This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2004-103847, filed Mar. 31, 2004, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an electrophotographic apparatus using a liquid developer, a carrier liquid removal mechanism which removes a carrier liquid especially from an image before transfer, and an image forming method.
2. Description of the Related Art
An electrophotographic apparatus using a liquid developer has advantages which cannot be realized by a dry electrophotographic apparatus, and has been evaluated again in recent years. For example, major advantages of liquid process electrophotography in contrast to the dry process are as follows. Since an extremely fine toner having a sub-micron size is usable, high image quality can be realized. Since a sufficient image density is obtained by a small amount of toner, the apparatus is economical, and a quality equivalent to that of printing (e.g., offset printing) can be realized. Furthermore, since the toner can be fixed to a sheet at a comparatively low temperature, energy saving can be realized.
In the liquid process electrophotographic apparatus using a pressure transfer, it is necessary to remove an excess carrier liquid (solvent) from the inside and the vicinity of the visible image formed on a photosensitive member. For example, in Jpn. Pat. Appln. KOKAI Publication No. 2002-278302, a drying device has been proposed which has two or more nozzles capable of blowing air, along the surface of the photosensitive member and which blows the air onto the surface of the photosensitive member at a predetermined speed to thereby dry excess carrier liquid.
However, in the drying device proposed in the Jpn. Pat. Appln. KOKAI Publication No. 2002-278302, which blows the air along the surface of the photosensitive member to dry the excess carrier liquid, problems occur in many cases that the carrier liquid conveyed together along the surface of the photosensitive member drip and generate image dirt on output images or pollute other elements disposed around the photosensitive member and the inside of the apparatus.
An object of the present invention is to prevent deterioration of an image and pollution inside of apparatus from being caused by the air for drying a visible image and removing a carrier liquid before transfer in an electrophotographic apparatus using a liquid developer.
An aspect of the present invention, an image forming apparatus comprising: a photosensitive member which holds an electrostatic latent image; a developing unit which supplies a liquid developer obtained by dispersing a toner in a carrier liquid to the electrostatic latent image to form a visible image on the photosensitive member; a transfer member onto which the visible image is transferred; an image stabilizing unit which applies an electric field to the visible image to enhance adsorption among the toners forming the visible image and between the toners and the photosensitive member; a drying unit which blows an air current to the visible image having the adsorption to the photosensitive member enhanced by the image stabilizing unit to dry and remove the carrier liquid; and a shielding member which is disposed between the drying unit and the image stabilizing unit and which inhibits liquid droplets of the carrier liquid flowing backwards toward the image stabilizing unit from the drying unit from reaching the image stabilizing unit.
Additional objects and advantages will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice. The objects and advantages may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments , and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles.
An embodiment will be described hereinafter with reference to the drawings.
A photosensitive member 1 is a drum in which an organic or amorphous silicon photosensitive layer is disposed on a conductive substrate, for example, of aluminum. A moldreleasing layer is disposed on the photosensitive layer, and toner particles are preferably prevented from being fixed to the photosensitive layer. In
After the photosensitive member 1 is uniformly charged by a charging unit 2-1 constituted of a known corona charger or scorotron charger, and thereafter an electrostatic latent image is formed on the surface of the member 1 by an expose unit 3-1 by an image-modulated laser beam or an LED array which is turned on/off in accordance with image data.
The electrostatic latent image formed on the photosensitive member 1 is developed and visualized by a developing unit 4-1 storing a liquid developer, toner particles as a mixture of a resin and colorant dispersed in the carrier liquid which is an insulating and nonpolar liquid.
Subsequently, the photosensitive member 1 is charged to a predetermined potential by a second charging device 2-2 again, and a second electrostatic latent image is formed by a second expose unit 3-2.
The second electrostatic latent image is developed by a second developing unit 4-2 which stores the second liquid developer containing a color different from that of the liquid developer stored in the first developing unit 4-1.
Thereafter, a third electrostatic latent image is formed by a third charging unit 2-3 and a third expose unit 3-3, and is developed by a third developing unit 4-3 which stores a third liquid developer having a color different from colors of the liquid developers stored in the first and second developing unit. Furthermore, a fourth electrostatic latent image is formed by a fourth charging unit 2-4 and a fourth expose unit 3-4, and is developed by a fourth developing unit 4-4 which stores a fourth liquid developer having a color different from colors of the liquid developers stored in the first to third developing unit.
Thereby, a four-color (full-color) visible image is formed on the photosensitive member 1.
A visible image stabilizing unit 5, such as a corona charger or a roller charger, provides electrostatic force on the visible image to enhance the rigidity of the visible image. Thereafter, the photosensitive layer moves by rotation of the photosensitive member 1, and accordingly the visible image is conveyed to a drying position facing a drying unit 6 for drying and removing the carrier liquid.
