The present disclosure relates to the field of electronic gaming systems, such as on-line gaming and gaming systems in casinos.
Examples of gaming systems or machines include slot machines, online gaming systems (e.g., systems that enable users to play games using computer devices such as desktop computers, laptops, tablet computers, smart phones, etc.), computer programs for use on a computer device, gaming consoles that are connectable to a display such as a television, a computer screen, etc.
Gaming machines may be configured to enable users to play different types of games. For example, some games display a plurality of game components that are moving (e.g., symbols on spinning reels). The game components may be arranged in an array of cells, where each cell may include a game component. One or more particular combinations or patterns of game components in such an arrangement may be designated as “winning combinations” or “winning patterns.” Games that are based on winning patterns may be referred to as “pattern games” in this disclosure.
One example of a pattern game is a game that includes spinning reels arranged in an array, where each reel may have a plurality of game components that come into view successively as the reel spins. A user may wager on one or more lines in the array and activate the game (e.g., by pushing a button). After the user activates the game, the spinning reels may be stopped to reveal a pattern of game components. The game rules may define one or more winning patterns, which may be associated with different numbers or combinations of credits, points, etc.
Other examples of games include card games such as poker, blackjack, gin rummy, etc., where game components (e.g., cards) may be arranged in groups to form the layout of a game (e.g., the cards that form a player's hand, the cards that form a dealer's hand, cards that are drawn to further advance the game, etc.). As another example, in a traditional Bingo game, the game components may include the numbers printed on a 5×5 matrix which the players must match against drawn numbers. The drawn numbers may also be game components.
Systems, methods and apparatus are provided for object detection and interaction for gaming systems.
A method for controlling a wagering gaming apparatus includes rendering a display of a wagering game on the wagering game apparatus; receiving, from a contactless sensor device, location information indicative of a location of an anatomical feature of a player of the wagering game apparatus; analyzing the location information to determine an aspect of motion of the anatomical feature of the player, the motion corresponding to a sequence of locations of the anatomical feature; identifying, in response to the determined aspect of motion and a state of the wagering game, an input command associated with the wagering game; and causing an action to be taken in the wagering game in response to the input command. The method further includes identifying repeated invocations of the input command by the player in response to the determined aspect of motion of the anatomical feature of the player while playing the wagering game apparatus; and adjusting a condition for identifying the input command based on how the player repeatedly moves the anatomical feature to invoke the input command.
The aspect of motion may include a location, a direction, a speed and/or an acceleration of the anatomical feature of the player.
The condition may include a predetermined threshold of the aspect of motion, and analyzing the location information may include obtaining a measurement for the aspect of the motion of the anatomical feature of the player; determining whether the measurement exceeds the predetermined threshold; and identifying the input command based on a determination that the measurement exceeds the predetermined threshold.
The predetermined threshold may include a threshold for distinguishing a first command from a second command in response to the determined aspect of motion of the anatomical feature of the player.
The threshold may include player-specific information that is retrieved in response to detecting an identity of the player.
The method may further include adaptively adjusting the predetermined threshold in response to the determined aspect of motion of the anatomical feature of the player.
The method may include collecting information about gestures by a plurality of players of the wagering game apparatus; and adjusting the condition for identifying the input command in response to the collected information.
The method may include adjusting the collected information in response to gesture data collected from the player.
A wagering gaming apparatus according to some embodiments includes a 3-dimensional (3D) display device; a processor; and a non-transitory computer-readable medium storing instructions which program the processor to cause the 3D display device to display a 3D scene for a game, the 3D scene including a virtual 3D space in which a plurality of virtual game components are displayed; and a contactless sensor device configured to sense a location and shape of a physical object in a physical 3D space and generate 3D information indicative of the location and shape of the physical object in the physical 3D space. The processor is programmed to render a display of a wagering game on the wagering game apparatus; receive, from the contactless sensor device, location information indicative of a location of an anatomical feature of a player of the wagering game apparatus; analyze the location information to determine an aspect of motion of the anatomical feature of the player, the motion corresponding to a sequence of locations of the anatomical feature; identify, in response to the determined aspect of motion and a state of the wagering game, an input command associated with the wagering game; cause an action to be taken in the wagering game in response to the input command; identify repeated invocations of the input command by the player in response to the determined aspect of motion of the anatomical feature of the player while playing the wagering game apparatus; and adjust a condition for identifying the input command based on how the player repeatedly moves the anatomical feature to invoke the input command.
The aspect of motion may include a location, a direction, a speed and/or an acceleration of the anatomical feature of the player, and the condition may include a predetermined threshold of the aspect of motion. The processor is further programmed to obtain a measurement for the aspect of the motion of the anatomical feature of the player; determine whether the measurement exceeds the predetermined threshold; and identify the input command based on a determination that the measurement exceeds the predetermined threshold.
A method for controlling a wagering gaming apparatus according to some embodiments includes rendering a 3-dimensional display of a game, including visually projecting a game component out of a screen of a display device and into a 3-dimensional space between the screen and a player; receiving, from a contactless sensor device, location information indicative of a location of an anatomical feature of a player of the wagering game apparatus; generating a virtual object corresponding to the anatomical feature of the player; rendering the virtual object in the 3-dimensional space, including visually projecting the virtual object out of the screen of the display device and into the 3-dimensional space between the screen and the player; associating a virtual vector field in the 3-dimensional space with the virtual object; and causing the game component to move in the 3-dimensional space in response to the virtual vector field associated with the virtual object.
The method may include detecting a collision between the game component and the virtual object in the 3-dimensional space.
The virtual vector field may include a virtual magnetic field.
The method may include causing the game component and the virtual object to come into virtual contact and appear to stick to one another in the 3-dimensional space.
The virtual field may include a first virtual field, and the method may include associating a second virtual vector field in the 3-dimensional space with the game component, and causing the game component and the virtual object to interact in response to the first virtual field and the second virtual field.
The game component may change speed and/or direction in response to the virtual vector field.
The virtual vector field may include a two-dimensional vector field or a three-dimensional vector field.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
Various input devices are used in electronic gaming systems to allow players to take actions in games. For example, to play a card game on a computer, a player may use a pointing device to click on buttons displayed on the computer's screen, where each button may correspond to a particular action the player can take (e.g., drawing a card, skipping a turn, etc.). The player may also use the pointing device to interact with a virtual object in a game (e.g., by clicking on a card to discard it or turn it over). Some pointing devices (e.g., joysticks, mice, touchpads, etc.) are separate from the display screen. Alternatively, a pointing device may be incorporated into the display screen (e.g., as in a touch screen), so that the player may interact with a game component by physically touching the display at a location where the game component is shown.
The inventors have recognized and appreciated that conventional input devices for electronic gaming systems may have limitations. For instance, in electronic versions of games that are traditionally played using physical game components, physical interactions with the game components (e.g., throwing dice in a dice game, pulling a lever on a slot machine, etc.) are often replaced by simple button clicking or pressing. The inventors have recognized and appreciated that clicking or pressing a button may not be sufficiently engaging to retain a player's attention after an extended period of play, and that a player may stay engaged longer if he could interact with the game components using the same gestures as if he were playing the traditional version of the game.
Furthermore, in some gaming systems, game components are visually projected out of a display screen and into a three-dimensional (3D) space between the display screen and a player (e.g., using autostereoscopy), while the display screen is a touch screen that allows the player to interact with the game components. As a result, when the player reaches for the touch screen to select a game component, it would appear to him visually that he is reaching through the game component that he intends to select. The inventors have recognized and appreciated that such a sensory mismatch may negatively impact user experience in playing the game. Therefore, it may be desirable to provide an input interface that allows a player to virtually touch a game component at the same location where the game component appears visually to the player.
