Object classification for autonomous navigation systems

Information

  • Patent Grant
  • 11847832
  • Patent Number
    11,847,832
  • Date Filed
    Wednesday, November 11, 2020
    4 years ago
  • Date Issued
    Tuesday, December 19, 2023
    a year ago
Abstract
A navigational control method for a mobile automation apparatus includes: controlling a depth sensor to capture depth data representing a portion of a facility containing an obstacle; identifying the obstacle from the depth data; determining a probability that the obstacle is static; based on the probability, assigning the obstacle one of a dynamic class, a static class, and at least one intermediate class; updating a map to include a position of the obstacle, and the assigned class; and selecting, based on the assigned class, a navigational control action from a first action type associated with the dynamic class and the intermediate class, and a second action type associated with the static class.
Description
BACKGROUND

Autonomous or semi-autonomous systems, such as a mobile automation apparatus configured to travel a facility (e.g. a retail facility) to collect data therein, perform various navigational actions to detect and avoid obstacles within the facility. Different navigational actions may be taken according to the nature of a given obstacle. However, changes in an obstacle's state and/or imperfect sensor information may lead to inaccurate determination of an obstacle's nature, resulting in sub-optimal navigational behavior by the apparatus.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2 depicts a mobile automation apparatus in the system of FIG. 1.



FIG. 3 is a block diagram of certain internal hardware components of the mobile automation apparatus in the system of FIG. 1.



FIG. 4 is a flowchart of a method for obstacle classification at the apparatus of FIG. 1.



FIG. 5 is a diagram illustrating an example performance of the method of FIG. 4.



FIG. 6 is a diagram illustrating another example performance of the method of FIG. 4.



FIG. 7 is a diagram illustrating a further example performance of the method of FIG. 4.



FIG. 8 is a diagram illustrating another example performance of the method of FIG. 4.



FIG. 9 is a flowchart of a method of determining a probability at block 430 of the method of FIG. 4.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a navigational control method for a mobile automation apparatus, comprising: controlling a depth sensor to capture depth data representing a portion of a facility containing an obstacle; identifying the obstacle from the depth data; determining a probability that the obstacle is static; based on the probability, assigning the obstacle one of (i) a dynamic class, (ii) a static class, and (iii) at least one intermediate class; updating a map to include a position of the obstacle, and the assigned class; and selecting, based on the assigned class, a navigational control action from (i) a first action type associated with the dynamic class and the intermediate class, and (ii) a second action type associated with the static class.


Additional examples disclosed herein are directed to a computing device, comprising: a depth sensor; a locomotive assembly; and a navigational controller configured to: control the depth sensor to capture depth data representing a portion of a facility containing an obstacle; identify the obstacle from the depth data; determine a probability that the obstacle is static; based on the probability, assign the obstacle one of (i) a dynamic class, (ii) a static class, and (iii) at least one intermediate class; update a map to include a position of the obstacle, and the assigned class; and select, based on the assigned class, a navigational control action from (i) a first action type associated with the dynamic class and the intermediate class, and (ii) a second action type associated with the static class.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one client computing device 104 via communication links 105, illustrated in the present example as including wireless links. In the present example, the links 105 are provided by a wireless local area network (WLAN) deployed via one or more access points (not shown). In other examples, the server 101, the client device 104, or both, are located remotely (i.e. outside the environment in which the apparatus 103 is deployed), and the links 105 therefore include wide-area networks such as the Internet, mobile networks, and the like. The system 100 also includes a dock 106 for the apparatus 103 in the present example. The dock 106 is in communication with the server 101 via a link 107 that in the present example is a wired link. In other examples, however, the link 107 is a wireless link.


The client computing device 104 is illustrated in FIG. 1 as a mobile computing device, such as a tablet, smart phone or the like. In other examples, the client device 104 is implemented as another type of computing device, such as a desktop computer, a laptop computer, another server, a kiosk, a monitor, and the like. The system 100 can include a plurality of client devices 104 in communication with the server 101 via respective links 105.


The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112 (also referred to as items), which may also be referred to as items. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in FIG. 1) extending from the shelf back 116 to a shelf edge 118-1, 118-2, 118-3. A variety of other support structures may also be present in the facility, such as pegboards, tables, and the like.


The shelf modules 110 (also referred to as sub-regions of the facility) are typically arranged in a plurality of aisles (also referred to as regions of the facility), each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility, as well as the apparatus 103, may travel. As will be apparent from FIG. 1, the term “shelf edge” 118 as employed herein, which may also be referred to as the edge of a support surface (e.g., the support surfaces 117) refers to a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, the shelf edge 118-3 is at an angle of about ninety degrees relative to the support surface 117-3 and to the underside (not shown) of the support surface 117-3. In other examples, the angles between the shelf edge 118-3 and the adjacent surfaces, such as the support surface 117-3, is more or less than ninety degrees.


