Display devices, such as televisions, laptop computers, tablet computers, and smart phones, may use a modulating display panel, such as a liquid crystal display, in combination with a backlight to display images to users. Increasingly, users want to use display devices that are interactive, such as devices equipped with touchscreen surfaces or cameras that capture user gestures. However, the region near, or just in front of, the display is not covered by touchscreen devices or cameras. For example, typical touchscreen devices capture data when the user physically touches, or is inherently close to touching, the display. Cameras, on the other hand, typically do not have a field of view that is wide enough to capture objects or user gestures close to the display. In addition, hardware costs may prohibit manufacturers from equipping some display devices, such as televisions, with a touchscreen or a camera.
This document describes techniques and apparatuses for implementing an object-detecting backlight unit for a display device. An object-detecting backlight unit includes two or more light sources configured to provide light to a display to form an image, and a light sensor configured to receive reflected light when an object is near the display and determine that the reflected light originated from a region of the display. The reflected light is caused by light from the image reflecting off of the object back towards the display. The backlight unit is configured to detect a position of the object based on the region of the display from which the reflected light originated.
This summary is provided to introduce simplified concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
Embodiments of techniques and apparatuses for implementing an object-detecting backlight unit are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Overview
As described above, users increasingly want to use display devices that are interactive, such as devices with touchscreen surfaces or cameras that capture user gestures. However, the region just in front of the display is not covered by touchscreen devices or cameras. For example, typical touchscreen devices capture data when the user physically touches, or is inherently close to touching, the display. Cameras, on the other hand, typically do not have a field of view that is wide enough to capture objects or gestures close to the display.
In a liquid crystal display (LCD), as commonly used in personal computers and televisions, light that passes through the LCD to form an image on the screen for the viewer is provided by a backlight unit. This document describes an object-detecting backlight unit that enhances the performance of backlight units for display devices. As described in more detail below, the object-detecting backlight unit is able to detect a position of an object near the display, as well as user gestures, such as swipes or wipes, near the display. In some embodiments, the object-detecting backlight unit is able to perform these tasks without modifying existing backlight units with any additional active components. Thus, unlike touchscreen displays which often require manufacturers to make the entire screen a touchscreen and add a digitizer to the device, manufacturers can modify conventional display devices with the object-detecting backlight unit without incurring additional hardware costs. In addition, the object-detecting backlight unit has low power and low processing overheads as compared with, for example, driving a camera and processing its output.
This document describes techniques and apparatuses for implementing an object-detecting backlight unit for a display device. An object-detecting backlight unit includes two or more light sources configured to provide light to a display to form an image, and a light sensor configured to receive reflected light when an object is near the display and determine that the reflected light originated from a region of the display. The reflected light is caused by light from the image reflecting off of the object back towards the display. The backlight unit is configured to detect a position of the object based on the region of the display from which the reflected light originated.
Example Environment
Display device 102 includes processor(s) 114 and computer-readable media 116, which includes memory media 118 and storage media 120. Applications and/or an operating system (not shown) embodied as computer-readable instructions on computer-readable media 116 can be executed by processor(s) 114 to provide some or all of the functionalities described herein. Computer-readable media also includes controller 122. How controller 122 is implemented and used varies, and is described in further detail below.
Display device 102 also includes a backlight unit 124, which includes multiple light sources 126 and a light sensor 128. Light sources 126 are configured to inject light through a display 130 to form an image for viewing, such as a two-dimensional image, a three-dimensional image, or a multi-view image. In various embodiments, display 130 may be configured as a high resolution, flat-panel electronic display, such as a high-resolution liquid crystal display (LCD). An LCD is an electronically modulated optical device composed of liquid crystal display pixels positioned in front of a backlight unit to produce images.
Light sources 126 may include, by way of example and not limitation, light-emitting diodes (LEDs), compact cylindrical fluorescent light sources (CCFL), or any other type of light source configured for use in a display device. The number of light sources 126 may vary from two to four light sources for small display devices such as mobile phones, to 100 or more light sources for large display devices such as computer monitors or televisions. The output of backlight unit 124 can be controlled by either DC current control or by pulse-width modulation of light sources 126. Light sources 126 can be arranged electrically in combinations of series and parallel based on the power supply availability of display device 102.
Light sensor 128 is configured to detect light, such as light that originates from one of light sources 126, passes through display 130 to form an image for viewing, and is reflected back towards display 130 by an object near the display. In an embodiment, light sensor 128 is an ambient light detector that enables the brightness of display 130 to be controlled in proportion to external lighting conditions. An ambient light detector can be implemented as a single or dual silicon photodiode with subsequent signal conditioning.
As described in more detail below, backlight unit 124 is configured to detect a position of an object near the display without the use of a touchscreen or a camera. As described herein, an object is “near” the display if the object is positioned in front of the display, or if the object is positioned close enough to the display to be able to reflect light from the display back towards the display. In some embodiments, display device 102 may be configured with one or both of a touchscreen and a camera, and backlight unit 124 is configured to detect a position of objects near the display that are not physically touching the display and are too close to the display to be captured by the camera. In other embodiments, however, display device 102 may not be configured with either a touchscreen or a camera.
In this example, first light source 202 is associated with a first region 206 on the right side of display 130, and second light source 204 is associated with a second region 208 on the left side of display 130. As described herein, a “region” can refer to any area on display 130, such as a right region of the display, a middle region of the display, a left region of the display, a top region of the display, or a bottom region of the display, to name just a few. A light source is considered to be “associated” with a particular region of display 130 if the light source projects light principally from that particular region of the display and/or if the light source is positioned in that particular region of the display.
In some embodiments, for example, backlight unit 124 is configured such that light from each light source emerges from the display in a way that approximately preserves the spatial distribution of each light source. In other words, light from the left-most light sources is principally projected from the left side of the display and light from the right-most light sources is principally projected from the right side of the display. In other embodiments, however, the light projected by each light source may be scrambled and diffused inside backlight unit 124 so as to make display 130 uniform in brightness. Such scrambling and diffusing, however, may cause light projected from one or more light sources on a left side of the display to be projected on the right side of the display, or vice versa. However, despite the scrambling and diffusing, a majority of the light projected on the left side of display will be from the light sources on the left side of the display, and a majority of the light projected on the right side of display will be from the light sources on the right side of display.
Continuing with example 200, display 130 receives light from first light source 202 and light from second light source 204. Display 130 then forms an image for viewing by projecting light 210 from first light source 202 out of first region 206 of display 130 and projecting light 212 from second light source 204 out of second region 208 of display 130.