Further still, the inventors have recognized and appreciated that the use of some conventional input devices in games may involve repeated activities that may cause physical discomfort or even injury to players. For example, prolonged use of a mouse, keyboard, and/or joystick to play games may cause repetitive strain injuries in a player's hands. As another example, a casino game cabinet may include a touch screen display located at or slightly below eye-level of a player seated in front of the display, so that the player may need to stretch his arm out to touch game components shown on the display, which may be tiring and may cause discomfort after an extended period of play. Therefore, it may be desirable to provide an input interface with improved ergonomics.
Further still, the inventors have recognized and appreciated that the use of conventional input devices such as mice and touch screens requires a player to touch a physical surface with his fingers. In a setting where a game console is shared by multiple players (e.g., at a casino), such a surface may harbor germs and allow them to spread from one player to another. Therefore, it may be desirable to provide a contactless input interface.
Accordingly, in some embodiments, an input interface for gaming systems is provided that allows players to interact with game components in a contactless fashion. For example, one or more contactless sensor devices may be used to detect gestures made by a player (e.g., using his hands and/or fingers), and the detected gestures may be analyzed by a computer and mapped to various actions that the player can take in a game. The designer of a game may define any suitable gesture as a gesture command that is recognizable by the gaming system. Advantageously, in defining gesture commands, the designer can take into account various factors such as whether certain gestures make a game more interesting, feel more natural to players, are less likely to cause physical discomfort, etc.
In some embodiments, an input interface for gaming systems is provided that detects gestures by acquiring, analyzing, and understanding images. For example, an imaging device may be used to acquire one or more images of a player's hand. The imaging device may use any suitable combination of one or more sensing techniques, including, but not limited to, optical, thermal, radio, and/or acoustic techniques. Examples of imaging devices include, but are not limited to, the Leap Motion™ Controller by Leap Motion, Inc. and the Kinect™ by Microsoft Corporation.
The images that are acquired and analyzed to detect gestures may be still images or videos (which may be timed-sequences of image frames). Accordingly, in some embodiments, a gesture command may be defined based on location and/or orientation of one or more anatomical features of a player at a particular moment in time, and/or one or more aspects of a movement of the one or more anatomical features over a period of time.
In some embodiments, images that are acquired and analyzed to detect gestures may be in any suitable number of dimensions, such as 2 dimensions (2D) or 3 dimensions (3D). The inventors have recognized and appreciated that image data in 3D may provide additional information (e.g., depth information) that can be used to improve recognition accuracy. For example, if the imaging device is placed under a player's hand, a downward clicking gesture made by a finger may be more easily detected based on depth information (e.g., a change in distance between the fingertip and the imaging device). However, the use of 3D image data is not required, as 2D image data may also be suitable.
In some embodiments, a gaming system may include a contactless input interface in combination with a 3D display to enhance a player's experience with a game. For example, a 3D display technique may be used to visually project game components (e.g., buttons, cards, tiles, symbols, figures, etc.) out of a screen of a display device and into a 3D space between the screen and a player. The 3D display technique may or may not require the player to wear special glasses. The contactless interface may allow the player to interact with the game components by virtually touching them. For example, to virtually push a button, the player may extend his arm so his hand or finger reaches a location in the 3D space between the screen and the player where the button visually appears to the player. A corresponding action may be triggered in the game as soon as the player's hand or finger reaches the virtual button, or the player may trigger the action by making a designated gesture (e.g., a forward tap) in midair with his hand or finger at the location of the virtual button. As discussed above, any suitable gesture may be defined as a gesture command that is recognizable by the gaming system, including, without limitation, finger gestures such as forward tap, downward click, swipe, circle, pinch, etc., and/or hand gestures such as side-to-side wave, downward pat, outward flick, twist, moving two hands together or apart, etc. A gesture may involve a single finger or multiple fingers, and likewise a single hand or multiple hands, as aspects of the present disclosure are not limited to any particular number of fingers or hands that are used in a gesture.
While in various embodiments described herein a gaming system includes a 3D display, it should be appreciated that a 3D display is not required, as a contactless input interface may be also used in combination with a 2D display, or even a non-visual (e.g., auditory, tactile, olfactory, etc.) display, or no display at all.
In some embodiments, a gaming system may be configured to track a movement of an anatomical feature of a player, such as the player's hand, finger, etc., and analyze any suitable combination of one or more aspects of the movement to identify an input command intended by the player. For instance, the gaming system may be configured to analyze a sequence of image frames and determine a starting location, ending location, intermediate location, duration, distance, direction, speed, acceleration, and/or any other relevant characteristics of a motion of the player's hand or finger.
In one non-limiting example, a player may throw a pair of dice virtually, and the gaming system may be configured to analyze a distance, direction, speed, acceleration, etc. of the motion of the player's hand to determine where and on which sides the virtual dice should land. In another example, a player may shoot a roulette ball virtually, and the gaming system may be configured to analyze a distance, direction, speed, acceleration, etc. of the motion of the player's hand to determine in which slot the roulette ball should fall. In yet another example, a player may use his hand to spin a virtual wheel, and the gaming system may be configured to analyze a distance, direction, speed, acceleration, etc. of the motion of the player's hand to determine how quickly the wheel should spin. In yet another example, a player may use his hands and/or fingers to play a virtual musical instrument (e.g., piano, drum, harp, cymbal, etc.), and the gaming system may be configured to analyze the motion of the player's hand to determine what notes and/or rhythms the player played and the game payout may be varied accordingly.
It should be appreciated that the-above described examples are merely illustrative, as aspects of the present disclosure are not limited to the use of motion analysis in determining an outcome of a game. In some embodiments, a player's motion may merely trigger an action in a game (e.g., to throw a pair of dice, to shoot a roulette ball, to spin a wheel, etc.), and the outcome may be randomized according to a certain probability distribution (e.g., a uniform or non-uniform distribution over the possible outcomes).
In some embodiments, a gaming system may be configured to use one or more thresholds to determine whether a detected motion is to be interpreted as a gesture command. Such thresholds may be selected to distinguish unintentional movements from movements that are actually intended by a player as gesture commands. For instance, a combination of one or more thresholds may be selected so that a sufficiently high percentage of movements intended as a particular gesture command will be recognized as such, while a sufficiently low percentage of unintentional movements will be misrecognized as that gesture command. As an example, a downward movement of a finger may be interpreted as a downward click only if the distance moved exceeds a selected distance threshold and the duration of the movement does not exceed a selected duration threshold. Thus, a quick and pronounced movement may be recognized as a click, while a slow or slight movement may not be.
The inventors have recognized and appreciated that different players may move their hands and/or fingers differently even when they intend the same gesture command. Accordingly, in some embodiments, the gaming system may be configured to dynamically adapt one or more thresholds for determining whether a detected movement is to be interpreted as a gesture command. In one non-limiting example, the gaming system may be configured to collect and analyze information relating to how a particular player moves his hands and/or fingers when issuing a particular gesture command, and may adjust one or more thresholds for that gesture command accordingly. In another example, the gaming system may be configured to collect and analyze information relating to how differently a particular player moves his hands and/or fingers when issuing two confusable gesture commands, and may adjust one or more thresholds for distinguishing movements intended as the first command from those intended as the second command.
It should be appreciated that personal threshold values are merely one example of player-specific information that may be collected and used by a gaming system. Other examples include, but are not limited to, preference information, history information, etc. However, it should also be appreciated that aspects of the present disclosure are not limited to the collection or use of player-specific information. In some embodiments, no such information may be collected or used at all. In some embodiments, player-specific information may only be collected and/or used during the same session of game play. For example, as long as a player remains at a gaming station, player-specific information such as personal threshold values may be collected and used to improve user experience, but no such information may be maintained after the player leaves the station, even if the player may later return to the same station.
In some embodiments, rather than identifying a player uniquely and accumulating information specific to that player, a gaming system may apply one or more clustering techniques to match a player to a group of players with one or more similarities. Once a matching group is identified, information accumulated for that group of players may be used to improve one or more aspects of game play for the particular player. Additionally, or alternatively, information collected from the particular player may be used to make adjustments to the information accumulated for the matching group of players (e.g., preferences, game playing styles or tendencies, etc.).