The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110.


While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 and the items 112 supported by the shelves 110 (generally referred to as shelf data or captured data). Navigation may be performed according to a frame of reference 102 established within the retail facility. The apparatus 103 therefore tracks its pose (i.e. location and orientation) in the frame of reference 102. As will be discussed in greater detail below, the apparatus 103 also detects obstacles within the facility, and executes various navigational processes to traverse certain shelves 110 for imaging as mentioned above, while avoiding such obstacles. The specific navigational processes executed in response to the presence of an obstacle in the path of the apparatus 103 depends at least in part on various attributes of the obstacle.


Obstacles may include the shelves 110, customers within the facility, shopping carts or other objects, and the like. That is, certain obstacles may be mobile, while others may be stationary. Further, certain obstacles may be mobile at some times, and stationary at other times. A mobile (i.e. dynamic) obstacle in the path of the apparatus 103 may move out of the path after a period of time, and the apparatus 103 may therefore be configured, upon encountering a dynamic obstacle, to wait for a period of time with the expectation that the current path will be cleared of the obstacle. A stationary (i.e. static) obstacle, on the other hand, is likely to remain within the path of the apparatus 103. Therefore, the apparatus 103 may be configured, if faced with a static obstacle, to generate a new navigational path to avoid the obstacle. Generation of a new path incurs a computational cost, and may also slow the completion of a data collection task by the apparatus 103, or cause premature termination of the task, e.g. if a given module 110 is rendered inaccessible by a static obstacle.


In other words, the apparatus 103 is configured to proceed differently depending on the expected behavior of the obstacle. Accurately assessing expected obstacle behavior may be difficult, however, as a result of artifacts in sensor data, and changes in the nature of the obstacles themselves. A shopping cart, for example, may be static at some times and dynamic at other times.


The apparatus 103 is therefore configured, as discussed in detail below, to implement a probabilistic model for classifying obstacles, and to employ an obstacle classification system and resulting navigational controls to mitigate the costs in time and/or computational resources that can result from attempting to navigate around static obstacles.


The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the facility and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103 and post-processing of captured data, such as a repository 123. The repository 123 can contain, for example, a map of the facility, operational constraints for use in controlling the apparatus 103, the image and/or depth data captured by the apparatus 103, and the like.


The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).


The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products 112 in the captured data, and detect status information corresponding to the objects). The server 101 maintains, in the memory 122, an application 125 executable by the processor 120 to perform such subsequent processing.


The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process notifications and other information received from the server 101. For example, the client device 104 includes a display 132 controllable to present information received from the server 101.


Turning now to FIG. 2, the mobile automation apparatus 103 is shown in greater detail. The apparatus 103 includes a chassis 201 containing a locomotive assembly 203 (e.g. one or more electrical motors driving wheels, tracks or the like). The apparatus 103 further includes a sensor mast 205 supported on the chassis 201 and, in the present example, extending upwards (e.g., substantially vertically) from the chassis 201. The mast 205 supports the sensors 108 mentioned earlier. In particular, the sensors 108 include at least one imaging sensor 207, such as a digital camera. In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7 oriented to face the shelves 110.


The mast 205 also supports at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. In the present example, the mast 205 supports two LIDAR sensors 211-1 and 211-2. As shown in FIG. 2, the cameras 207 and the LIDAR sensors 211 are arranged on one side of the mast 205, while the depth sensor 209 is arranged on a front of the mast 205. That is, the depth sensor 209 is forward-facing (i.e. captures data in the direction of travel of the apparatus 103), while the cameras 207 and LIDAR sensors 211 are side-facing (i.e. capture data alongside the apparatus 103, in a direction perpendicular to the direction of travel). In other examples, the apparatus 103 includes additional sensors, such as one or more RFID readers, temperature sensors, and the like.


The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. The illumination assemblies 213 may be referred to collectively as an illumination subsystem. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The cameras 207 and lidars 211 are oriented on the mast 205 such that the fields of view of the sensors each face a shelf 110 along the length 119 of which the apparatus 103 is traveling. The apparatus 103 is configured to track a pose of the apparatus 103 (e.g. a location and orientation of the center of the chassis 201) in the frame of reference 102, permitting data captured by the apparatus 103 to be registered to the frame of reference 102 for subsequent processing.


Turning to FIG. 3, certain internal components of the mobile automation apparatus 103 are shown. In particular, apparatus 103 includes a special-purpose navigational controller, such as a processor 220 interconnected with a non-transitory computer readable storage medium, such as a memory 222. The memory 222 includes a combination of volatile (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 220 and the memory 222 each comprise one or more integrated circuits.


