; multiple method steps implemented in flowcharts contained herein, or as described above, may be implemented together by a single module.


It will be appreciated that, insofar as embodiments of the invention are implemented by a computer program, then a storage medium and a transmission medium carrying the computer program form aspects of the invention. The computer program may have one or more program instructions, or program code, which, when executed by a computer carries out an embodiment of the invention. The term “program” as used herein, may be a sequence of instructions designed for execution on a computer system, and may include a subroutine, a function, a procedure, a module, an object method, an object implementation, an executable application, an applet, a servlet, source code, object code, a shared library, a dynamic linked library, and/or other sequences of instructions designed for execution on a computer system. The storage medium may be a magnetic disc (such as a hard drive or a floppy disc), an optical disc (such as a CD-ROM, a DVD-ROM or a BluRay disc), or a memory (such as a ROM, a RAM, EEPROM, EPROM, Flash memory or a portable/removable memory device), etc. The transmission medium may be a communications signal, a data broadcast, a communications link between two or more computers, etc.

Claims
  • 1. A method of obfuscated performance of a predetermined function in a computing environment, wherein the predetermined function is arranged to operate on a set of one or more operands, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs comprising a plurality of inputs for the predetermined function wherein the set of inputs represents at least one instance of said set of one or more operands and each input is an operand for the predetermined function, a corresponding set of outputs is generatable by (a) representing the set of inputs as a corresponding set of values comprising a plurality of values, wherein each value comprises a part of each input of a corresponding plurality of inputs in the set of inputs, (b) generating a set of one or more results from the corresponding set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the corresponding set of values, and (c) forming each output as either a part of a corresponding one of the results of the set of one or more results or as a combination of at least part of each result of a corresponding plurality of the set of one or more results; wherein the method comprises:obtaining, for each value in the corresponding set of values, one or more corresponding transformed versions of said value, wherein each transformed version of said value is a result of applying a respective bijection, that corresponds to said transformed version, to said value; andgenerating, by at least one computing device, a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying a respective second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values in the set of one or more values corresponding to the first function, wherein, for the respective second function, there is a corresponding bijection for obtaining the respective result from said transformed result.
  • 2. The method of claim 1, wherein said obtaining comprises: obtaining the corresponding set of values; andgenerating, for each value in the obtained corresponding set of values, said one or more corresponding transformed versions of said value, wherein each of said one or more corresponding transformed versions of said value is generated by applying said respective bijection, that corresponds to said transformed version, to said value.
  • 3. The method of claim 2, wherein obtaining the corresponding set of values comprises: obtaining the set of inputs; andgenerating the corresponding set of values from the set of inputs.
  • 4. The method of claim 1, wherein said obtaining comprises receiving, at a first module that performs said obtaining and said generating, said one or more transformed versions of each value in said corresponding set of values from a second module.
  • 5. The method of claim 1, comprising: generating the set of results from the set of transformed results by applying, to each transformed result, the bijection that corresponds to the second function for that transformed result.
  • 6. The method of claim 5, comprising: obtaining the corresponding set of outputs from the set of results.
  • 7. The method of claim 1, comprising outputting the set of transformed results, from a first module that performs said obtaining and said generating to a second module.
  • 8. The method of claim 1, wherein for each value in the corresponding set of values, the at least part of each input of a corresponding plurality of the inputs comprises all of each input of the corresponding plurality of inputs.
  • 9. The method of claim 1, wherein for each value in the corresponding set of values, the at least part of each input of a corresponding plurality of the inputs comprises a predetermined number of bits of each input of the corresponding plurality of inputs.
  • 10. The method of claim 9, wherein the predetermined number is 1.
  • 11. The method of claim 1, wherein the predetermined function corresponds to a lookup table that maps an input in the set of inputs to a corresponding output in the set of outputs.