In some embodiments, a contactless input interface for gaming systems may include a virtual sphere having one or more game components (e.g., symbols, numbers, buttons, pop-up lists, etc.) on the surface of the sphere. A player may cause the virtual sphere to move translationally and/or rotationally by turning one or more of his hands as if the virtual sphere were in his hands. For instance, in some embodiments, a contactless sensor (e.g., an imaging device) may be placed under the player's hands to sense movements thereof. The gaming system may be configured to interpret the movement of either or both of the player's hands and cause the virtual sphere to move accordingly. For example, the gaming system may interpret the hand movement by taking into account any suitable combination of one or more aspects of the hand movement, such as a distance and/or direction by which a hand is displaced, an angle by which a hand is twisted, etc.
In some embodiments, a virtual sphere may be rendered using a 3D display technique so that it is projected out of a display screen. A player may place his hands where the virtual sphere appears visually, as if he were physically manipulating the sphere. Alternatively, or additionally, the virtual sphere may be displayed elsewhere (e.g., on a 2D screen), and a visual indicator (e.g., cursor) may be used to indicate where an index finger of the player would have been located relative to the virtual sphere if the virtual sphere were in the player's hands.
In some embodiments, a player may interact with a game component on a surface of a virtual sphere by turning his hands, which may cause the virtual sphere to rotate, until the desired game component is under the player's index finger. In an embodiment in which the virtual sphere is rendered in 3D and appears visually under the player's hands, the player may cause the game component to visually appear under his index finger. In an embodiment in which the virtual sphere is displayed elsewhere, the player may cause the game component to appear under a visual indicator (e.g., cursor) corresponding to the player's index finger. The player may then use a gesture (e.g., a downward click) to indicate that he wishes to select the game component or otherwise trigger an action corresponding to the game component.
While a number of inventive techniques are described herein for controlling a gaming system, it should be appreciated that embodiments of the present disclosure may include any one of these techniques, any combination of two or more techniques, or all of the techniques, as aspects of the present disclosure are not limited to any particular number or combination of the techniques described herein. The aspects of the present disclosure described herein can be implemented in any of numerous ways, and are not limited to any particular details of implementation. Described below are examples of specific implementations; however, it should be appreciated that these examples are provided merely for purposes of illustration, and that other implementations are possible.
In some embodiments, one or more techniques described herein may be used in a system for controlling an electronic gaming machine (EGM) in a casino (e.g., a slot machine). The techniques described herein may also be used with other types of devices, including but not limited to PCs, laptops, tablets, smartphones, etc. Although not required, some of these devices may have one or more communication capabilities (e.g., Ethernet, wireless, mobile broadband, etc.), which may allow the devices to access a gaming site or a portal (which may provide access to a plurality of gaming sites) via the Internet.
In some embodiments, one or both of the displays 12 and 14 may have a touch screen lamination that includes a transparent grid of conductors. A human fingertip touching the screen may change the capacitance between the conductors at the location of the touch, so that the coordinates of that location may be determined. The coordinates may then be processed to determine a corresponding function to be performed. Such touch screens are known in the art as capacitive touch screens. Other types of touch screens, such as resistive touch screens, may also be used.
In the example of
In the example of
In the example of
In the example of
In the example of
In some embodiments, the communications board 42 may communicate with the host system 41 via a wireless connection. Alternatively, or additionally, the communications board 42 may have a wired connection to the host system 41 (e.g., via a wired network running throughout a casino floor).
In some embodiments, the communications board 42 may set up a communication link with a master controller and may buffer data between the master controller and a game controller board 44 of the EGM 20. The communications board 42 may also communicate with a server (e.g., in accordance with a G2S standard), for example, to exchange information in carrying out embodiments described herein.
In some embodiments, the game controller board 44 may contain one or more non-transitory computer-readable media (e.g., memory) and one or more processors for carrying out programs stored in the non-transitory computer-readable media. For example, the processors may be programmed to transmit information in response to a request received from a remote system (e.g., the host system 41). In some embodiments, the game controller board 44 may execute not only programs stored locally, but also instructions received from a remote system (e.g., the host system 41) to carry out one or more game routines.
In some embodiments, the EGM 20 may include one or more peripheral devices and/or boards, which may communicate with the game controller board 44 via a bus 46 using, for example, an RS-232 interface. Examples of such peripherals include, but are not limited to, a bill validator 47, a coin detector 48, a card reader 49, and/or player control inputs 50 (e.g., the illustrative buttons 39 shown in
In some embodiments, the game controller board 44 may control one or more devices for producing game output (e.g., sound, lighting, video, haptics, etc.). For example, the game controller board 44 may control an audio board 51 for converting coded signals into analog signals for driving one or more speakers (not shown). The speakers may be arranged in any suitable fashion, for example, to create a surround sound effect for a player seated at the EGM 20. As another example, the game controller board 44 may control a display controller 52 for converting coded signals into pixel signals for one or more displays 53 (e.g., the illustrative display 12 and/or the illustrative display 14 shown in
In some embodiments, the display controller 52 and the audio board 51 may be connected to parallel ports on the game controller board 44. However, that is not required, as the electronic components in the EGM 20 may be arranged in any suitable way, such as onto a single board.
Although some illustrative EGM components and arrangements thereof are described above in connection with
In some embodiments, an EGM may be configured to provide 3D enhancements, for example, using a 3D display. For example, the EGM may be equipped with an autostereoscopic display, which may allow a player to view images in 3D without wearing special glasses. Other types of 3D displays, such as stereoscopic displays and/or holographic displays, may be used in addition to, or instead of autostereoscopic displays, as aspects of the present disclosure are not limited to the use of autostereoscopic displays. In some embodiments, an eye-tracking technology and/or head-tracking technology may be used to detect the player's position in front of the display, for example, by analyzing in real time one or more images of the player captured using a camera in the EGM. Using the position information detected in real time by an eye tracker, two images, one for the left eye and one for the right eye, may be merged into a single image for display. A suitable optical overlay (e.g., with one or more lenticular lenses) may be used to extract from the single displayed image one image for the left eye and a different image for the right eye, thereby delivering a 3D visual experience.
In some embodiments, if the player moves to one side of the screen (e.g., to the right), this movement may be detected (e.g., using an eye tracker) and the display may be dynamically updated so that the player will see the spherical object 120 offset from the square object 125 (e.g., to the left of the square object 125), as if the objects were truly at some distance from each other along a z-axis (i.e., an axis orthogonal to the plane in which the display 110 lies).
Although an autostereoscopic display may facilitate more natural game play, it should be appreciated that aspects of the present disclosure are not limited to the use of an autostereoscopic display, or any 3D display at all, as some of the disclosed concepts may be implemented using a conventional 2D display. Furthermore, aspects the present disclosure are not limited to the autostereoscopic techniques discussed above, as other autostereoscopic techniques may also be suitable.
The inventors have recognized and appreciated that a more natural experience may be delivered using an input interface that allows a player to virtually touch a game component at the same location where the game component appears visually to the player, thereby reducing the above-described sensory mismatch.
In the example of
The sensor devices may be arranged in any suitable manner to detect gestures made by a player. For example, as shown in
In some embodiments, the region 145 may be in close proximity (i.e., within 3 feet) of a gaming apparatus. For instance, the region 145 may be in close proximity to the screen 110 in the example of
In various embodiments, the region 145 and the player's hand may be within 33 inches, 30 inches, 27 inches, 24 inches, 21 inches, 18 inches, 15 inches, 12 inches, 11 inches, 10 inches, 9 inches, 8 inches, 7 inches, 6 inches, 5 inches, 4 inches, 3 inches, 2 inches, 1 inch, 0.75 inches, 0.5 inches, 0.25 inches, etc. of a gaming apparatus (e.g., the screen 110 in the example of
In the example of
At act 305, the gaming system may render a 3D display of a game, for example, using an autostereoscopic display. In some embodiments, the display may visually project one or more game components (e.g., buttons, tiles, cards, symbols, figures, etc.) out of a screen and into a 3D space between the screen and a player (e.g., as illustrated in
At act 310, the gaming system may receive information from one or more sensor devices (e.g., the illustrative sensor device 135 shown in
In some embodiments, a detected object may be divided into multiple regions and a different set of coordinates may be provided for each region. For example, where the detected object is a human hand, a different set of coordinates may be provided for each fingertip, each joint in the hand, the center of the palm, etc. In some embodiments, multiple objects may be detected, and the received information may indicate multiple corresponding locations.