The apparatus 103 also includes a communications interface 224, containing suitable hardware components to enable communication between the apparatus 103 and other computing devices, including the server 101. The interface 224 may enable, for example, wired communications via the dock 106, wireless communications via the above-mentioned WLAN, or both. Via the interface 224, the apparatus 103 may receive instructions from the server 101 to travel to certain portions of the facility to collect image and/or depth data depicting the shelves 110.


The memory 222 stores computer readable instructions for execution by the processor 220. In particular, the memory 222 stores a navigation application 228 which, when executed by the processor 220, configures the processor 220 to perform various functions discussed below in greater detail and related to the navigation of the apparatus 103 (e.g. by controlling the locomotive mechanism 203). The application 228 may also be implemented as a suite of distinct applications in other examples.


The processor 220, when so configured by the execution of the application 228, may also be referred to as a navigational controller 220. Those skilled in the art will appreciate that the functionality implemented by the processor 220 via the execution of the application 228 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, Application-Specific Integrated Circuits (ASICs) and the like in other embodiments.


The memory 222 may also store a repository 232 containing, for example, one or more maps of the environment in which the apparatus 103 operates, for use during the execution of the application 228. The repository 232, in the examples discussed below, contains an obstacle map containing locations and other information of obstacles detected by the apparatus 103. In some examples, the repository 232 may store a global map containing information defining the shelves 110 and other substantially permanent structures in the facility, and a separate obstacle map containing other obstacles detected by the apparatus 103, such as human customers or workers and other objects.


In the present example, the apparatus 103 is configured (via the execution of the application 228 by the processor 220) to generate navigational paths to travel through the environment, for example to reach goal locations provided by the server 101. The apparatus 103 is also configured to control the locomotive mechanism 203 to travel along the above-mentioned paths. To that end, the apparatus 103 is also configured, as will be discussed below in greater detail, to detect obstacles in the surroundings of the apparatus 103. The detected obstacles (at least those not appearing in the global map mentioned above, if a global map is used) are assigned classifications, and the apparatus 103 selects navigational control actions to avoid such obstacles based in part on the classifications.


As will be apparent in the discussion below, other examples, some or all of the processing performed by the apparatus 103 may be performed by the server 101, and some or all of the processing performed by the server 101 may be performed by the apparatus 103. That is, although in the illustrated example the application 228 resides in the mobile automation apparatus 103, in other embodiments the actions performed by the apparatus 103 via execution of the application 228 may be performed by the processor 120 of the server 101, either in conjunction with or independently from the processor 220 of the mobile automation apparatus 103. As those of skill in the art will realize, distribution of navigational computations between the server 101 and the mobile automation apparatus 103 may depend upon respective processing speeds of the processors 120 and 220, the quality and bandwidth of the link 105 between the apparatus 103 and the server 101, as well as criticality level of the underlying instruction(s).


The functionality of the application 228 will now be described in greater detail. In particular, the detection and classification of obstacles will be described as performed by the apparatus 103. FIG. 4 illustrates a method 400 of obstacle classification. The method 400 will be described in conjunction with its performance by the apparatus 103.


At block 405, the processor 220 is configured to operate the depth sensor(s) (e.g. the forward-facing depth sensor 209) to capture depth data representing a portion of the facility. In particular, the captured depth data defines any objects within a field of view of the sensor 209 or other suitable depth sensor.


At block 410, the processor 220 is configured to identify any obstacles represented in the depth data. A variety of obstacle identification mechanisms may be employed at block 410, examples of which will occur to those skilled in the art. For example, various edge detection processes, clustering processes and the like may be applied to determine whether the depth data indicates the presence of an obstacle in the field of view of the depth sensor 209.


The identification of an obstacle includes the determination of various attributes of the obstacle. For example, the processor 220 determines the position of the obstacle at block, e.g. within the frame of reference 102, based on the tracked pose of the apparatus 103 itself. The processor 220 can also determine one or more dimensions of the obstacle (e.g. a width). The identification of an obstacle can further include the determination of a velocity of the obstacle, if the processor 220 has previously identified that obstacle (i.e. in previous performances of block 405).


At block 415, having identified any obstacles in the captured depth data from block 405, the processor 220 is configured to retain or discard previously detected obstacles stored in the map mentioned earlier, based on the classification assigned to those obstacles. Classification, as well as retaining mechanisms, are discussed in greater detail below. In this example performance of block 415, it is assumed that no obstacles are currently stored in the map, and no action is therefore required at block 415.


The processor 220 is then configured to process each identified obstacle via the blocks within the dashed box in FIG. 4, beginning at block 420. In general, the processing of each obstacle includes determining a probability that the obstacle is static, and assigning a classification to the obstacle based on the probability. The assigned class defines which navigational actions the apparatus 103 takes when the obstacle interrupts the path being traveled by the apparatus 103. The assigned class also affects the retention mechanism employed by the processor 220 at block 415, to either retain an obstacle that is no longer within the field of view of the depths sensor 209, or discard (i.e. “forget”) the obstacle.