  • 12. A method of configuring a computer hardware processor to implement a predetermined function in an obfuscated manner, wherein the predetermined function is arranged to operate on a set of one or more operands, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs comprising a plurality of inputs for the predetermined function wherein the set of inputs represents at least one instance of said set of one or more operands and each input is an operand for the predetermined function, a corresponding set of outputs is generatable by (a) representing the set of inputs as a corresponding set of values comprising a plurality of values, wherein each value comprises a part of each input of a corresponding plurality of inputs in the set of inputs, (b) generating a set of one or more results from the corresponding set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the corresponding set of values, and (c) forming each output as either a part of a corresponding one of the results of the set of one or more results or as a combination of at least part of each result of a corresponding plurality of the set of one or more results; wherein the methodcomprises: for each firstfunction: specifying, for each value in the corresponding set of one or more values for the first function, a corresponding bijection;specifying a bijection for the first function; andbased on the specified bijections, determining a second function that corresponds to the first function, wherein the second function, upon application to the one or more values of the respective set of one or more values for the first function when transformed under their corresponding bijections, outputs a transformed version, under the bijection for the first function, of the result corresponding to the first function; andconfiguring the processor to: obtain, for each value in the corresponding set of values, one or more corresponding transformed versions of said value, wherein each transformed version of said value is a result of applying the bijection, that corresponds to said value in the corresponding set of values, to said value; andgenerate a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying the respective second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values in the set of one or more values corresponding to the first function.
  • 13. An apparatus comprising one or more computer hardware processors that are arranged to carry out obfuscated performance of a predetermined function, wherein the predetermined function is arranged to operate on a set of one or more operands, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs comprising a plurality of inputs for the predetermined function wherein the set of inputs represents at least one instance of said set of one or more operands and each input is an operand for the predetermined function, a corresponding set of outputs is generatable by (a) representing the set of inputs as a corresponding set of values comprising a plurality of values, wherein each value comprises a part of each input of a corresponding plurality of inputs in the set of inputs, (b) generating a set of one or more results from the corresponding set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the corresponding set of values, and (c) forming each output as either a part of a corresponding one of the results of the set of one or more results or as a combination of at least part of each result of a corresponding plurality of the set of one or more results; wherein the obfuscated performance of a predetermined function comprises:obtaining, for each value in the corresponding set of values, one or more corresponding transformed versions of said value, wherein each transformed version of said value is a result of applying a respective bijection, that corresponds to said transformed version, to said value; andgenerating a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying a respective second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values in the set of one or more values corresponding to the first function, wherein, for the respective second function, there is a corresponding bijection for obtaining the respective result from said transformed result.
  • 14. A non-transitory computer-readable medium storing a computer program that, when executed by one or more processors, causes the one or more processors to carry out obfuscated performance of a predetermined function, wherein the predetermined function is arranged to operate on a set of one or more operands, wherein for the predetermined function there is one or more corresponding first functions so that, for a set of inputs comprising a plurality of inputs for the predetermined function wherein the set of inputs represents at least one instance of said set of one or more operands and each input is an operand for the predetermined function, a corresponding set of outputs is generatable by (a) representing the set of inputs as a corresponding set of values comprising a plurality of values, wherein each value comprises a part of each input of a corresponding plurality of inputs in the set of inputs, (b) generating a set of one or more results from the corresponding set of values, where each result is generated by applying a corresponding first function to a corresponding set of one or more values in the corresponding set of values, and (c) forming each output as either a part of a corresponding one of the results of the set of one or more results or as a combination of at least part of each result of a corresponding plurality of the set of one or more results; wherein the obfuscated performance of the predetermined function comprises: obtaining, for each value in the corresponding set of values, one or more corresponding transformed versions of said value, wherein each transformed version of said value is a result of applying a respective bijection, that corresponds to said transformed version, to said value; andgenerating a set of transformed results corresponding to the set of results, wherein each transformed result corresponds to a respective result and is generated by applying a respective second function, that corresponds to the first function that corresponds to the respective result, to a transformed version of the one or more values in the set of one or more values corresponding to the first function, wherein, for the respective second function, there is a corresponding bijection for obtaining the respective result from said transformed result.