In accordance with various embodiments, to detect a position of objects positioned near the display, the output of at least two light sources of the backlight unit, each associated with a different region of the display, are modulated with different modulation functions. For instance, the output of at least two light sources can be modulated with sine waves with different frequencies. In this example, first light source 202 is modulated at a first frequency and second light source 204 is modulated at a second frequency. The frequencies can be invisible to the human eye (e.g., faster than 60 Hz). Further, the first frequency and the second frequency may be separated in frequency large enough to permit integration of the output with a time constant that is short compared with a likely speed of human interaction events, such as user's hand moving from one side of the display to the other to form a page-turn gesture. Light sensor 128 is configured to identify the light source or the region of the display from which the reflected light originated by demodulating the reflected light and comparing a frequency of the reflected light to the frequencies associated with the various light sources and regions of the display.
In an embodiment, backlight unit 124 may use an analog modulation scheme to modulate the light sources. Such modulation schemes are well known, and are not discussed in detail herein. In another embodiment, such as for cases where a large number of light sources are to be modulated, backlight unit 124 may use a digital modulation scheme in which each light source is driven by a binary function that is a member of an orthogonal set of functions, such as the Walsh functions.
In this example, because there are two described light sources, determining the light source from which the reflected light originated is the same as determining the region of the display from which the reflected light originated. However, in cases where backlight unit 124 includes more than two light sources, multiple light sources associated with a particular region of the display may be modulated with the same frequency. Light sensor 128, therefore, may be unable to determine the particular light source from which the reflected light originated, but will be able to determine a region of the display from which the light originated by virtue of the fact that all of the light sources within this region are modulated at the same frequency.
Continuing with the example above, backlight unit 124 determines the origin of reflected light 302 by demodulating the frequency of reflected light 302 and comparing the frequency of the reflected light to both the first frequency associated with first light source 202 and first region 206 of display 130, and to the second frequency associated with second light source 204 and second region 208 of display 130. In an embodiment, a photocurrent from light sensor 128 is amplified and band-pass filtered so as to provide two independent signal channels centered on the first frequency and the second frequency of the light sources. The signal channels are then rectified and integrated over a time period that is large compared to the first frequency and the second frequency, but short compared with human interaction timescales. This enables quick and low-computational-cost comparison of the frequency of the reflected light to the first frequency and the second frequency. In another embodiment, reflected light 302 can be demodulated using a digital modulation scheme, such as the Hadamard transform. For example, reflected light 302 can be demodulated using the Hadamard Transform, and data is clocked at the same clock rate as the basis frequency of the Walsh function used to modulate the light. It is to be appreciated, however, that other digital modulation schemes can be used to demodulate reflected light 302.
In another embodiment, backlight unit 124 determines the origin of reflected light 302 by demodulating reflected light 302 to determine an amplitude of the modulation function of reflected light 302. Then, backlight unit 124 compares the amplitude of the modulation function of reflected light 302 with an amplitude of the modulation function associated with first light source 202 and first region 206 of display 130, and with an amplitude of the modulation function associated with second light source 204 and second region 208 of display 130.
Continuing with example 300, after determining the region of display 130 from which reflected light 302 originated, backlight unit 124 can detect a position of object 304 relative to display 130. In this example, backlight unit 124 determines that object 304 is positioned in space relative to first region 206 of display 130 based on the determination that reflected light 302 originated from first region 206 of display 130. Thus, backlight unit 124 is able to detect a position of an object near display 130 without using a touchscreen or a camera.
Backlight unit 124 is further configured to determine a movement of an object near the display, such as movement from the right to the left side of display 130, from the left to the right side of display 130, from the top to the bottom of display 130, or from the bottom to the top of display 130. The ability to determine a movement of an object enables a user to perform various gestures to initiate corresponding events on display device 102. For instance, a user reading an electronic book rendered by display 130 may be able to move his hand from the right side to the left side of display 130 to initiate a page-turn gesture.
In
Backlight unit 124 then determines a movement of the object based on the change in the position of the object. In this example, backlight unit 124 determines that object 304 moved from a position in space relative to first region 206 on the right side of display 130 to a position in space relative to second region 208 on the left side of display 130. Backlight unit 124 communicates the movement of object 304 to controller 122, which processes the movement to form a gesture. Controller 122 can then communicate the gesture to an operating system of display device 102 to initiate a variety of different events based on the gesture. For example, movement of the user's hand from the right side of display 130 to the left side of display 130 may be identified as a page-turn gesture for an electronic book, a volume-control gesture for an audio application, a channel-change gesture for a television application, a play-video gesture for a DVD application, to name just a few.
Backlight unit 124 may also be configured to identify movement of an object towards or away from display 130. In one embodiment, backlight unit 124 identifies movement of an object towards or away from the display 130 based on a change in the relative strength of the amplitude of reflected light. Continuing with the example above, if an amplitude of reflected light 302 is relatively stronger than an amplitude of reflected light 306, then display device 102 determines that object 304 is moving away from display 130. Alternately, if the amplitude of reflected light 302 is relatively weaker than the amplitude of reflected light 306, display device 102 determines that object 304 is moving closer to display 130.
Backlight unit 124 may also be configured to identify a speed of the movement of an object. Controller 122 may process the movement and the speed of the movement to form different gestures. For example, a rapid movement of the user's hand from the right side of display 130 to the left side of display 130 may be identified as chapter-change gesture, instead of just a page-turn gesture, for an electronic book. As another example, a rapid movement of the user's hand towards display 130 may be identified as a gesture to suppress information on display 130 for reasons of confidentiality. The speed of such rapid movements may be faster than the frame rate of a typical camera, however, in some embodiments backlight unit 124 is configured to respond to these movements within 10 milliseconds.
In one embodiment, backlight unit 124 is configured with at least a third light source 308 that is associated with a middle region of display 130 and is modulated at a third frequency. Third light source 308 enables backlight unit 124 to distinguish a variety of different gestures. For example, third light source 308 allows backlight unit to distinguish between a single object, such as a user's hand, moving from one side of the display to the other, and two objects, such as each of the user's hands, being positioned on either side of the display. In
Alternately, if object 304 is positioned near first region 206 on the right side of display 130, and an additional object is positioned near second region 208 on the left side of display 130, light sensor 128 receives reflected light 302 associated with first region 206 as well as reflected light 306 associated with second region 208 of display 130. However, because light sensor 128 does not receive reflected light corresponding to third light source 308 in the middle of display 130, backlight unit 124 can determine that an object did not move from one side of the display to the other, and therefore determine that two objects are near the display.
Example Method
Block 404 determines that the reflected light originated from a region of the display based on a frequency of the reflected light being equal to a frequency associated with the region of the display. For example, backlight unit 124 determines that reflected light 302 originated from first region 206 of display 130 based on a frequency of reflected light 302 being equal to a frequency associated with first region 206 of display 130.
Block 406 detects a position of the object as being positioned in space relative to the region of the display. For example, backlight unit 124 detects a position of object 304 as being positioned in space relative to first region 206 of display 130 based on reflected light 302 originating from first region 206 of display 130.
Block 408 receives additional reflected light when the object is near the display. For example, light sensor 128 receives reflected light 306 when object 304 is near display 130. In this example, the additional reflected light is caused by object 304 moving from first region 206 on the left side of display 130 to second region 208 on the right side of display 130.