The classes assigned to obstacles by the processor 220 include two primary classes, and at least one intermediate class. The primary classes include a dynamic class, assigned to obstacles that are currently in motion or likely to begin moving, and a static class, assigned to obstacles that are not currently in motion and are not likely to begin moving. The intermediate classes include at least a transitional class, assigned to obstacles for which insufficient information has been collected to assign one of the primary classes. In the present example, the intermediate classes also include an initial class, assigned to obstacles for which no previous observations exist in the map stored in the repository 232.


The class assigned to an obstacle affects the navigational control of the apparatus 103 in various ways. For example, when an obstacle is in the path of the apparatus 103, the apparatus 103 may select a first type of control action, or a second type of control action. The first type of control action includes pausing travel along the path for a brief period of time (e.g. five seconds), with the expectation that the obstacle may move out of the path. The first type of control action is therefore suitable for execution in the presence of a dynamic obstacle, which is unlikely to remain in the path of the apparatus 103 for long. The first type of control action can also include adaptive adjustments to travel along the current path, such as reducing velocity along the path without necessarily pausing travel entirely.


The second type of control action includes generating an updated path to guide the apparatus 103 around or away from the obstacle. The second type of control action is therefore suitable for execution in the presence of a static obstacle, which is likely to remain in the path of the apparatus 103. The generation of a new path can be computationally intensive, and may result in a portion of the task assigned to the apparatus 103 remaining incomplete.


In addition to selecting control actions based on detected obstacles, the apparatus 103 selects retention mechanisms to apply to the map of obstacles. Previously observed obstacles are stored in a map, and when a current observation does not result in the identification of a matching obstacle, the previous observation may be discarded or retained, based on various factors including the class of the obstacle. For example, two types of retention mechanism may be applied to an obstacle. If the obstacle is classified as a dynamic obstacle, the processor 220 may discard the obstacle from the map if the obstacle is not currently observed. If, on the other hand, the obstacle is classified as a static obstacle, the processor 220 may retain the obstacle in the map, e.g. for a predefined period of time (e.g. thirty minutes, although other time periods may also be used).


The intermediate classes are distinguished from the primary classes in that navigational actions for intermediate-classed obstacles are of the same type as dynamic obstacles, while map retention actions for intermediate-classed obstacles are of the same type as static obstacles. Thus, for obstacles for which insufficient information is available to classify as static or dynamic, the apparatus 103 may avoid unnecessarily generating a new path, while retaining the obstacle in the map in the event that path regeneration is necessary in the future.


At block 420, the processor 220 is configured to determine whether the obstacle is a newly observed obstacle. As will be apparent to those skilled in the art, the processor 220 can compare the obstacles identified at block 410 to the map, and match currently observed obstacles with previously observed obstacles. If a currently observed obstacle does not have a match in the map, the determination at block 420 is affirmative. Following an affirmative determination at block 420, the processor 220 proceeds to block 425.


Turning briefly to FIG. 5, an overhead view of a facility 500 in which the apparatus 103 is deployed. The facility includes aisles defined by sets 504-1, 504-2, and 504-3 of modules 110. The apparatus 103 is deployed to travel along the sets 504 of modules and capture images and/or depth data depicting the modules 110. In the illustrated example, the apparatus 103 is configured to travel along a path 508, e.g. to capture images of a first side of the set 504-2, and then a second side of the set 504-2. A field of view 512 of the depth sensor 209 is illustrated as encompassing a portion of an obstacle 516. The obstacle 516 may be, for example, a pallet truck used by a worker in the facility to stock shelves in the sets 504 of modules 110.


Referring again to FIG. 4, it is assumed in this example that the map is empty, and the determination at block 420 is therefore affirmative. At block 425, the processor 220 therefore sets an initial probability that the obstacle 516 is static, and also assigns an initial classification to the obstacle 516. The probability set at block 425, in the present example, is zero, indicating that the obstacle 516 is not likely to be static, or stated another way, that the obstacle 516 is likely to be dynamic. The information available at the first observation of an obstacle may be insufficient to determine whether the obstacle is static or dynamic. However, an initial assumption that the obstacle is dynamic, as at block 425, reduces the likelihood of unnecessary path regeneration, as will be apparent in the discussion below. Further, assignment of the initial class, rather than a dynamic class, to the obstacle reflects uncertainty in the actual state of the obstacle and enables the apparatus 103 to respond to the presence of the obstacle 516 differently than either static or dynamic-classified obstacles, as will also be discussed below.