Location information is merely one example of information that may be received from a sensor device. Additionally, or alternatively, a sensor device may provide gesture information, which may include static gesture information such as a direction in which a fingertip or palm is pointing, a location of a particular join in the hand, whether the fingers are curled into the palm to form a first, etc. In some embodiments, a sensor device may also have processing capabilities for identifying dynamic gestures, which may include finger gestures such as forward tap, downward click, swipe, circle, pinch, etc., and/or hand gestures such as side-to-side wave, downward pat, outward flick, twist, etc. Such processing capabilities may be provided by one or more processors onboard the sensor device and/or a driver installed on a general-purpose computing device configured to receive signals from the sensor device for further processing.
In some embodiments, a sensor device may provide motion information in addition to, or in lieu of, position and/or gesture information. As discussed further below, motion information may allow the gaming system to detect dynamic gestures that neither the sensor device nor its driver has been configured to detect.
Returning to
In some embodiments, the display of a game may be refreshed dynamically, so that the expected location of a game component may change over time, and/or the game component may disappear and may or may not later reappear. Accordingly, the gaming system may be configured to use state information of the game to determine whether the location of the detected object matches the expected location of the game component with appropriate timing.
If at act 315 it is determined that the location of the detected object matches the expected location of a game component, the gaming system may determine that the player intends to issue an input command associated with the game component. At act 320, the gaming system may cause an action to be taken in the game, the action corresponding to the identified input command.
In one non-limiting example, the game component may be a button (or lever) in a slot machine game, and the information received from the sensor device may indicate that the player made a forward tap gesture at a location to which the button is visually projected (or a downward pull gesture at a location to which the lever is visually projected). The gaming system may be configured to interpret such a gesture as an input command to spin the reels of the slot machine game. In another example, the game component may be a card in the player's hand, and the information received from the sensor device may indicate that the player made a forward tap gesture at the visual location of the card. The gaming system may be configured to interpret such a gesture as an input command to discard the card. In another example, the game component may be a card on the top of a deck, and the gaming system may be configured to interpret a forward tap gesture at the visual location of the card as an input command to draw the card. In yet another example, the game component may be a card in the player's hand, and the information received from the sensor device may indicate that the player made a swipe gesture at the visual location of the card. The gaming system may be configured to interpret such a gesture as an input command to move the card to another position in the player's hand.
It should be appreciated that the above-described gestures and corresponding input commands are merely illustrative, as other types of game components and virtual manipulations thereof may also be used and the gaming system may be configured to interpret such manipulations in any suitable way.
In some embodiments, the gaming system may be configured to update the 3D display of the game based on the action taken in the act 320. Updating the display may include changing an appearance of an object in an existing scene (e.g., spinning a wheel, turning over a card, etc.). Updating the display may also include generating a new scene, for example, by generating a new 3D mesh.
In some embodiments, the gaming system may be configured to use motion information received from the sensor device to identify an input command intended by the player. For instance, the gaming system may be configured to analyze a sequence of image frames and determine a starting location, ending location, duration, distance, direction, speed, acceleration, and/or any other relevant characteristics of a movement of an anatomical feature of the player (e.g., the player's hand, finger, etc.) or a tool held by the player. In one non-limiting example, a player may spin a wheel virtually in a wheel of fortune game, and the gaming system may be configured to analyze a distance, direction, speed, acceleration, duration, etc. of the motion of the player's hand to determine how fast and in which direction the wheel should be spun. The player may also touch the wheel virtually while the wheel is spinning, and the gaming system may be configured to analyze a location, duration, etc. of the touch to determine how quickly the wheel should slow to a stop.
It should be appreciated that the wheel of fortune example described above is merely illustrative, as aspects of the present disclosure are not limited to the use of motion analysis in determining an outcome of a game. In some embodiments, a player's motion may merely trigger an action in a game (e.g., to throw a pair of dice, to shoot a roulette ball, to spin a wheel, etc.). The outcome of the action may be randomized according to a certain probability distribution (e.g., a uniform or non-uniform distribution over the possible outcomes).
In some embodiments, the gaming system may be configured to use one or more thresholds to determine whether a detected motion is to be interpreted as a gesture command. Such thresholds may be selected to distinguish unintentional movements from movements that are actually intended by a player as gesture commands. For instance, a combination of one or more thresholds may be selected so that a sufficiently high percentage of movements intended as a particular gesture command will be recognized as such, while a sufficiently low percentage of unintentional movements will be misrecognized as that gesture command. In one non-limiting example, a downward movement of a finger may be interpreted as a downward click only if the distance moved exceeds a selected distance threshold and the duration of the movement does not exceed a selected duration threshold. Thus, a quick and pronounced movement may be recognized as a click, while a slow or slight movement may simply be ignored.
In some embodiments, the gaming system may be configured to dynamically adapt one or more thresholds for determining whether a detected movement is to be interpreted as a gesture command. In one non-limiting example, the gaming system may be configured to collect and analyze information relating to how a particular player moves his hands and/or fingers when issuing a particular gesture command, and may adjust one or more thresholds for that gesture command accordingly. In another example, the gaming system may be configured to collect and analyze information relating to how differently a particular player moves his hands and/or fingers when issuing two confusable gesture commands, and may adjust one or more thresholds for distinguishing movements intended as the first command from those intended as the second command.
In some embodiments, one or more thresholds specifically adapted for a player and/or other player-specific information may be stored in a manner that allows retrieval upon detecting an identity of the player. For example, each player may be associated with an identifier (e.g., a user name, alphanumeric code, etc.), which the player may use to sign on to a gaming system. The gaming system may use the identifier to look up player-specific information (e.g., threshold values, preferences, history, etc.) and apply all or some of the retrieved information in a game. The application of such information may be automatic, or the player may be prompted to confirm before anything takes effect.
Any suitable method may be used to detect an identity of a player. In some embodiments, prior to starting a game, a player may be prompted to produce a card carrying an identifying code, which may be read using a suitable sensing technology (e.g., magnetic, optical, capacitive, etc.). The card may be issued to the player for gaming purposes only (e.g., by a casino or gaming website), or for more general purposes. For example, the card may be a personal debit or credit card. If the player is visiting a gaming establishment (e.g., a casino), he may be promoted to insert, swipe, or other provide the card to a special-purpose reader located at a gaming station such as a gaming cabinet, table, etc. If the player is playing a game remotely (e.g., by accessing a gaming website from his home computer) and does not have access to a special-purpose reader, a general-purpose device may be used to obtain identifying information from the card. For example, an image of the card may be captured using a camera (e.g., a webcam or cellphone camera) and one or more optical recognition techniques may be applied to extract the identifying information.
Rather than producing a card to be read physically by a reader, a player may provide identifying information in some other suitable fashion. For example, the player may type in a user name, identifying code, etc. In another example, the player may speak a user name, identifying code, etc., which may be transcribed using speech recognition software. In yet another example, a combination of one or more biometric recognition techniques may be used, including, but not limited to, voice, fingerprint, face, hand, iris, etc.
In some embodiments, a gesture input interface for gaming systems may include a virtual sphere having one or more game components (e.g., symbols, numbers, cards, tiles, buttons, pop-up lists, etc.) arranged on the surface of the sphere.