Block 410 determines that the additional reflected light originated from an additional region of the display based on an additional frequency of the reflected light being equal to an additional frequency associated with the additional region of the display. For example, backlight unit 124 determines that reflected light 306 originated from second region 208 of display 130 based on a frequency of reflected light 306 being equal to a frequency associated with second region 208 of display 130.
Block 412 detects an additional position of the object as being positioned in space relative to the additional region of the display. For example, backlight unit 124 detects an additional position of object 304 as being positioned in space relative to second region 208 of display 130 based on reflected light 306 originating from second region 208 of display 130.
Block 414 determines a movement of the object based on a change between the position and the additional position of the object. For example, backlight unit 124 determines a movement of object 304 based on a change between object 304 being positioned on the right side of the display and then the left side of the display. In some embodiments, backlight unit 124 can then communicate the movement of object 304 to controller 122, which processes the movement to form a gesture. Controller 122 can then communicate the gesture to an operating system of display device 102 to initiate a variety of different events. For example, movement of the user's hand from the right side of display 130 to the left side of display 130 may be identified as a page-turn gesture for an electronic book, a volume-control gesture for an audio application, a channel-change gesture for a television application, or a play-video gesture for a DVD application.
Example Device
Device 500 includes communication devices 502 that enable wired and/or wireless communication of device data 504 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 504 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device. Media content stored on device 500 can include any type of audio, video, and/or image data. Device 500 includes one or more data inputs 506 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs, messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.
Device 500 also includes communication interfaces 508, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 508 provide a connection and/or communication links between device 500 and a communication network by which other electronic, computing, and communication devices communicate data with device 500.
Device 500 includes one or more processors 510 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 500 and to enable techniques for implementing an object-detecting backlight unit. Alternatively or in addition, device 500 can be implemented with any one or combination of hardware, firmware, a system-on-chip (SoC), or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 512. Although not shown, device 500 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
Device 500 also includes computer-readable storage media 514, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), non-volatile RAM (NVRAM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 500 can also include a mass storage media device 516.
Computer-readable storage media 514 provides data storage mechanisms to store the device data 504, as well as various device applications 518 and any other types of information and/or data related to operational aspects of device 500. For example, an operating system 520 can be maintained as a computer application with the computer-readable storage media 514 and executed on processors 510. The device applications 518 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.
The device applications 518 also include any system components or modules to implement techniques using or enabling an object-detecting backlight unit. In this example, the device applications 518 can include controller 122 for controlling and/or receiving data from an object-detecting backlight unit.
This document describes various apparatuses and techniques for implementing an object-detecting backlight unit. Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
4046975 | Seeger, Jr. | Sep 1977 | A |
4065649 | Carter et al. | Dec 1977 | A |
4243861 | Strandwitz | Jan 1981 | A |
4302648 | Sado et al. | Nov 1981 | A |
4317013 | Larson | Feb 1982 | A |
4365130 | Christensen | Dec 1982 | A |
4492829 | Rodrique | Jan 1985 | A |
4527021 | Morikawa et al. | Jul 1985 | A |
4559426 | Van Zeeland et al. | Dec 1985 | A |
4588187 | Dell | May 1986 | A |
4607147 | Ono et al. | Aug 1986 | A |
4651133 | Ganesan et al. | Mar 1987 | A |
4735495 | Henkes | Apr 1988 | A |
5220521 | Kikinis | Jun 1993 | A |
5283559 | Kalendra et al. | Feb 1994 | A |
5319455 | Hoarty et al. | Jun 1994 | A |
5331443 | Stanisci | Jul 1994 | A |
5548477 | Kumar et al. | Aug 1996 | A |
5558577 | Kato | Sep 1996 | A |
5618232 | Martin | Apr 1997 | A |
5681220 | Bertram et al. | Oct 1997 | A |
5745376 | Barker et al. | Apr 1998 | A |
5748114 | Koehn | May 1998 | A |
5781406 | Hunte | Jul 1998 | A |
5806955 | Parkyn, Jr. et al. | Sep 1998 | A |
5807175 | Davis et al. | Sep 1998 | A |
5808713 | Broer et al. | Sep 1998 | A |
5818361 | Acevedo | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5838403 | Jannson et al. | Nov 1998 | A |
5874697 | Selker et al. | Feb 1999 | A |
5921652 | Parker et al. | Jul 1999 | A |
5926170 | Oba | Jul 1999 | A |
5967637 | Ishikawa et al. | Oct 1999 | A |
5971635 | Wise | Oct 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6005209 | Burleson et al. | Dec 1999 | A |
6012714 | Worley et al. | Jan 2000 | A |
6040823 | Seffernick et al. | Mar 2000 | A |
6044717 | Biegelsen et al. | Apr 2000 | A |
6061644 | Leis | May 2000 | A |
6072551 | Jannson et al. | Jun 2000 | A |
6112797 | Colson et al. | Sep 2000 | A |
6124906 | Kawada et al. | Sep 2000 | A |
6129444 | Tognoni | Oct 2000 | A |
6172807 | Akamatsu | Jan 2001 | B1 |
6178443 | Lin | Jan 2001 | B1 |
6215590 | Okano | Apr 2001 | B1 |
6254105 | Rinde et al. | Jul 2001 | B1 |
6256447 | Laine | Jul 2001 | B1 |
6279060 | Luke et al. | Aug 2001 | B1 |