Having set the probability and assigned the initial class to the obstacle 516, the processor 220 is configured to update a map at block 455. Updating the map includes storing the position of the obstacle 516 (e.g. in the frame of reference 102), as well as the class of the obstacle 516, the probability associated with the obstacle 516, and a timestamp indicating the time of the most recent observation of the obstacle 516. Returning to FIG. 5, an example map 520 is illustrated, in which the position of the obstacle 516 is indicated (the sets 504 of modules 110 are omitted for simplicity). In association with the obstacle 516, the apparatus 103 stores the above-mentioned timestamp, probability Pstatic, class, and one or more attributes of the obstacle 516. In this example the attributes include an observed velocity and an observed size (e.g. width) of the obstacle. The attributes of the obstacle 516 can also include other velocity-related, size-related, or positional attributes. For example, an acceleration of the obstacle 516 may be stored. In further examples, a position of the obstacle 516 relative to a permanently mapped obstacle such as a shelf module may be stored as an attribute.


Returning to FIG. 4, at block 460, the processor 220 determines whether a navigational control action is required as a result of the obstacles in the map 520. For example, the processor 220 may determine whether any obstacles in the map 520 are on the path 508, and are within a predefined proximity of the apparatus 103.


When the determination at block 460 is affirmative, at block 465 the apparatus 103 selects between the first and second types of action mentioned above. Otherwise, the processor 220 returns to block 405 to capture the next set of depth data. For example, the processor 220 may be configured to control the depth sensor 209 to capture a set of depth data at a predefined frequency, e.g. 20 Hz, with the remainder of the method 400 being performed for each set.


In this example, it is assumed that the obstacle 516 is sufficient close to the apparatus 103 to result in an affirmative determination at block 460. At block 465, because the obstacle 516 has an intermediate classification, the processor 220 selects a navigational control action of the first type, associated with dynamic obstacles. That is, the processor 220 controls the apparatus 103 to pause travel along the path 508 for a predetermined period of time. Performance of the method 400 then returns to block 405.


It is assumed, for illustrative purposes, that following the next capture of depth data at block 405, the processor 220 identifies the obstacle 516, and the obstacle 516 as shown in the map 520 is therefore retained (i.e. no retention or discarding action is selected at block 415). At block 420, the determination is negative. At block 430, the processor 220 is configured to generate an updated probability that the obstacle 516 is static. The generation of updated probabilities is discussed in greater detail further below. In general, the probability is based at least on the observed velocity of the obstacle 516. The probability may also be based on other attributes of the obstacle, such as the observed size of the obstacle (e.g. a width), as well as the additional attributes mentioned earlier such as acceleration, positions relative to other obstacles, and the like. The probability is also based, in this example, on the previous probability (i.e. stored in association with the map 520).


Referring to FIG. 6, the obstacle 516 is shown having moved away from the apparatus 103 (which itself has not moved, as a result of the control action selected at the earlier performance of block 465). An updated probability that the obstacle 516 is static is generated at block 430. As shown in FIG. 5, the updated probability has a value of 0.3. The processor 220 is configured to compare the updated probability to an upper threshold (static threshold, or ST) and a lower threshold (dynamic threshold, or DT). A class is assigned to the obstacle 516 based on such comparisons. In particular, when the probability is below the lower threshold, the obstacle 516 is classified as dynamic at block 440. When the probability is between the upper and lower thresholds, the obstacle 516 is classified as a transitional obstacle at block 445. When the probability is above the upper threshold, the obstacle 516 is classified as static at block 450.


In this example, the lower threshold is set to 0.4 (i.e. a 40% probability that the obstacle 516 is static), the processor 220 therefore proceeds to assign the dynamic class to the obstacle 516. In some examples, as shown in FIG. 4, prior to assigning the dynamic class to the obstacle 516, the processor 220 can determine at block 435 whether a count of observations of the obstacle 516 exceeds a threshold. For example, such a count may be maintained in the map. When the determination is negative, the initial class is retained instead of the dynamic class being assigned. In this example performance, the determination at block 435 is assumed to be affirmative. In other examples, a similar determination may be performed before block 445, in addition to or instead of before block 440.


Following classification of the obstacle 516 as a dynamic obstacle at block 440, the map 520 is updated at block 455. In particular, as shown in FIG. 6, the map 520 is updated to a map 520a, containing the current position of the obstacle 516, as well as an updated timestamp of the most recent observation of the obstacle 516, updated size and velocity attributes, and the above-mentioned probability and class.


At block 460, the determination is negative, e.g. because the obstacle 516 is sufficiently distant from the apparatus 103. The processor 220 therefore returns to block 405.


In a further performance of the method 400, it assumed that the obstacle 516 stops moving in the position shown in FIG. 7. Thus, as the apparatus 103 approaches the obstacle 516, the probability generated at block 430 rises to 0.75. The upper threshold is assumed to be 0.8, and from block 430 the processor 220 therefore proceeds to block 445, to assign the transitional class to the obstacle 516. The transitional class, in effect, indicates that the obstacle 516 is likely a dynamic obstacle, but is temporarily static. At block 455, the map 520a is updated to a map 520b, as shown in FIG. 7.