In some embodiments, a player may cause the virtual sphere 405 to move translationally and/or rotationally by turning one or more of his hands as if the virtual sphere 405 were in his hands. For instance, as shown in
In the example shown in
In some embodiments, the gaming system may be configured to render the virtual sphere 405 using a 3D display, for instance, as described above in connection with
In some embodiments, the 3D region into which the virtual sphere 405 is projected may be in close proximity (i.e., within 3 feet) of a gaming apparatus. For instance, the 3D region may be in close proximity to the display screen displaying the virtual sphere 405. In this manner, the player's hand may also be in close proximity to the display screen when the player reaches into the 3D region to virtually manipulate the virtual sphere 405. In various embodiments, the 3D region and the player's hand may be within 33 inches, 30 inches, 27 inches, 24 inches, 21 inches, 18 inches, 15 inches, 12 inches, 11 inches, 10 inches, 9 inches, 8 inches, 7 inches, 6 inches, 5 inches, 4 inches, 3 inches, 2 inches, 1 inch, 0.75 inches, 0.5 inches, 0.25 inches, etc. of a gaming apparatus (e.g., the display screen in the example of
In some embodiments, a player may interact with a game component on a surface of a virtual sphere by turning his hands, which as discussed above may cause the virtual sphere to rotate, until the desired game component is under the player's index finger. The player may then use a gesture (e.g., a downward click) to indicate he wishes to select the game component or otherwise trigger an action corresponding to the game component.
In an embodiment in which the virtual sphere is rendered in 3D and appears visually under the player's hands (e.g., as in the example of
In some embodiments, two visual indicators (e.g., cursors) may be displayed, corresponding to a player's left and right index fingers, respectively. In some embodiments, only one visual indicator may be displayed, and a player may configure the gaming system to display the visual indicator on the left or right side of the virtual sphere (e.g., depending on the player's handedness). For example, if the player wishes to click with his left index figure, the player may configure the gaming system to display the visual indicator on the left side of the virtual sphere, and vice versa. Additionally, or alternatively, the gaming system may be configured to detect which hand the player favors and change the visual indicator from left to right, or vice versa.
It should be appreciated that the examples described above in connection with
At act 605, the gaming system may render a display of a game. In some embodiments, the display may include a plurality of game components (e.g., the illustrative button 410 of
At act 610, the gaming system may receive from one or more contactless sensor devices (e.g., the illustrative sensor device 435 of
At act 615, the gaming system may analyze the hand location information received at act 610, and may determine based on that analysis that the player intends to issue an input command to cause a certain movement of the virtual sphere. For instance, in some embodiments, the gaming system may be configured to determine a direction in which the player's palm is pointing, and to use a detected change in the palm direction to infer an angle by which the player intends to rotate the virtual sphere. Likewise, the gaming system may be configured to determine a location of the player's palm, and to use a detected change in the palm location to infer an intended translational displacement of the virtual sphere.
In some embodiments, the gaming system may determine a movement of the virtual sphere that matches the hand movement, as if the virtual sphere were held in the hand. In some embodiments, the gaming system may determine a different type of movement for the virtual sphere. For example, the gaming system may interpret the hand movement as an input command to cause the virtual sphere to spin about an axis. Thus, the angle by which the virtual sphere is spun may be greater than the angle by which the player turned his hand, to mimic the effect of inertia. For example, the virtual sphere may continue to spin for some time after the player used his hand to start the spinning and may slow down gradually as if being slowed down by friction.
At act 620, the gaming system may update the display of the game to reflect the intended movement of the virtual sphere as determined at act 615. This may take place within a sufficiently small time delay following the player's hand motion to deliver a realistic experience. An acceptable response time may be several seconds (e.g., 1 sec, 2 sec, 3 sec, . . . ) or fractions of a second (e.g., 0.5 sec, 0.3 sec, 0.2 sec, 0.1 sec, 0.05 sec, . . . ).
At act 625, the gaming system may receive from the sensor device (and/or a different sensor device) finger location information indicative of where a player's finger (e.g., index finger) is located.
At act 630, the gaming system may analyze the finger location information received at act 625, and may determine based on that analysis that the player intends to issue an input command to select one of the game components arranged on the surface of the virtual sphere. In some embodiments, the finger location information may include a sequence of locations of the finger, and the gaming system may be configured to determine that the sequence of locations correspond to a certain gesture (e.g., downward click). The gaming system may be further configured to determine that the player intends to select the game component having a location on the virtual sphere that matches the location where the finger gesture is detected. For example, in an embodiment in which the virtual sphere is virtually projected into a 3D space under the player's hand (e.g., as shown in
In some embodiments, one or more thresholds may be used to determine whether the player made a certain finger gesture such as downward click. In one non-limiting example, the gaming system may be configured to determine, based on measurements taken by the sensor device, a distance by which the player moved his finger. The gaming system may be configured to recognize the gesture only if the distance exceeds a certain threshold (e.g., 25 mm, 20 mm, 15 mm, 10 mm, 5 mm, . . . ).
At act 635, the gaming system may cause an action to be taken in the game. In some embodiments, the gaming system may be configured to determine the action to be taken based at least in part on the selected game component as determined at act 630. In some embodiments, the action to be taken may be determined based at least in part on one or more characteristics of the movement. For example, the gaming system may be configured to distinguish between a single click and a double click, and may take different actions accordingly.
As discussed throughout this disclosure, a gesture input interface may be used in conjunction with any suitable system, including, but not limited to, a system for playing wagering games. Some non-limiting examples of such games are described below. Other non-limiting examples can be found in U.S. patent application Ser. No. 14/029,364, entitled “Enhancements to Game Components in Gaming Systems,” filed on Sep. 17, 2013, claiming priority to U.S. Provisional Application No. 61/746,707 of the same title, filed on Dec. 28, 2012. Further examples can be found in U.S. patent application Ser. No. 13/361,129, entitled “Gaming System and Method Incorporating Winning Enhancements,” filed on Sep. 28, 2012, and PCT Application No. PCT/CA2013/050053, entitled “Multi-Player Electronic Gaming System,” filed on Jan. 28, 2013. All of these applications are incorporated herein by reference in their entireties.
In some embodiments, the display may include at least one multifaceted game component that is displayed in 3D. In the example of
In some embodiments, the stars may be visually projected out of the display screen and may be moving in a 3D space between the screen and a player. The player may be prompted to use his hand to virtually capture one or more of the stars. A gesture input interface such as one of those described in connection with
In some embodiments, the stars may be of different types, where each type may be of a different color, shape, size, etc. The player may win a prize for collecting a particular number of stars of the same type. For example, the player may need to collect five stars of a certain type to win a corresponding level. The stars of a higher level (e.g., a level associated with higher payout) may be animated differently so as to make them more difficult to capture. For example, such stars may move more quickly, take more turns, etc.
In some embodiments, a gaming system may be configured to detect a physical object. In response to detecting the physical object, the gaming system may generate a model for a virtual object corresponding to the physical object, and may use the model to render a display of the virtual object. For example, the physical object may be a player's hand, and the virtual object may be a virtual hand corresponding to the player's hand. Other types of objects may also be detected, as aspects of the present disclosure are not limited to the detection of any particular type of object.
A physical object may be detected using any combination of one or more sensing techniques, including, but not limited, an optical camera-based technique, an infrared camera-based technique, a laser-based technique, and/or an ultrasound-based technique. For example, the gaming system may include one or more sensor devices configured to detect the physical object and output sensor information regarding one or more characteristics of the physical object. In some embodiments, a sensor device may include one or more onboard processors configured to process raw sensor data and output processed information. As one example, an onboard processor may be configured to apply one or more signal processing techniques such as filtering and/or noise reduction. As another example, an onboard processor may be configured to process multiple sensor signals (e.g., from two or more different sensors in a sensor array) and output a derived signal (e.g., with improved signal quality and/or additional information such as depth information). However, it should be appreciated that aspects of the present disclosure are not limited to the use of an onboard processor, as in some embodiments a sensor device may output raw sensor data instead of, or in addition to, processed information.