6329617 | Burgess | Dec 2001 | B1 |
6344791 | Armstrong | Feb 2002 | B1 |
6351273 | Lemelson et al. | Feb 2002 | B1 |
6380497 | Hashimoto et al. | Apr 2002 | B1 |
6411266 | Maguire, Jr. | Jun 2002 | B1 |
6437682 | Vance | Aug 2002 | B1 |
6511378 | Bhatt et al. | Jan 2003 | B1 |
6529179 | Hashimoto et al. | Mar 2003 | B1 |
6532147 | Christ, Jr. | Mar 2003 | B1 |
6543949 | Ritchey et al. | Apr 2003 | B1 |
6565439 | Shinohara et al. | May 2003 | B2 |
6597347 | Yasutake | Jul 2003 | B1 |
6600121 | Olodort et al. | Jul 2003 | B1 |
6603408 | Gaba | Aug 2003 | B1 |
6617536 | Kawaguchi | Sep 2003 | B2 |
6648485 | Colgan et al. | Nov 2003 | B1 |
6685369 | Lien | Feb 2004 | B2 |
6704864 | Philyaw | Mar 2004 | B1 |
6721019 | Kono et al. | Apr 2004 | B2 |
6725318 | Sherman et al. | Apr 2004 | B1 |
6774888 | Genduso | Aug 2004 | B1 |
6776546 | Kraus et al. | Aug 2004 | B2 |
6784869 | Clark et al. | Aug 2004 | B1 |
6813143 | Makela | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6856506 | Doherty et al. | Feb 2005 | B2 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6867828 | Taira et al. | Mar 2005 | B2 |
6870671 | Travis | Mar 2005 | B2 |
6895164 | Saccomanno | May 2005 | B2 |
6898315 | Guha | May 2005 | B2 |
6914197 | Doherty et al. | Jul 2005 | B2 |
6950950 | Sawyers et al. | Sep 2005 | B2 |
6970957 | Oshins et al. | Nov 2005 | B1 |
6976799 | Kim et al. | Dec 2005 | B2 |
6980177 | Struyk | Dec 2005 | B2 |
6981792 | Nagakubo et al. | Jan 2006 | B2 |
7006080 | Gettemy | Feb 2006 | B2 |
7051149 | Wang et al. | May 2006 | B2 |
7073933 | Gotoh et al. | Jul 2006 | B2 |
7083295 | Hanna | Aug 2006 | B1 |
7091436 | Serban | Aug 2006 | B2 |
7104679 | Shin et al. | Sep 2006 | B2 |
7106222 | Ward et al. | Sep 2006 | B2 |
7123292 | Seeger et al. | Oct 2006 | B1 |
7151635 | Bidnyk et al. | Dec 2006 | B2 |
7153017 | Yamashita et al. | Dec 2006 | B2 |
7194662 | Do et al. | Mar 2007 | B2 |
7213991 | Chapman et al. | May 2007 | B2 |
7224830 | Nefian et al. | May 2007 | B2 |
7260221 | Atsmon | Aug 2007 | B1 |
7260823 | Schlack et al. | Aug 2007 | B2 |
7277087 | Hill et al. | Oct 2007 | B2 |
7364343 | Keuper et al. | Apr 2008 | B2 |
7370342 | Ismail et al. | May 2008 | B2 |
7374312 | Feng et al. | May 2008 | B2 |
7375885 | Ijzerman et al. | May 2008 | B2 |
7384178 | Sumida et al. | Jun 2008 | B2 |
7400377 | Evans et al. | Jul 2008 | B2 |
7400817 | Lee et al. | Jul 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7431489 | Yeo et al. | Oct 2008 | B2 |
7447934 | Dasari et al. | Nov 2008 | B2 |
7469386 | Bear et al. | Dec 2008 | B2 |
7499037 | Lube | Mar 2009 | B2 |
7502803 | Culter et al. | Mar 2009 | B2 |
7503684 | Ueno et al. | Mar 2009 | B2 |
7528374 | Smitt et al. | May 2009 | B2 |
7542052 | Solomon et al. | Jun 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7558594 | Wilson | Jul 2009 | B2 |
7559834 | York | Jul 2009 | B1 |
7572045 | Hoelen et al. | Aug 2009 | B2 |
RE40891 | Yasutake | Sep 2009 | E |
7631327 | Dempski et al. | Dec 2009 | B2 |
7636921 | Louie | Dec 2009 | B2 |
7639876 | Clary et al. | Dec 2009 | B2 |
7656392 | Bolender | Feb 2010 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7675598 | Hong | Mar 2010 | B2 |
7728923 | Kim et al. | Jun 2010 | B2 |
7733326 | Adiseshan | Jun 2010 | B1 |
7773076 | Pittel et al. | Aug 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7774155 | Sato et al. | Aug 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7782341 | Kothandaraman | Aug 2010 | B2 |
7782342 | Koh | Aug 2010 | B2 |
7813715 | McKillop et al. | Oct 2010 | B2 |
7815358 | Inditsky | Oct 2010 | B2 |
7844985 | Hendricks et al. | Nov 2010 | B2 |
7884807 | Hovden et al. | Feb 2011 | B2 |
D636397 | Green | Apr 2011 | S |
7928964 | Kolmykov-Zotov et al. | Apr 2011 | B2 |
7936501 | Smith et al. | May 2011 | B2 |
7945717 | Rivalsi | May 2011 | B2 |
7957082 | Mi et al. | Jun 2011 | B2 |
7965268 | Gass et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
7978281 | Vergith et al. | Jul 2011 | B2 |
7991257 | Coleman | Aug 2011 | B1 |
8007158 | Woo et al. | Aug 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8053688 | Conzola et al. | Nov 2011 | B2 |
8065624 | Morin et al. | Nov 2011 | B2 |
8069356 | Rathi et al. | Nov 2011 | B2 |
8098233 | Hotelling et al. | Jan 2012 | B2 |
8115499 | Osoinach et al. | Feb 2012 | B2 |
8130203 | Westerman | Mar 2012 | B2 |
8149272 | Evans et al. | Apr 2012 | B2 |
8154524 | Wilson et al. | Apr 2012 | B2 |
D659139 | Gengler | May 2012 | S |
8169421 | Wright et al. | May 2012 | B2 |
8189973 | Travis et al. | May 2012 | B2 |
8229509 | Paek et al. | Jul 2012 | B2 |
8229522 | Kim et al. | Jul 2012 | B2 |
8251563 | Papakonstantinou et al. | Aug 2012 | B2 |
8310508 | Hekstra et al. | Nov 2012 | B2 |
8325416 | Lesage et al. | Dec 2012 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8362975 | Uehara | Jan 2013 | B2 |
8466954 | Ko et al. | Jun 2013 | B2 |
8467133 | Miller | Jun 2013 | B2 |
8548608 | Perek et al. | Oct 2013 | B2 |
8565560 | Popovich et al. | Oct 2013 | B2 |
8614666 | Whitman et al. | Dec 2013 | B2 |
8903517 | Perek et al. | Dec 2014 | B2 |
8947353 | Boulanger et al. | Feb 2015 | B2 |
9201185 | Large | Dec 2015 | B2 |
20020008854 | Travis et al. | Jan 2002 | A1 |
20020134828 | Sandbach et al. | Sep 2002 | A1 |
20020163510 | Williams et al. | Nov 2002 | A1 |
20030137821 | Gotoh et al. | Jul 2003 | A1 |
20030197687 | Shetter | Oct 2003 | A1 |
20040258924 | Berger et al. | Dec 2004 | A1 |
20040268000 | Barker et al. | Dec 2004 | A1 |
20050055498 | Beckert et al. | Mar 2005 | A1 |
20050057515 | Bathiche | Mar 2005 | A1 |
20050059489 | Kim | Mar 2005 | A1 |
20050062715 | Tsuji et al. | Mar 2005 | A1 |
20050146512 | Hill et al. | Jul 2005 | A1 |
20050264653 | Starkweather et al. | Dec 2005 | A1 |
20050264988 | Nicolosi | Dec 2005 | A1 |
20050285703 | Wheeler et al. | Dec 2005 | A1 |
20060010400 | Dehlin et al. | Jan 2006 | A1 |
20060012767 | Komatsuda et al. | Jan 2006 | A1 |
20060028476 | Sobel | Feb 2006 | A1 |
20060028838 | Imade | Feb 2006 | A1 |
20060083004 | Cok | Apr 2006 | A1 |
20060085658 | Allen et al. | Apr 2006 | A1 |
20060102914 | Smits et al. | May 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060146573 | Iwauchi et al. | Jul 2006 | A1 |