At block 460, the processor 220 determines that a control action is required due to the proximity of the obstacle 516 and the position of the obstacle on the path 508. Since the obstacle 516 is classified as a transitional obstacle, the selected action is to pause, e.g. for the five-second period mentioned earlier.


In subsequent observations (i.e. subsequent captures at block 405 and processing via blocks 410-455), the obstacle 516 may begin moving again, in which case the probability associated with the obstacle 516 may decrease sufficiently to be classified as a dynamic obstacle, or may remain between the upper and lower thresholds. In other examples, if the obstacle 516 remains stationary for a sufficient period of time, the probability generated at block 430 will exceed the upper threshold, and the obstacle 516 will be reclassified as a static obstacle at block 450.


Following reclassification to static at block 450, the apparatus 103 would no longer perform the “pause” control action at block 465. Instead, the processor 220 selects the second type of control action at block 465, and generates an updated path to navigate around the obstacle 516.


Thus, by employing the transitional class, the apparatus 103 may avoid prematurely generating a new path, until the likelihood that a stationary obstacle will remain stationary is sufficiently high. However, even if the probability that the obstacle 516 is static does not exceed the upper threshold, the use of the transitional class may nevertheless reduce the risk of wasteful path generation, as shown in the example illustrated in FIG. 8.



FIG. 8 shows an alternate scenario, in which the obstacle 516 moved to the other side of the aisle before becoming stationary, permitting the apparatus 103 to pass the obstacle 516 along the path 508. As illustrated, the obstacle 516 is no longer within the field of view 512 of the depth sensor 209. However, because the obstacle 516 was most recently classified as a transitional obstacle (with a probability of 0.68, as shown in the updated map 520c), the processor 220 is configured to apply a static-type retention mechanism to the obstacle 516 at block 415.


In particular, the processor 220 is configured to determine whether the timestamp in the map 520c associated with the obstacle 516 is older than a predefined timeout period. When the timestamp is more recent than the timeout period, the obstacle 516 is retained in the map, although the attributes and probability associated with the obstacle 516 are no longer updated. That is, although transitional obstacles are handled similarly to dynamic obstacles for the purpose of navigational control actions at block 465, such obstacles are handled similarly to static obstacles for map retention purposes at block 415. In some examples, different timeout periods can be applied to static obstacles and transitional obstacles, e.g. with the static timeout period being longer.


The significance of the handling of transitional obstacles at block 415 is clear in the event that a further obstacle 800 is detected, and classified as static. As seen in FIG. 8, the obstacle 800 obstructs the path 508, and given the static classification, the apparatus 103 may determine that generation of an updated path is necessary at block 465. Such a path is generated taking into account the obstacle 516, due to the presence of the obstacle 516 in the map 520c. In the absence of the transitional class and associated navigational and map retention behavior, the apparatus 103 may have simply discarded the obstacle 516 from the map 520c. In the absence of the obstacle 516, a replacement path traveling back along the aisle may have been generated, only to be obstructed by the obstacle 516 when the apparatus 103 turns around to begin executing the new path.


Turning now to FIG. 9, a method 900 of generating an updated probability at block 430 is illustrated. As noted above, the probability can be generated based on attributes such as velocity and, optionally, size. The data captured by the sensor 209 may be noisy, however, and substantial variations may therefore be present in consecutive observations of an obstacle. The method 900 enables the processor 220 to mitigate the effects of such variations on the probability generation.


In general, the probability may be generated as separate components for each attribute, e.g. a size component and a velocity component. For example, the size component may increase with size, e.g. by employing a base value above one with an exponent based on the size. The velocity component, by contrast, may decrease with velocity, e.g. by employing a base value between zero and one with an exponent based on the velocity.


The above components may be combined to produce the probability that the obstacle is static. The components may be weighted when combined, however. The method 900 also enables the processor 220 to adjust the weights applied to each component based on variability of the incoming sensor data.


At block 905, the processor 220 is configured to retrieve stored attributes (e.g. size and velocity) corresponding to the obstacle, e.g. from the map 520. At block 910, the processor 220 determines, for each attribute, a variation between the retrieved attribute and the current attribute (i.e. from the most recent performance of block 410). Obstacles are typically not expected to change in size, and are also not expected to change rapidly in velocity. Therefore, larger changes in size or velocity may indicated lower quality sensor data.


At block 915, for each attribute, the processor 220 determines whether the difference between the stored attribute and the current attribute (e.g. expressed as a fraction of the stored attribute) falls below a threshold. When the determination is negative (i.e. when the difference exceeds the threshold), the current attribute may be inaccurate due to sensor artifacts. The processor 220 is therefore configured to update the weights applied to each component at block 920. For example, the processor 220 can compare the differences between stored and current values for each attribute. The processor 220 can then select the attribute with the smallest variation, and increase the corresponding weight while decreasing the weight of the other attribute.