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/056421 3/31/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/149827 10/8/2015 WO A
US Referenced Citations (12)
Number Name Date Kind
6594761 Chow Jul 2003 B1
6779114 Chow Aug 2004 B1
6842862 Chow et al. Jan 2005 B2
7350085 Johnson et al. Mar 2008 B2
7397916 Johnson et al. Jul 2008 B2
8543835 Michiels Sep 2013 B2
8700915 Michiels Apr 2014 B2
20030163718 Johnson Aug 2003 A1
20030221121 Chow et al. Nov 2003 A1
20040139340 Johnson Jul 2004 A1
20120002807 Michiels Jan 2012 A1
20120093313 Michiels Apr 2012 A1
Foreign Referenced Citations (7)
Number Date Country
101401348 Apr 2009 CN
102016871 Apr 2011 CN
103004130 Mar 2013 CN
103559458 Feb 2014 CN
2009140774 Nov 2009 WO
2014154271 Feb 2014 WO
2015149827 Oct 2015 WO
Non-Patent Literature Citations (19)
Entry
International Search Report and Written Opinion cited in corresponding International Application No. PCT/EP2014/056421 dated Dec. 2, 2014.
Chow S et al: “White-box cryptography and an AES implementation”, Jan. 1, 2003; 20030000, Jan. 1, 2003 (Jan. 1, 2003), pp. 250-270, XP002462505.
James A Muir: “A Tutorial on White-box AES”,International Association for Cryptologic Research vol. 20130228: 053134, Feb. 28, 2013 (Feb. 28, 2013), pp. 1-25, XP061007352.
Chow S et al: “A white-box DES implementation for DRM applications”, Jan. 1, 2003; 20030000, Jan. 1, 2003 (Jan. 1, 2003), pp. 1-15, XP002462504.
Plasmans M: “White-Box Cryptography for Digital Content Protection”, Internet Citation, May 2005 (May 2005), XP003019136, Retrieved from the Internet: URL:http://www.alexandria.tue.nl/extral/afstversl/wsk-i.plasmans2005.pdf [retrieved on Jan. 1, 2007].
International Preliminary Report on Patentability issued in PCT Application No. PCT/EP2014/056421, dated Oct. 13, 2016, 8 pages.
Wikipedia, “Bijection”, website: https://en.wikipedia.org/w/index.php?title=Bijection&oldid=601397690, obtained on Jan. 12, 2016, 6 pages.
Wikipedia, “Bit slicing”, website: https://en.wikipedia.org/w/index.php?title=Bit_slicing&oldid=590022783, obtained on Jan. 12, 2016, 3 pages.
Wikipedia, “Central processing unit”, website: https://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=600744248, obtained on Jan. 12, 2016, 15 pages.
Wikipedia, “Circuit minimization for Boolean functions”, website: https://en.wikipedia.org/w/index.php?title=Circuit_minimization_for_Boolean_functi . . . obtained on Jan. 12, 2016, 3 pages.
Wikipedia, “Espresso heuristic logic minimizer”, website: https://en.wikipedia.org/w/index.php?title=Espresso_heuristic_logic_minimizer&oldi . . . , obtained on Jan. 12, 2016, 4 pages.
Wikipedia, “Finite impulse response”, website: https://en.wikipedia.org/w/index.php?title=Finite_impulse_response&oldid=601145459, obtained on Jan. 12, 2016, 6 pages.
Wikipedia, “Functional completeness”, website: https://en.wikipedia.org/w/index.php?title=Functional_completeness&oldid=579647479, obtained on Jan. 12, 2016, 5 pages.
Wikipedia, “Kamaugh map”, website: https://en.wikipedia.org/w/index.php?title=Karnaugh_map&oldid=601618348, obtained on Jan. 12, 2016, 8 pages.
Wikipedia, “Lookup table”, website: https://en.wikipedia.org/w/index.php?title=Lookup_table&oldid=598220793, obtained on Jan. 12, 2016, 8 pages.
Wikipedia, “Bitslice DES”, website: https://web.archive.org/web/20131021232909/http://www.darkside.com.au/bitslice/, obtained on Sep. 8, 2017, 2 pages.
Wikipedia, “Graphics processing unit” website: https://en.wikipedia.org/w/index.php?title=Graphics_processing_unit&oldid=601713 . . . , obtained on Jan. 12, 2016, 10 pages.
Wikipedia, “SWAR” website: https://en.wikipedia.org/w/index.php?title=SWAR&oldid=600625450, obtained on Jan. 12, 2016, 3 pages.
Chinese First Office Action for Chinese Application No. 201480079433.9, dated Dec. 3, 2018, 7 pages.
Related Publications (1)
Number Date Country
20170126398 A1 May 2017 US