20060154725 | Glaser et al. | Jul 2006 | A1 |
20060156415 | Rubinstein et al. | Jul 2006 | A1 |
20060181514 | Newman | Aug 2006 | A1 |
20060187216 | Trent, Jr. et al. | Aug 2006 | A1 |
20060195522 | Miyazaki | Aug 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060262185 | Cha et al. | Nov 2006 | A1 |
20060287982 | Sheldon et al. | Dec 2006 | A1 |
20070019181 | Sinclair et al. | Jan 2007 | A1 |
20070046625 | Yee | Mar 2007 | A1 |
20070047221 | Park | Mar 2007 | A1 |
20070062089 | Homer et al. | Mar 2007 | A1 |
20070072474 | Beasley et al. | Mar 2007 | A1 |
20070076434 | Uehara et al. | Apr 2007 | A1 |
20070080813 | Melvin | Apr 2007 | A1 |
20070091638 | Ijzerman et al. | Apr 2007 | A1 |
20070122027 | Kunita et al. | May 2007 | A1 |
20070182663 | Biech | Aug 2007 | A1 |
20070182722 | Hotelling et al. | Aug 2007 | A1 |
20070188478 | Silverstein et al. | Aug 2007 | A1 |
20070201246 | Yeo et al. | Aug 2007 | A1 |
20070217224 | Kao et al. | Sep 2007 | A1 |
20070222766 | Bolender | Sep 2007 | A1 |
20070234420 | Novotney et al. | Oct 2007 | A1 |
20070236408 | Yamaguchi et al. | Oct 2007 | A1 |
20070236475 | Wherry | Oct 2007 | A1 |
20070247432 | Oakley | Oct 2007 | A1 |
20070260892 | Paul et al. | Nov 2007 | A1 |
20070274094 | Schultz et al. | Nov 2007 | A1 |
20070274095 | Destain | Nov 2007 | A1 |
20070274099 | Tai et al. | Nov 2007 | A1 |
20070283179 | Burnett et al. | Dec 2007 | A1 |
20080001924 | de los Reyes et al. | Jan 2008 | A1 |
20080005423 | Jacobs et al. | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080019150 | Park et al. | Jan 2008 | A1 |
20080037284 | Rudisill | Feb 2008 | A1 |
20080104437 | Lee | May 2008 | A1 |
20080122803 | Izadi et al. | May 2008 | A1 |
20080150913 | Bell et al. | Jun 2008 | A1 |
20080151478 | Chern | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080211787 | Nakao et al. | Sep 2008 | A1 |
20080219025 | Spitzer et al. | Sep 2008 | A1 |
20080238884 | Harish | Oct 2008 | A1 |
20080253822 | Matias | Oct 2008 | A1 |
20080309636 | Feng et al. | Dec 2008 | A1 |
20080316002 | Brunet et al. | Dec 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20080320190 | Lydon et al. | Dec 2008 | A1 |
20090009476 | Daley, III | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090073957 | Newland et al. | Mar 2009 | A1 |
20090131134 | Baerlocher et al. | May 2009 | A1 |
20090135318 | Tateuchi et al. | May 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090146992 | Fukunaga et al. | Jun 2009 | A1 |
20090152748 | Wang et al. | Jun 2009 | A1 |
20090158221 | Nielsen et al. | Jun 2009 | A1 |
20090161385 | Parker et al. | Jun 2009 | A1 |
20090167728 | Geaghan et al. | Jul 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090231275 | Odgers | Sep 2009 | A1 |
20090239586 | Boeve et al. | Sep 2009 | A1 |
20090244832 | Behar et al. | Oct 2009 | A1 |
20090251008 | Sugaya | Oct 2009 | A1 |
20090262492 | Whitchurch et al. | Oct 2009 | A1 |
20090265670 | Kim et al. | Oct 2009 | A1 |
20090276734 | Taylor et al. | Nov 2009 | A1 |
20090285491 | Ravenscroft et al. | Nov 2009 | A1 |
20090303204 | Nasiri et al. | Dec 2009 | A1 |
20090316072 | Okumura et al. | Dec 2009 | A1 |
20090320244 | Lin | Dec 2009 | A1 |
20090321490 | Groene et al. | Dec 2009 | A1 |
20100001963 | Doray et al. | Jan 2010 | A1 |
20100013738 | Covannon et al. | Jan 2010 | A1 |
20100026656 | Hotelling et al. | Feb 2010 | A1 |
20100038821 | Jenkins et al. | Feb 2010 | A1 |
20100045609 | Do et al. | Feb 2010 | A1 |
20100045633 | Gettemy | Feb 2010 | A1 |
20100051356 | Stern et al. | Mar 2010 | A1 |
20100051432 | Lin et al. | Mar 2010 | A1 |
20100053534 | Hsieh et al. | Mar 2010 | A1 |
20100077237 | Sawyers | Mar 2010 | A1 |
20100079861 | Powell | Apr 2010 | A1 |
20100081377 | Chatterjee et al. | Apr 2010 | A1 |
20100083108 | Rider et al. | Apr 2010 | A1 |
20100085321 | Pundsack | Apr 2010 | A1 |
20100103112 | Yoo et al. | Apr 2010 | A1 |
20100117993 | Kent | May 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100135036 | Matsuba et al. | Jun 2010 | A1 |
20100149111 | Olien | Jun 2010 | A1 |
20100149134 | Westerman et al. | Jun 2010 | A1 |
20100156798 | Archer | Jun 2010 | A1 |
20100156913 | Ortega et al. | Jun 2010 | A1 |
20100161522 | Tirpak et al. | Jun 2010 | A1 |
20100164857 | Liu et al. | Jul 2010 | A1 |
20100171891 | Kaji et al. | Jul 2010 | A1 |
20100174421 | Tsai et al. | Jul 2010 | A1 |
20100180063 | Ananny et al. | Jul 2010 | A1 |
20100188299 | Rinehart et al. | Jul 2010 | A1 |
20100206614 | Park et al. | Aug 2010 | A1 |
20100214214 | Corson et al. | Aug 2010 | A1 |
20100214257 | Wussler et al. | Aug 2010 | A1 |
20100222110 | Kim et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100231510 | Sampsell et al. | Sep 2010 | A1 |
20100231556 | Mines et al. | Sep 2010 | A1 |
20100238138 | Goertz et al. | Sep 2010 | A1 |
20100245289 | Svajda | Sep 2010 | A1 |
20100250988 | Okuda et al. | Sep 2010 | A1 |
20100274932 | Kose | Oct 2010 | A1 |
20100279768 | Huang et al. | Nov 2010 | A1 |
20100289457 | Onnerud et al. | Nov 2010 | A1 |
20100295812 | Burns et al. | Nov 2010 | A1 |
20100299642 | Merrell et al. | Nov 2010 | A1 |
20100302378 | Marks et al. | Dec 2010 | A1 |
20100304793 | Kim | Dec 2010 | A1 |
20100306538 | Thomas et al. | Dec 2010 | A1 |
20100308778 | Yamazaki et al. | Dec 2010 | A1 |
20100308844 | Day et al. | Dec 2010 | A1 |
20100315348 | Jellicoe et al. | Dec 2010 | A1 |
20100321339 | Kimmel | Dec 2010 | A1 |
20100321482 | Cleveland | Dec 2010 | A1 |
20100322479 | Cleveland | Dec 2010 | A1 |
20100325155 | Skinner et al. | Dec 2010 | A1 |
20100331059 | Apgar et al. | Dec 2010 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110031287 | Le Gette et al. | Feb 2011 | A1 |
20110037721 | Cranfill et al. | Feb 2011 | A1 |
20110043142 | Travis | Feb 2011 | A1 |
20110043990 | Mickey et al. | Feb 2011 | A1 |
20110044582 | Travis et al. | Feb 2011 | A1 |
20110060926 | Brooks et al. | Mar 2011 | A1 |
20110069148 | Jones et al. | Mar 2011 | A1 |
20110074688 | Hull et al. | Mar 2011 | A1 |
20110102326 | Casparian et al. | May 2011 | A1 |
20110102356 | Kemppinen et al. | May 2011 | A1 |
20110115747 | Powell et al. | May 2011 | A1 |
20110134032 | Chiu et al. | Jun 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110163955 | Nasiri et al. | Jul 2011 | A1 |