When the determination at block 915 is affirmative, the processor 220 does not update the weights, but instead proceeds to block 925. At block 925, the processor 220 determines whether the variation between the stored attributes and current attributes has remained below the threshold for a predetermined length of time or number of observations. For example, the processor 220 can increment a counter for each affirmative determination at block 915, and apply a threshold to the counter at block 925. When the determination at block 925 is affirmative, the current attributes are assumed to be sufficiently reliable to use in the future as the stored attributes. At block 930, the stored attributes are therefore replaced with the current attributes. It will be understood that blocks 925 and 930 are performed independently for each attribute, if multiple attributes are used.


When the determination at block 925 is negative, or after the performance of block 920 or block 930, the processor 220 determines the components as mentioned above, using the stored attributes (i.e. not necessarily the current attributes), and the weights as adjusted at block 920, or as previously set. Following the first observation of an obstacle, the weights may be initialized with random values, or with default values (e.g. 0.5 for each weight).


In other examples, blocks 905-930 may be omitted, and the component probabilities may simply be generated and combined based on the current attributes, with a fixed set of weights.


In some examples, combining the component probabilities can include summing the components. In other examples, combining the component probabilities includes summing the components, and weighting the sum with a previous probability. For example, the probability generated at block 935 can include multiplying the sum of the current components by (1-PN−1), where PN−1 is the result of the preceding performance of block 935, and adding the result to the square of PN−1. As a result, the current probability acts as a modifier on the preceding probability, mitigating against significant changes to the probability over successive performances of block 430.


Variations to the above systems and methods are contemplated. In some implementations, more complex implementations of the classification decisions discussed above may be implemented. For example, certain class transitions may be prevented, such as a transition from the static class to the transitional class. In such examples, if an obstacle classified as static begins moving, the probability may be overridden and reset to zero, and the class therefore reset to dynamic, rather than returning to the transitional class. In further examples, a transition directly from the dynamic class to the static class may be prevented, such that obstacles must be reclassified first as transitional obstacles before being classified as static.