For example, as shown in
After drying the carrier liquids on the visible image and the photosensitive member 1 by the drying unit 6, the visible image is transferred onto an intermediate transfer member 7. After the first transfer, the transfer for the intermediate transfer member 7, the visible image is transferred onto a sheet (output medium) 9 conveyed between an intermediate transfer member 7 and a pressurizing roller 8. In a transfer unit, the intermediate transfer member 7 is brought into contact with the pressurizing roller 8 at a predetermined pressure (in a state in which axial lines substantially extend in parallel). The visible image transfer from the intermediate transfer member 7 to the photosensitive member 1 is realized by pressure performed by bringing both the members into contact with each other at a predetermined contact pressure. The surface velocity V2 of the intermediate transfer member 7 is set to V2/V1=0.98, which is slightly slow with respect to the surface velocity V1 of the photosensitive member 1. Accordingly, a shear stress is added to the visible image, and the visible image is transferred onto the intermediate transfer member 7.
In the above-described pressure transfer system, when the visible image is transferred onto the intermediate transfer member 7 from the photosensitive member 1, excess carrier liquids remaining among the toners constituting the visible image and between the individual toners and the photosensitive member 1 need to be securely removed. This is because when the surface of the photosensitive member 1 is wet by the excess carrier liquids, the intermediate transfer member 7 is degraded; further a shearing force does not easily work, and transfer efficiency also drops. Therefore, in order to securely realize the pressure transfer, it is indispensable to remove the excess carrier liquid from the developed visible image before the transfer until a dried state can be substantially recognized.
A transfer residual toner remaining on the surface of the photosensitive member 1 is removed by a cleaner 10 disposed between the first charging unit 2-1 and the intermediate transfer member 7.
Between the drying unit 6 and the visible image stabilizing unit 5, a shielding member 11 is disposed which inhibits liquid dripping of the carrier liquid (dripping of the carrier liquid from the outer peripheral surface of the photosensitive member 1, hereinafter referred to as the liquid dripping) sometimes caused on the surface of the photosensitive member 1 from reaching the visible image stabilizing unit 5 (element positioned right under the drying unit 6).
When the liquid dripping, that is, a dropped carrier liquid reaches, for example, the visible image stabilizing unit 5, the liquid appears as image dirt such as image fogging on an output image together with the visible image on the photosensitive member 1 by an electric field force. Therefore, the liquid dripping (dropped toner liquid) should be inhibited from being left on at least the surface of the photosensitive member 1.
As shown in
As shown in
The shielding member 11 is capable of momentarily absorbing the liquid dripping caused on the surface of the photosensitive member 1. Moreover, when the shielding member 11 is disposed in the vicinity of the drying unit 6, scattered droplets of the carrier liquid generated during conveyance into a drying step with the rotation of the photosensitive member 1 can be efficiently recovered, and the inside of the apparatus can be prevented from being polluted. Furthermore, when the shielding member 11 is disposed on a downstream side of the visible image stabilizing unit 5, and even when the carrier liquid flies/scatters, the scattered droplets can be inhibited from reaching the visible image stabilizing unit 5, whereby soil of the image can be prevented.
For example, as shown in
Moreover, when the absorbing member, that is, the porous member is formed into the plate shape as shown in
When the plate-shaped porous member is used as the shielding member 11, for example, a thickness is increased, and accordingly an amount of temporarily retainable carrier liquid can be increased. However, since a surface facing the photosensitive member 1 is fixed, clogging is caused after continuous use for a long time, and there is a possibility that a suction capability drops. To prevent this, for example, as shown in
For example, as shown in
when the porous member is formed into the roller shape, for example, the clogging with the toner particles contained in the carrier liquid is reduced as compared with the use of the plate-shaped member shown in
If the porous member is formed into the roller shape, as shown in
Moreover, for example, each gap ring 14 is constituted to contain a bearing, or the gap ring 14 is formed of a material having a small coefficient of friction, and used also as the bearing. Accordingly, a rotary force from a rotating/driving source (not shown) is supplied to the roller member, and the roller member can be rotated at a predetermined speed. In this case, the portion of the roller member opposite to the photosensitive member 1 can be continuously changed, and occurrence of a disadvantage that the carrier liquid solidifies in a specific portion of the roller member can be reduced.
For example, as shown in
As shown in
As shown in
For example, a brush roller having a brush contacting with the outer peripheral surface of the absorbing roller 111 at a predetermined pressure is usable as the cleaning mechanism 112. For example, the brush roller 112 is rotated at high speed, and the deposits on the absorbing roller 111 surface are dropped, and further recovered by a recovery device (not shown). Accordingly, the surface of the absorbing roller 111 can be prevented from being clogged, or the deposits and toner particles accumulated on the surface of the absorbing roller 111 can be prevented from being undesirably returned toward the photosensitive member 1.
As shown in
For example, a blade-shaped (plate-shaped) member, a metal roller, a metal mesh or the like is usable as the carrier liquid removal mechanism 113.
the carrier liquid removal mechanism 113 contacts with the absorbing roller 111 under the pressure, and is capable of accordingly squeezing/removing the absorbed carrier liquid together with the deposits attached to the absorbing roller 111 surface. For example, the discharge mechanism for discharging the carrier liquid absorbed by the shielding member 11 as shown by one example in
The present invention is not limited to the embodiments described above and can be modified in various manners without departing from the spirit and scope of the invention. For example, the present invention can provide an image forming apparatus of a liquid process electrophotographic system comprises:
Number | Date | Country | Kind |
---|---|---|---|
PCT/JP03/05927 | May 2003 | WO | international |