20110164370 | McClure et al. | Jul 2011 | A1 |
20110167181 | Minoo et al. | Jul 2011 | A1 |
20110167287 | Walsh et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20110167992 | Eventoff et al. | Jul 2011 | A1 |
20110179864 | Raasch et al. | Jul 2011 | A1 |
20110184646 | Wong et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110193938 | Oderwald et al. | Aug 2011 | A1 |
20110199389 | Lu et al. | Aug 2011 | A1 |
20110202878 | Park et al. | Aug 2011 | A1 |
20110205372 | Miramontes | Aug 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110242138 | Tribble | Oct 2011 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110248920 | Larsen | Oct 2011 | A1 |
20110261083 | Wilson | Oct 2011 | A1 |
20110262001 | Bi et al. | Oct 2011 | A1 |
20110273475 | Herz et al. | Nov 2011 | A1 |
20110290686 | Huang | Dec 2011 | A1 |
20110295697 | Boston et al. | Dec 2011 | A1 |
20110297566 | Gallagher et al. | Dec 2011 | A1 |
20110304577 | Brown | Dec 2011 | A1 |
20110316807 | Corrion | Dec 2011 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120011462 | Westerman et al. | Jan 2012 | A1 |
20120019165 | Igaki et al. | Jan 2012 | A1 |
20120020112 | Fisher et al. | Jan 2012 | A1 |
20120023459 | Westerman | Jan 2012 | A1 |
20120024682 | Huang et al. | Feb 2012 | A1 |
20120044179 | Hudson | Feb 2012 | A1 |
20120047368 | Chinn et al. | Feb 2012 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120075249 | Hoch | Mar 2012 | A1 |
20120081316 | Sirpal et al. | Apr 2012 | A1 |
20120092279 | Martin | Apr 2012 | A1 |
20120094257 | Pillischer et al. | Apr 2012 | A1 |
20120099749 | Rubin et al. | Apr 2012 | A1 |
20120117409 | Lee et al. | May 2012 | A1 |
20120127118 | Nolting et al. | May 2012 | A1 |
20120127126 | Mattice et al. | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120140396 | Zeliff et al. | Jun 2012 | A1 |
20120145525 | Ishikawa | Jun 2012 | A1 |
20120162693 | Ito | Jun 2012 | A1 |
20120182242 | Lindahl et al. | Jul 2012 | A1 |
20120188791 | Voloschenko et al. | Jul 2012 | A1 |
20120194448 | Rothkopf | Aug 2012 | A1 |
20120195063 | Kim et al. | Aug 2012 | A1 |
20120200802 | Large | Aug 2012 | A1 |
20120206937 | Travis et al. | Aug 2012 | A1 |
20120224073 | Miyahara | Sep 2012 | A1 |
20120229634 | Laett et al. | Sep 2012 | A1 |
20120246377 | Bhesania | Sep 2012 | A1 |
20120256829 | Dodge | Oct 2012 | A1 |
20120256959 | Ye et al. | Oct 2012 | A1 |
20120274811 | Bakin | Nov 2012 | A1 |
20120300275 | Vilardell et al. | Nov 2012 | A1 |
20130021289 | Chen et al. | Jan 2013 | A1 |
20130046397 | Fadell et al. | Feb 2013 | A1 |
20130063873 | Wodrich et al. | Mar 2013 | A1 |
20130076617 | Csaszar et al. | Mar 2013 | A1 |
20130100082 | Bakin et al. | Apr 2013 | A1 |
20130106766 | Yilmaz et al. | May 2013 | A1 |
20130120466 | Chen et al. | May 2013 | A1 |
20130127980 | Haddick et al. | May 2013 | A1 |
20130154959 | Lindsay et al. | Jun 2013 | A1 |
20130155723 | Coleman | Jun 2013 | A1 |
20130172906 | Olson et al. | Jul 2013 | A1 |
20130182246 | Tanase | Jul 2013 | A1 |
20130207937 | Lutian | Aug 2013 | A1 |
20130212483 | Brakensiek et al. | Aug 2013 | A1 |
20130222272 | Martin, Jr. | Aug 2013 | A1 |
20130222274 | Mori et al. | Aug 2013 | A1 |
20130222323 | McKenzie | Aug 2013 | A1 |
20130229335 | Whitman | Sep 2013 | A1 |
20130232280 | Perek | Sep 2013 | A1 |
20130308339 | Woodgate et al. | Nov 2013 | A1 |
20130328761 | Boulanger | Dec 2013 | A1 |
20140012401 | Perek | Jan 2014 | A1 |
20140043275 | Whitman | Feb 2014 | A1 |
20140372914 | Byrd et al. | Dec 2014 | A1 |
20140379942 | Perek et al. | Dec 2014 | A1 |
20150005953 | Fadell et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1515937 | Jul 2004 | CN |
1650202 | Aug 2005 | CN |
1700072 | Nov 2005 | CN |
1787605 | Jun 2006 | CN |
1920642 | Feb 2007 | CN |
101038401 | Sep 2007 | CN |
101366001 | Feb 2009 | CN |
101473167 | Jul 2009 | CN |
101512403 | Aug 2009 | CN |
101644979 | Feb 2010 | CN |
101688991 | Mar 2010 | CN |
101889225 | Nov 2010 | CN |
101893785 | Nov 2010 | CN |
2353978 | Aug 2011 | EP |
2410116 | Jul 2005 | GB |
2428101 | Jan 2007 | GB |
H07218865 | Aug 1995 | JP |
H0980354 | Mar 1997 | JP |
H09178949 | Jul 1997 | JP |
H10234057 | Sep 1998 | JP |
10326124 | Dec 1998 | JP |
2000106021 | Apr 2000 | JP |
2002100226 | Apr 2002 | JP |
2002162912 | Jun 2002 | JP |
2003215349 | Jul 2003 | JP |
2004171948 | Jun 2004 | JP |
2005077437 | Mar 2005 | JP |
2005156932 | May 2005 | JP |
2005331565 | Dec 2005 | JP |
2006004877 | Jan 2006 | JP |
2006278251 | Oct 2006 | JP |
2006294361 | Oct 2006 | JP |
2006310269 | Nov 2006 | JP |
2007184286 | Jul 2007 | JP |
2007273288 | Oct 2007 | JP |
2008066152 | Mar 2008 | JP |
2008286874 | Jul 2008 | JP |
2008529251 | Jul 2008 | JP |
2009059583 | Mar 2009 | JP |
2010151951 | Jul 2010 | JP |
20010039013 | May 2001 | KR |
20080009490 | Jan 2008 | KR |
20080055051 | Jun 2008 | KR |
WO-0128309 | Apr 2001 | WO |
WO-0172037 | Sep 2001 | WO |
WO-03048635 | Jun 2003 | WO |
WO-03083530 | Sep 2003 | WO |
WO-2005059874 | Jun 2005 | WO |
WO-2006044818 | Apr 2006 | WO |
WO-2006082444 | Aug 2006 | WO |
WO-2007094304 | Aug 2007 | WO |
WO-2007123202 | Nov 2007 | WO |
WO-2008013146 | Jan 2008 | WO |
WO-2008038016 | Apr 2008 | WO |
WO-2012174364 | Dec 2012 | WO |
WO-2013033274 | Mar 2013 | WO |
WO-2013163347 | Oct 2013 | WO |
Entry |
---|
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Retrieved at <<http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing—wp.pdf&src=SearchResults>>, Retrieved Date: Jan. 3, 2012, pp. 10. |
“Optical Sensors in Smart Mobile Devices”, Retrieved at <<http://www.onsemi.jp/pub—link/Collateral/TND415-D.PDF>>, Nov. 2010, pp. 13. |
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, filed Feb. 4, 2011, pp. 38. |
“Notice of Allowance”, U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, (Aug. 16, 2013), 25 pages. |
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages. |
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012,10 pages. |
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric—liquid—crystal> on Aug. 6, 2012,(Jun. 10, 2012), 2 pages. |
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, 1 page. |