As will now be apparent to those skilled in the art, the mechanisms discussed above enable the apparatus 103 to process depth sensor data to increase the efficiency of operation of the apparatus 103, for example by reducing the incidence of unnecessary path regeneration.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A navigational control method for a mobile automation apparatus, comprising: controlling a depth sensor to capture depth data representing a portion of a facility containing an obstacle;identifying the obstacle from the depth data;determining a probability that the obstacle is static;based on the probability, assigning the obstacle one of (i) a dynamic class, (ii) a static class, and (iii) at least one intermediate class;updating a map to include a position of the obstacle, and the assigned class;selecting, based on the assigned class, a navigational control action from (i) a first action type associated with the dynamic class and the intermediate class, and (ii) a second action type associated with the static class; and,retaining, based on the assigned class, the obstacle in the map according to one of (i) a first retention mechanism associated with the dynamic class, and (ii) a second retention mechanism associated with the static class and the intermediate class.
  • 2. The method of claim 1, wherein identifying the obstacle includes detecting at least one attribute of the obstacle from the depth data; and wherein determining the probability is based on the at least one attribute.
  • 3. The method of claim 2, wherein the at least one attribute includes a size attribute and a velocity attribute, and wherein determining the probability includes: determining a first probability component based on the size attribute;determining a second probability component based on the velocity attribute; andcombining the first and second component probabilities.
  • 4. The method of claim 3, wherein combining the component probabilities includes applying respective weights to the component probabilities.
  • 5. The method of claim 1, wherein the intermediate class includes a transitional class; and wherein assigning the one of the classes includes: assigning the dynamic class when the probability is below a lower threshold;assigning the static class when the probability is above an upper threshold; andassigning the transitional class when the probability is between the upper and lower thresholds.
  • 6. The method of claim 1, wherein the intermediate class includes an initial class; and wherein the method further comprises: determining whether the map contains a previous observation of the obstacle; andwhen the map does not contain a previous observation of the obstacle, assigning the initial class to the obstacle, and setting the probability to an initial value.
  • 7. The method of claim 1 wherein the map includes a timestamp corresponding to the most recent observation of the obstacle; and wherein first retention mechanism includes: discarding the obstacle from the map when the timestamp is older than a timeout period.
  • 8. The method of claim 7, wherein the timeout period is one of a static timeout period corresponding to static obstacles, and a transitional timeout period corresponding to transitional obstacles, and wherein the static timeout period is greater than the transitional timeout period.
  • 9. The method of claim 1, wherein selecting the navigational control action includes: determining whether the obstacle is in a current path of the mobile automation apparatus; andwhen the obstacle is in the current path, (i) modifying travel along the path if the obstacle is assigned the dynamic class or the at least one intermediate class, or(ii) generating an updated path to avoid the obstacle, if the obstacle is assigned the static class.
  • 10. A computing device, comprising: a depth sensor; a locomotive assembly; anda navigational controller configured to:control the depth sensor to capture depth data representing a portion of a facility containing an obstacle;identify the obstacle from the depth data;determine a probabilitythat the obstacle is static;based on the probability, assign the obstacle one of (i) a dynamic class, (ii) a static class, and (iii) at least one intermediate class;update a map to include a position of the obstacle, and the assigned class; andselect, based on the assigned class, a navigational control action from (i) a first action type associated with the dynamic class and the intermediate class, and (ii) a second action type associated with the static class wherein: the intermediate class includes an initial class, and the navigational controller is further configured to: determine whether the map contains a previous observation of the obstacle, andwhen the map does not contain a previous observation of the obstacle, assign the initial class to the obstacle, and set the probability to an initial value.
  • 11. The computing device of claim 10, wherein the navigational controller is configured to identify the obstacle by detecting at least one attribute of the obstacle from the depth data; and wherein determination of the probability is based on the at least one attribute.
  • 12. The computing device of claim 11, wherein the at least one attribute includes a size attribute and a velocity attribute, and wherein the navigational controller is configured to determine the probability by: determining a first probability component based on the size attribute;determining a second probability component based on the velocity attribute; andcombining the first and second component probabilities.
  • 13. The computing device of claim 12, wherein the navigational controller is configured to combine the component probabilities by applying respective weights to the component probabilities.
  • 14. The computing device of claim 10, wherein the intermediate class includes a transitional class; and wherein the navigational controller is configured to assign the one of the classes by: assigning the dynamic class when the probability is below a lower threshold;assigning the static class when the probability is above an upper threshold; andassigning the transitional class when the probability is between the upper and lower thresholds.
  • 15. The computing device of claim 10, wherein the navigational controller is further configured to: based on the assigned class, retain the obstacle in the map according to one of (i) a first retention mechanism associated with the dynamic class, and (ii) a second retention mechanism associated with the static class and the intermediate class.
  • 16. The computing device of claim 15, wherein the map includes a timestamp corresponding to the most recent observation of the obstacle; and wherein the navigational controller is configured to perform the first retention mechanism by:discarding the obstacle from the map when the timestamp is older than a timeout period.
  • 17. The computing device of claim 16, wherein the timeout period is one of a static timeout period corresponding to static obstacles, and a transitional timeout period corresponding to transitional obstacles, and wherein the static timeout period is greater than the transitional timeout period.
  • 18. The computing device of claim 10, wherein the navigational controller is configured to select the navigational control action by: determining whether the obstacle is in a current path of the mobile automation apparatus; andwhen the obstacle is in the current path, (i) pausing travel along the path if the obstacle is assigned the dynamic class, or(ii) generating an updated path if the obstacle is assigned the static class.
  • 19. A navigational control method for a mobile automation apparatus, comprising: controlling a depth sensor to capture depth data representing a portion of a facility containing an obstacle;identifying the obstacle from the depth data by detecting at least one attribute of the obstacle;determining a probability that the obstacle is static based on the at least one attribute;based on the probability, assigning the obstacle one of (i) a dynamic class, (ii) a static class, and (iii) at least one intermediate class; andupdating a map to include a position of the obstacle, and the assigned class;selecting, based on the assigned class, a navigational control action from (i) a first action type associated with the dynamic class and the intermediate class, and (ii) a second action type associated with the static class,wherein: the at least one attribute includes a size attribute and a velocity attribute, anddetermining the probability includes: determining a first probability component based on the size attribute,determining a second probability component based on the velocity attribute, andcombining the first and second component probabilities.
US Referenced Citations (413)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
10401852 Levinson Sep 2019 B2
10783796 Mellinger, III Sep 2020 B2
11301767 Levinson Apr 2022 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040131278 imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100177929 Kurtz Jul 2010 A1
20100177968 Fry Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100241289 Sandberg Sep 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 VolKmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140368807 Rogan Dec 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180130011 Jacobsson May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180281191 Sinyavskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
20200098270 Günther Mar 2020 A1
20200150666 Scott May 2020 A1
20200196405 Cao Jun 2020 A1
20220048530 Wyffels Feb 2022 A1
20220114406 Wyffels Apr 2022 A1
Foreign Referenced Citations (36)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
104200086 Dec 2014 CN
107067382 Aug 2017 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2018018007 Jan 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (92)
Entry
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France.
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference On, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challening outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176-181.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,”in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,”International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference On, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stiching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-As-Possible Image Stiching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Hackel et al., “Contour Detection in unstructured 3D point clouds,”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013.
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial infromation Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
Related Publications (1)
Number Date Country
20220147747 A1 May 2022 US