A sensor device may be configured to detect any suitable characteristic or combination of characteristics of a physical object. As one example, a sensor device may be configured detect one or more geometric characteristics of the physical object (e.g., shape and/or size in 2D or 3D). As another example, a sensor device may be configured to output non-geometric information such as color and/or texture. However, it should be appreciated that aspects of the present disclosure are not limited to the detection of any particular characteristic, as a gaming system may be configured to detect any information about a physical object that may be useful in generating a model for a virtual object corresponding to the physical object.
In some embodiments, a gaming system may be configured to use information detected from a physical object to generate a model for a virtual object so as to replicate the physical object in a virtual environment. For instance, the model for the virtual object may be constructed so that the virtual object, when rendered on a display, exhibits one or more geometric and/or non-geometric characteristics of the physical object. As an example, the physical object may be a player's hand, and the virtual object may be a virtual hand that matches the detected physical hand in size, shape, skin tone, etc. As another example, the physical object may be a player's head, and the virtual object may be a virtual head that matches the detected physical head in size, shape, facial expression, gender, race, skin tone, hair style, hair color, etc. As yet another example, the physical object may be an inanimate object, such as a pen, cup, card, etc. Such an object may, although need not, be held in a player's hand and placed into a field of view of a sensor device.
A model generated by a gaming system may have any suitable number of dimensions, such as 2D or 3D. Likewise, a virtual object may be displayed in any suitable number of dimensions, such as 2D or 3D. It should be appreciated that the display of a virtual object need not have the same dimensionality as a model for the virtual object. For example, the gaming system may generate a 3D model for the virtual object and use the 3D model to render a 2D display of the virtual object.
In some embodiments, an output from a sensor device may include a sequence of data sets. For instance, each data set may correspond to a particular point in time. A time stamp may, although need not, be provided for each data set. Alternatively, or additionally, an absolute and/or relative time may be derived for a data set using information such as the sensor device's sampling rate.
In some embodiments, a gaming system may be configured to track one or more aspects of a detected physical object over time. As one example, the physical object may be a player's hand, and the gaming system may be configured to track movement of the hand over time. For instance, the gaming system may be configured to recognize a point on the hand as a certain joint defined in a skeleton model, and track movement of the point over time. Alternatively, or additionally, the gaming system may be configured to recognize a segment between two points on the hand as a certain bone defined in a skeleton model, and track movement of the segment over time. Any suitable type of movement may be tracked, including, but not limited to, translational movement, rotational movement, and/or one or more transformations (e.g., opening and/or closing of the hand).
In some embodiments, a gaming system may be configured to use information detected from a physical object to update a model for a virtual object so as to replicate, in a virtual environment, the physical object's behavior. For instance, the model for the virtual object may be updated so that the virtual object, when rendered on a display, mimics one or more behaviors detected from the physical object.
As an example, the physical object may be a player's hand, and the virtual object may be a virtual hand. The gaming system may be configured to use movement information detected from the player's hand (e.g., tracked movement of one or more points, segments, etc.) to update the model for the virtual hand so that the virtual hand mimics the movement of the physical hand (e.g., pointing, opening palm, etc.). As another example, the physical object may be a player's head, and the virtual object may be a virtual head. The gaming system may be configured to use movement information detected from the player's head (e.g., tracked movement of one or more facial features) to update the model for the virtual head so that the virtual head mimics the movement of the physical head (e.g., blinking, smiling, nodding, shaking, etc.).
In some embodiments, a gaming system may be configured to match a detected physical object to an object type from multiple recognizable object types. For instance, the gaming system may be configured to match the physical object to an object type based on one or more geometric characteristics of the physical object. As one example, the gaming system may receive sensor information representing an image of the physical object and apply one or more image processing techniques (e.g., edge detection) to determine a shape of the physical object (e.g., cube, sphere, cylinder, disk, etc.). The shape may then be compared against multiple known shapes to identify one or more best matches.
In some embodiments, a gaming system may be configured to generate a model for a virtual object based on an object type of a physical object. For instance, a gaming system may be configured to match the physical object to an object type from multiple recognizable object types, and use the object type to identify a suitable model for the virtual object. Any suitable object types may be available, including, but not limited to, hand, wand, racket, club, bat, paddle, rod, card, and/or smartphone. It should be appreciated that a selected object type need not accurately represent a detected physical object. For instance, a gaming system may match a physical pen held in a player's hand to an object type of “wand.”
In some embodiments, a gaming system may include one or more model templates, for example, a different model template for each object type among multiple recognizable object types. The gaming system may be configured to select a model template based on an object type matching a detected physical object, and instantiate the selected template with one or more parameters obtained from sensor information. For instance, the physical object may be a player's hand and may be matched to an object type “human left hand” or “human right hand.” A model template may be selected accordingly, and may be instantiated based on one or more detected geometric characteristics (e.g., distances between identified joints) and/or non-geometric characteristics (e.g., skin tone). However, it should be appreciated that aspects of the present disclosure are not limited to the use of model templates, as in some embodiments a model for a virtual object may be generated without using any stored template.
In some embodiments, a gaming system may be configured to detect an interaction between a virtual game component and a virtual object corresponding to a physical object. For example, the gaming system may be configured to detect movement of the physical object and update a model for the virtual object according to the movement of the physical object. In some embodiments, the gaming system may be further configured to monitor the location of the virtual game component and the location of the virtual object, and to determine whether there is a collision between the virtual game component and the virtual object. For instance, the physical object may be a player's hand and the virtual object may be a virtual hand that mimics movement of the player's hand, and the virtual game component may be a virtual coin falling from a virtual coin fountain. The gaming system may be configured to monitor the location of the virtual coin and the location of the virtual hand, and to determine whether the virtual coin is going to hit the virtual hand.
In some embodiments, the gaming system may be configured to associate a vector field (e.g., a magnetic field) with a virtual object corresponding to a physical object. In this manner, a virtual game component moving towards the virtual object may change speed and/or direction as if being influenced by forces according to the vector field. As one example, the virtual game component may slow down (respectively, speed up) as if being pushed (respectively, pulled) by a greater and greater force as the virtual game component approaches the virtual object. For instance, the behavior may be similar to that between opposite magnetic poles (respectively, that between a magnet and iron filings), As another example, the virtual game component may stay attached to the virtual object after initial contact with the virtual object as if being attracted by a magnet.
Additionally, or alternatively, the gaming system may be configured to associate a vector field (e.g., a magnetic field) with the virtual game component. If the virtual game component and the virtual object both have a vector field associated there to, the respective vector fields may be the same or different, and the virtual game component and the virtual object may behave according to interactions between virtual forces of the two vector fields.
In some embodiments, the virtual game component may be a 3D virtual game component in a 3D scene of a game, and the virtual object may be a 3D virtual object. Accordingly, a vector field associated with the virtual game component or the virtual object may be a 3D vector field. However, aspects of the present disclosure are not limited to any particular dimensionality, as in some embodiments the scene of the game, the virtual game component, the virtual object, and/or the vector field may be in 2D. It should also be appreciated that aspects of the present disclosure are not limited to the use of a vector field.
In the example of
It should be appreciated that the techniques described herein are not limited to being used in connection with the illustrative gaming system 1200 shown in
In the example of
The sensors 1325A and 1325B may be arranged in any suitable manner. For example, as shown in
In some embodiments, the gaming system 1300 may be configured to process information output by the sensors 1325A and 1325B (e.g., coordinate information for the physical hand 1330) and generate a model for a virtual hand based on the sensor information. Rather than causing the virtual hand to be displayed visibly, the gaming system 1300 may, in some embodiments, simply use the model for the virtual hand to induce interactions with game components. For example, the locations of the sensors 1325A and 1325B relative to the display 1305 may be known, and the gaming system 1300 may be configured to used that location information along with the sensor information to determine a location of the physical hand 1330 relative to the display 1305. The virtual hand, although not visibly rendered, may be placed at the same location as the physical hand 1330. In this manner, the gaming system 1300 may be able to use techniques such as collision detection to allow the physical hand 1330 to interact with one or more game components, such as the virtual ball 1315. For example, the player may move the physical hand 1330 towards the virtual ball 1315, and the gaming system 1300 may be configured to update the position of the virtual hand accordingly. When the physical hand 1330 reaches the virtual ball 1315, the virtual hand may also reach the virtual ball 1315, and a collision between the virtual hand and the virtual ball 1315 may be detected.