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H—LOGO.pdf> on Sep. 17, 2012, 4 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,195, (Apr. 18, 2013),13 pages. |
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages. |
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6. |
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005),3 pages. |
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 3 pages. |
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i—Interactor—electronic—pen.html> on Jun. 19, 2012, 5 pages. |
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages. |
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages. |
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages. |
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012,4 pages. |
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013),15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013),12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013),10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013),15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013),10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013),13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, (Feb. 22, 2013),16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013),13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013),11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages. |
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, (Feb. 2, 2011), 3 pages. |
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages. |
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages. |
“SMART Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>,(2009), 2 pages. |
“SoIRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012,(2011), 4 pages. |
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages. |
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008),11 Pages. |
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages. |
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages. |
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011), 14 pages. |
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages. |
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages. |
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages. |
Das, Apurba et al., “Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone—pliki/5—013—11.pdf>, (Jun. 2011), 7 pages. |
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages. |
Gaver, William W., et al., “A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> Jun. 1, 2012,(May 7, 1995), 9 pages. |
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages. |
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/> on May 7, 2012,(Jan. 15, 2006), 5 pages. |
Harada, Susumu et al., “VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People With Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf > on Jun. 1, 2012,(Oct. 15, 2007), 8 pages. |
Iwase, Eiji “Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, (Dec. 2005), 7 pages. |
Kaufmann, Benoit et al., “Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09, retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012,(Apr. 3, 2010), 10 pages. |
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages. |
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156. |
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages. |
Manresa-Yee, Cristina et al., “Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012,(Oct. 13, 2008), pp. 261-262. |
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012,(Jul. 17, 2006), 9 pages. |
Nakanishi, Hideyuki et al., “Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp—2009—chi.pdf> on Jun. 1, 2012,(Apr. 6, 2009),10 pages. |
Piltch, Avram “ASUS Eee Pad Slider SL101 Review ”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, (Sep. 22, 2011), 5 pages. |
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860. |
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012),15 pages. |
Qin, Yongqiang et al., “pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010, Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>,(Nov. 2010), pp. 283-284. |
Reilink, Rob et al., “Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob—online.pdf> Jun. 1, 2012,(Sep. 26, 2010), pp. 510-515. |
Sumimoto, Mark “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012,(Aug. 7, 2009), 4 pages. |
Sundstedt, Veronica “Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica—sundstedtpdf> on Jun. 1, 2012,(Jul. 28, 2010), 85 pages. |
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages. |
Valli, Alessandro “Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012,(Sep. 2005), 80 pages. |
Valliath, G T., “Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44—05.pdf> on Sep. 17, 2012, 5 pages. |
Vaucell, Cati “Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012,(Oct. 17, 2011), 2 pages. |
Williams, Jim “A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995), 124 pages. |
Xu, Zhang et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012,(Feb. 8, 2009), 5 pages. |
Xu, Zhi-Gang et al., “Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012,(Dec. 5, 2009), pp. 223-226. |
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380. |
Zhu, Dingyun et al., “Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO—ICT—Centre/Papers?page=5> Jun. 1, 2012,(Aug. 24, 2009), 14 pages. |
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for—displays.html> on Nov. 2, 2010,(Jan. 1, 2010),3 pages. |
Travis, Adrian et al., “Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009,6 pages. |
Travis, Adrian et al., “The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010,4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, (Dec. 13, 2012), 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/043961, Oct. 17, 2013, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/371,725, Nov. 7, 2013, 19 pages. |
“International Search Report”, Application No. PCT/US2010/045676, Apr. 28, 2011, 2 Pages. |
“International Search Report”, Application No. PCT/US2010/046129, Mar. 2, 2011, 3 Pages. |
“What is the PD-Net Project About?”, retrieved from <http://pd-net.org/about/> on Mar. 10, 2011, 3 pages. |
“Real-Time Television Content Platform”, retrieved from <http://www.accenture.com/us-en/pages/insight-real-time-television-platform.aspx> on Mar. 10, 2011, May 28, 2002, 3 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/055679, Nov. 18, 2013, 8 pages. |
Kim et al.,'“A Controllable Viewing Angle LCD with an Optically isotropic liquid crystal”, Journal of Physics D: Applied Physics, vol. 43, No. 14, Mar. 23, 2010, 7 Pages. |
Lee, “Flat-panel Backlight for View-sequential 3D Display”, Optoelectronics, IEE Proceedings-.vol. 151. No. 6 IET, Dec. 2004, 4 pages. |
Travis, et al., '“Flat Projection for 3-D”, In Proceedings of the IEEE, vol. 94 Issue: 3, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605201>,Mar. 13, 2006, pp. 539-549. |
Travis, et al., '“P-127: Linearity in Flat Panel Wedge Projection”, SID 03 Digest, retrieved from <http://www2.eng.cam.ac.uk/˜arlt1/Linearity%20in%20flat%20panel%20wedge%20projection.pdf>,May 12, 2005, pp. 716-719. |
Yagi, “The Concept of “AdapTV””, Series: The Challenge of “AdapTV”, Broadcast Technology, No. 28, 2006, pp. 16-17. |
“Final Office Action”, U.S. Appl. No. 13/021,448, Jan. 16, 2014, 33 Pages. |
“Final Office Action”, U.S. Appl. No. 13/371,725, Apr. 2, 2014, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/494,651, Feb. 4, 2014, 15 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/494,651, Oct. 24, 2014, 2 pages. |
“EP Search Report”, EP Application No. 09812072.8, Apr. 5, 2012, 6 Pages. |
“Final Office Action”, U.S. Appl. No. 13/494,651, Jun. 11, 2014, 19 pages. |
“Foreign Office Action”, CN Application No. 200980134848, May 13, 2013, 7 Pages. |
“Foreign Office Action”, CN Application No. 200980134848, May 31, 2012, 7 Pages. |
“Foreign Office Action”, CN Application No. 200980134848, Dec. 4, 2013, 8 Pages. |
“Foreign Office Action”, CN Application No. 200980134848, Dec. 19, 2012, 8 Pages. |
“Foreign Office Action”, CN Application No. 201080037117.7, Jul. 1, 2014, 9 Pages. |
“Foreign Office Action”, CN Application No. 201210023945.6, Jun. 25, 2014, 6 Pages. |
“Foreign Office Action”, JP Application No. 2011-526118, Aug. 16, 2013, 8 Pages. |
“Foreign Office Action”, JP Application No. 2012-525632, May 2, 2014, 10 Pages. |
“Foreign Office Action”, JP Application No. 2012-525722, Apr. 22, 2014, 15 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2009/055250, Mar. 2, 2014, 10 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, Jul. 22, 2014, 35 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/371,725, Nov. 3, 2014, 27 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/494,651, Oct. 2, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages. |
“Search Report”, EP Application No. 09812072.8, Apr. 17, 2013, 5 Pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages. |
Boual, et al., “Wedge Displays as Cameras”, Retrieved From: http://www.camfpd.com/72-3.pdf, SID Symposium Digest of Technical Papers, vol. 37, Issue 1, pp. 1999-2002, Jun. 2006, 4 Pages. |
Chen, et al., '“Design of a Novel Hybrid Light Guide Plate for Viewing Angle Switchable Backlight Module”, Institute of Photonic Systems, Ntional Chiao Tung University, Tainan, Taiwan., Jul. 1, 2013, 4 Pages. |
Chou, et al., '“Imaging and Chromatic Behavior Analysis of a Wedge-Plate Display”, Retrieved From: http://www.di.nctu.edu.tw/2006TDC/papers/Flexible/06-012.doc, SID Symposium Digest of Technical Papers vol. 37, Issue 1, pp. 1031-1034,Jun. 2006, 4 Pages. |
Ishida, et al., '“A Novel Ultra Thin Backlight System without Optical Sheets Using a Newly Developed Multi-Layered Light-guide”, SID 10 Digest, Jul. 5, 2012, 4 Pages. |
Nishizawa, et al., '“Investigation of Novel Diffuser Films for 2D Light-Distribution Control”, Tohoku University, Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan, LINTEC Corporation, 23-23 Honcho, Itabashi-ku, Tokyo 173-0001, Japan., Dec. 2011, 4 Pages. |
Phillips, et al., “Links Between Holography and Lithography”, Fifth International Symposium on Display Holography, 206., Feb. 17, 1995, 9 Pages. |
Powell, “High-Efficiency Projection Screen”, U.S. Appl. No. 14/243,501, Apr. 2, 2014, 26 Pages. |
Travis, “P-60: LCD Smear Elimination by Scanning Ray Angle into a Light Guide”, Retrieved From: http://www2.eng.cam.ac.uk/˜arlt1/P—60.pdf, SID Symposium Digest of Technical Papers vol. 35, Issue 1, pp. 474-477, May 2004, 4 Pages. |
Travis, et al., “Optical Design of a Flat Panel Projection Wedge Display”, 9th International Display Workshops, paper FMC6-3, Dec. 4-6, 2002, Hiroshima, Japan., Dec. 2002, 4 Pages. |
“Final Office Action”, U.S. Appl. No. 13/371,725, Mar. 3, 2015, 30 pages. |
“Foreign Office Action”, CN Application No. 201080037117.7, Aug. 20, 2013, 10 pages. |
“Foreign Office Action”, CN Application No. 201210023945.6, Dec. 3, 2013, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/494,651, Dec. 29, 2014, 2 pages. |
“Final Office Action”, U.S. Appl. No. 13/021,448, Jan. 2, 2015, 19 pages. |
“First Examination Report”, NZ Application No. 628690, Nov. 27, 2014, 2 pages. |
“Advisory Action”, U.S. Appl. No. 14/059,280, Sep. 25, 2015, 7 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/021,448, Aug. 17, 2015, 2 pages. |
“Extended European Search Report”, EP Application No. 12800433.0, Oct. 28, 2014, 10 pages. |
“Extended European Search Report”, EP Application No. 13859406.4, Sep. 8, 2015, 6 pages. |
“Final Office Action”, U.S. Appl. No. 14/059,280, Jul. 22, 2015, 25 pages. |
“Foreign Office Action”, CN Application No. 201280029520.4, Jun. 30, 2015, 11 pages. |
“Foreign Office Action”, JP Application No. 2012-525722, Aug. 13, 2014, 17 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/066248, Mar. 12, 2015, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/021,448, Jul. 30, 2015, 11 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/598,898, Jul. 17, 2015, 6 pages. |
“Foreign Office Action”, CN Application No. 201310067592.4, Oct. 23, 2015, 12 Pages. |
“Foreign Office Action”, CN Application No. 201310067622.1, Oct. 27, 2015, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/598,898, Oct. 23, 2015, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/059,280, Nov. 23, 2015, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20130335387 A1 | Dec 2013 | US |