In some embodiments, the gaming system 1300 may be configured to activate a game rule or otherwise trigger an event in response to detecting an interaction between the virtual ball 1315 and the virtual hand. For instance, the gaming system 1300 may be configured to update a model for the virtual ball 1315 so as to cause one or more changes in the appearance of the virtual ball 1315. As one example, the gaming system 1300 may be configured to update the model for the virtual ball 1315 so that an indentation appears where the collision between the virtual ball 1315 and the virtual hand is detected. As another example, the gaming system 1300 may be configured to update the model for the virtual ball 1315 so that the virtual ball 1315 is deformed as if being squished. As another example, the gaming system 1300 may be configured to update the model for the virtual ball 1315 so that the virtual ball 1315 changes color. The change in color may take place uniformly over the virtual ball 1315, or with a gradation (e.g., changing most drastically where the collision between the virtual ball 1315 and the virtual hand is detected, and fading radially outward from that location).
In some embodiments, the gaming system 1300 may be configured to update the model for the virtual ball 1315 so as to animate a change to the appearance of the virtual ball (e.g., size, shape, color, etc.). However, that is not required, as in some embodiments one or more changes may be shown instantaneously.
It should be appreciated that the specific example of a virtual ball is shown in
As another example, a gaming system may allow a player to use his physical hand to collect one or more virtual coins falling from a virtual coin fountain, where a virtual coin may be deemed to have been collected by the player when the gaming system detects a collision between the virtual coin and the palm of a virtual hand corresponding to the physical hand.
As another example, a gaming system may allow a player to use his physical hand to draw a virtual curtain by detecting a collision between the virtual curtain and one or more fingers of a virtual hand corresponding to the physical hand, and/or translational movement of the physical hand in a direction corresponding to the virtual curtain being opened or closed.
As another example, a gaming system may allow a player to use his physical hand to spin a virtual wheel of fortune by detecting a collision between the virtual wheel and one or more fingers of a virtual hand corresponding to the physical hand, and/or movement of the physical hand in a direction corresponding to the virtual wheel being spun. In some embodiments, the gaming system may be configured to control the spinning of the virtual wheel according to a virtual acceleration calculated based on a detected acceleration of the physical hand. However, that is not required, as in some embodiments a virtual acceleration of the virtual wheel may be randomly determined.
As another example, a gaming system may allow a player to use his physical hand to move a virtual game component (e.g., a virtual 3D symbol) and place the game component at a designated location within a virtual scene of a game (e.g., a virtual receptacle shaped to receive the virtual 3D symbol), by detecting a collision between the virtual game component and one or more fingers of a virtual hand corresponding to the physical hand, and/or movement of the physical hand consistent with moving the virtual game component from a current location to the designated location.
As another example, a gaming system may allow a player to use his physical hand to move a physical object (e.g., a physical cube) and place the physical object at a designated location within a virtual scene of a game (e.g., where a first virtual cube shaped to match the physical cube is displayed). For instance, the gaming system may be configured to generate a model for a second virtual cube, and cause the second virtual cube to move in the virtual scene in a manner that matches detected movement of the physical cube. The gaming system may activate a game rule or otherwise trigger an event in response to detecting that the position and/or orientation of the first virtual cube matches that of the second virtual cube.
Another example, a gaming system may allow a player to use his physical hand to unlock a virtual lock using a physical object. For instance, in some embodiments, the gaming system may be configured to detect a physical object held in the player's hand (e.g., pen, key, wand, etc.) and link the physical object to a model of a virtual key. As movement of the physical object is detected, the gaming system may be configured to update the model of the virtual key to mimic the movement of the physical object, such as being inserted into the virtual lock and/or turning.
Another example, a gaming system may allow a player to use his physical hand to unlock a virtual lock using a virtual key. For instance, in some embodiments, the gaming system may be configured to detect a collision between the virtual key and one or more fingers of a virtual hand corresponding to the physical hand, and/or movement of the physical hand corresponding to the virtual key being inserted into the virtual lock and/or turning.
It should be appreciated that in all of the examples discussed above in connection with
At act 1405, the gaming system may cause a scene of a wagering game to be displayed, for example, on a 3D display such as a thin film transistor (TFT) display. In some embodiments, the 3D display may be configured to cause a player to visually perceive one or more virtual game components in a display region (e.g., the illustrative display region 1310 shown in
At act 1410, the gaming system may update a model (e.g., a 3D volumetric model) for a virtual object corresponding to a detected physical object, such as an anatomical feature of a player (e.g., hand, finger, etc.) or a tool held by the player (e.g., cup, pen, wand, baton, gavel, etc.). For example, the detected physical object may be a physical hand, and the model may be a skeleton model comprising a wrist joint, a palm, and/or one or more joints and/or bones for one or more fingers. However, it should be appreciated that aspects of the present disclosure are not limited to the use of a skeleton model, as in some embodiments a hand may be modeled as 3D body having a certain contour.
In some embodiments, the gaming system may receive information from one or more sensor devices (e.g., the illustrative sensors 1325A-1325B shown in
In some embodiments, multiple physical objects may be detected, and the received sensor information may indicate multiple corresponding locations. For example, the game may be a multi-player game, and objects associated respectively with different players may be detected by a same sensor device or different sensor devices.
It should be appreciated that location information is merely one example of information that may be received from a sensor device. Additionally, or alternatively, a sensor device may provide information indicative of a non-geometric characteristic of the detected physical object, such as color and/or texture.
In some embodiments, updating the model of a virtual object may include updating a location occupied by the virtual object within the display region. For example, the gaming system may be configured to use information detected from the physical object to update the model for the corresponding virtual object so as to replicate the physical object's behavior. For instance, the model for the virtual object may be updated so that the virtual object mimics one or more behaviors detected from the physical object.
Returning to
As another example, the virtual game component may include one or more virtual gaming chips. The gaming system may be configured to monitor the location of the one or more virtual gaming chips and the location of the virtual hand, and to determine whether the virtual hand is moving the one or more virtual gaming chips, which may indicate that the player intends to place a bet. In some embodiments, the gaming system may be configured to monitor the movement of the virtual hand (which may mimic the movement detected from the physical hand) to determine where the one or more virtual gaming chips are being moved, which may indicate on what the player is placing the bet (e.g., one or more numbers in a roulette game). In some embodiments, the gaming system may be configured to determine how many virtual gaming chips are being moved by the virtual hand, which may indicate an amount of the player's bet.
At act 1420, the gaming system may cause one or more actions to be taken in the wagering game based on the interaction detected at act 1415. For instance, in the roulette wheel example discussed above in connection with act 1415, an action may include a bet being placed on behalf of the player on a number, and in an amount, determined at act 1415. As another example, the wagering game may be a juggling game in which the player is to toss multiple virtual objects in the air and catch the virtual objects as the objects fall back down. The gaming system may be configured to detect collisions between virtual hands corresponding respectively to the player's left and right hands to determine a number of times the player successfully tosses and/or catches a virtual object, and an action may include awarding a number of points to the player according to the number of times the player successfully tosses and/or catches a virtual object.
In some embodiments, the gaming system may be configured to update the display of the wagering game based on the action taken in the act 1420. Updating the display may include changing an appearance of a virtual object in an existing scene (e.g., spinning a wheel, turning over a card, etc.). Updating the display may also include generating a new scene, for example, by generating a new 3D mesh.
It should be appreciated that the process 1400 shown in
In some embodiments, the gaming system may detect an interaction between the virtual cup and a virtual game component, such as a virtual sphere 1515. The gaming system may be configured to adjust an appearance of the virtual sphere 1515 based on the detected interaction, for example, by making the virtual sphere 1515 gradually disappear as if being scooped up by a cup. The virtual cup may be made invisible, so as to create an illusion of the virtual sphere 1515 being scooped up by the physical cup 1510. Other virtual game components may also be used, in addition to, or instead of the virtual sphere 1515, such as virtual coins.
In the example shown in
In some embodiments, the two electronic gaming machines may be configured to allow the two players to participate in a multi-player game. For example, the first electronic gaming machine may be configured to detect an interaction between a virtual game component (e.g., a virtual ball 1625), and to create a virtual hand to mimic movement of the physical hand 1615. For example, the first electronic gaming machine may be configured to detect that the physical hand 1615 is moving as if attempting to toss the virtual ball 1625. The first electronic gaming machine may be configured to determine a trajectory and/or speed of the virtual ball 1625 and transmit that information to the second electronic gaming machine. The second electronic gaming machine may display the virtual ball 1625 as if the virtual ball 1625 was tossed from the first electronic gaming machine over to the second electronic gaming machine, for example, as shown in
Any suitable game action may result from a virtual game component being “tossed” from one machine to another. For example, an equal reward may be given to each of the two players. Alternatively, a greater reward may be given to the first player who tossed the virtual game component than to the second player who received the virtual game component, or vice versa.
It should be appreciated that the multi-player game described above in connection with
In some embodiments, a multiple-player game may be played on a single machine. For instance, with reference to the example shown in
In some embodiments, a multi-player game may be played on multiple electronic gaming machines. A player may interact with a virtual game component on that player's machine, and a result of the interaction (e.g., a change in appearance of the virtual game component) may be shown at one or more other machines. This technique may be used, for example, during a bonus game to allow one player to give a hint to another player, or to influence an outcome of the bonus game. As another example, a multi-player poker game may be played on multiple electronic gaming machines, in which each player may hold a respective hand of virtual cards, tilt his hand to look at the virtual cards, push chips towards the center of a virtual table to place a bet, etc. Moreover, in some embodiments, each player may see the chips and/or cards of the other players.
In some embodiments, a gaming system may include an optical sensor such as a barcode (or QR code) reader. A player may place a card, such as a scratch card, having a barcode (or QR code) within a field of view of the barcode (or QR code) reader. The gaming system may be configured to process the information read from the code, for example, to determine if the code represents a winning combination. If it is determined that the code represents a winning combination, the gaming system may create a virtual card and integrate the virtual card into a scene of a game. Additionally, or alternatively, the gaming system may initiate a bonus playoff, where the information read from the card may be used to select a type of bonus playoff and/or one or more bonus rules.
It should be appreciated that the various concepts disclosed above may be implemented in any of numerous ways, as the concepts are not limited to any particular manner of implementation. For instance, the present disclosure is not limited to the particular arrangements of components shown in the various figures, as other arrangements may also be suitable. Such examples of specific implementations and applications are provided solely for illustrative purposes.
The embodiments are operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the described techniques include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The computing environment may execute computer-executable instructions, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The embodiments may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 710 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 710 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 710. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
The system memory 730 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 731 and random access memory (RAM) 732. A basic input/output system 733 (BIOS), containing the basic routines that help to transfer information between elements within computer 710, such as during start-up, is typically stored in ROM 731. RAM 732 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 720. By way of example, and not limitation,
The computer 710 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 710 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 780. The remote computer 780 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 710, although only a memory storage device 781 has been illustrated in
When used in a LAN networking environment, the computer 710 is connected to the LAN 771 through a network interface or adapter 770. When used in a WAN networking environment, the computer 710 typically includes a modem 772 or other means for establishing communications over the WAN 773, such as the Internet. The modem 772, which may be internal or external, may be connected to the system bus 721 via the user input interface 760, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 710, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
The above-described embodiments can be implemented in any of numerous ways. For example, the embodiments may be implemented using hardware, software or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers. It should be appreciated that any component or collection of components that perform the functions described above can be generically considered as one or more controllers that control the above-discussed functions. The one or more controllers can be implemented in numerous ways, such as with dedicated hardware, or with general purpose hardware (e.g., one or more processors) that is programmed using microcode or software to perform the functions recited above.
In this respect, it should be appreciated that one implementation comprises at least one processor-readable storage medium (i.e., at least one tangible, non-transitory processor-readable medium, e.g., a computer memory (e.g., hard drive, flash memory, processor working memory, etc.), a floppy disk, an optical disc, a magnetic tape, or other tangible, non-transitory computer-readable medium) encoded with a computer program (i.e., a plurality of instructions), which, when executed on one or more processors, performs at least the above-discussed functions. The processor-readable storage medium can be transportable such that the program stored thereon can be loaded onto any computer resource to implement functionality discussed herein. In addition, it should be appreciated that the reference to a computer program which, when executed, performs above-discussed functions, is not limited to an application program running on a host computer. Rather, the term “computer program” is used herein in a generic sense to reference any type of computer code (e.g., software or microcode) that can be employed to program one or more processors to implement above-discussed functionality.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof, is meant to encompass the items listed thereafter and additional items. Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed. Ordinal terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term), to distinguish the claim elements.
Having described several embodiments of the invention, various modifications and improvements will readily occur to those skilled in the art. Such modifications and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and is not intended as limiting. The invention is limited only as defined by the following claims and the equivalents thereto.
This application is a continuation claiming the benefit under 35 U.S.C. § 120 of U.S. application Ser. No. 14/746,621, filed on Jun. 22, 2015, entitled “OBJECT DETECTION AND INTERACTION FOR GAMING SYSTEMS,” which is a continuation-in-part claiming the benefit under 35 U.S.C. § 120 of U.S. application Ser. No. 14/181,533, filed on Feb. 14, 2014, entitled “GESTURE INPUT INTERFACE FOR GAMING SYSTEMS,” the disclosures of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7618323 | Rothschild et al. | Nov 2009 | B2 |
8684839 | Mattice et al. | Apr 2014 | B2 |
9030408 | Latta et al. | May 2015 | B2 |
9261968 | Yen et al. | Feb 2016 | B2 |
9411504 | Hinckley et al. | Aug 2016 | B2 |
9507417 | Dal Mutto et al. | Nov 2016 | B2 |
9978202 | Keilwert | May 2018 | B2 |
20090143141 | Wells et al. | Jun 2009 | A1 |
20120322542 | Chudd et al. | Dec 2012 | A1 |
20130328763 | Latta | Dec 2013 | A1 |
20150192991 | Dal Mutto | Jul 2015 | A1 |
20160005263 | Keilwert | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2862075 | Aug 2013 | CA |
2881565 | Aug 2015 | CA |
WO 2008139181 | Nov 2008 | WO |
WO 2014113507 | Jul 2014 | WO |
Entry |
---|
International Preliminary Report on Patentability Corresponding to International Application No. PCT/CA2014/051212; dated Aug. 25, 2016; 8 Pages (see parent appli. |
International Search Report and Written Opinion Corresponding to International Application No. PCT/CA2014/051212; dated Mar. 12, 2015, 13 Pages (See parent applica. |
International Search Report and Written Opinion Corresponding to International Application No. PCT/CA2015/050772; dated Apr. 18, 2016; 13 Pages (See parent Applica. |
Examination Search Report issued for corresponding Canadian Application No. 2,881,565, dated Feb. 19, 2016. (see parent application). |
Number | Date | Country | |
---|---|---|---|
20180040190 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14746621 | Jun 2015 | US |
Child | 15784275 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14181533 | Feb 2014 | US |
Child | 14746621 | US |