Object recognition based image filters

Information

  • Patent Grant
  • 11301960
  • Patent Number
    11,301,960
  • Date Filed
    Monday, July 8, 2019
    4 years ago
  • Date Issued
    Tuesday, April 12, 2022
    2 years ago
Abstract
Systems and methods for distributing photo filters based on the location of the object in the image are described. A photo filter publication system detects that a client device in communication with the system has captured an image, identifies an object in the image, identifies a location of the object in the image, identifies an image overlay associated with the identified location and having object criteria satisfied by the identified object, and provides the identified image overlay to the client device.
Description
TECHNICAL FIELD

The subject matter disclosed herein generally relates to generating and distributing photo filters. More specifically, the present disclosure addresses systems and methods for presenting photo filters on a user interface of a mobile device based on recognizing, in a photograph taken with the mobile device, objects that satisfy specified object criteria.


BACKGROUND

The number of digital photographs taken with mobile wireless devices is increasing and may soon outnumber photographs taken with dedicated digital and film based cameras. Thus, there is a growing need to improve the experience associated with mobile wireless digital photography by providing a broader range of features that is often associated with dedicated digital and film based cameras.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which:



FIG. 1 is a network diagram depicting a network system having a client-server architecture configured for exchanging data over a network, according to one embodiment.



FIG. 2 shows a block diagram illustrating one example embodiment of a messaging application.



FIG. 3 shows a block diagram illustrating one example embodiment of a photo filter application.



FIG. 4A shows a block diagram illustrating one example embodiment of a user-based photo filter publication module.



FIG. 4B shows an example of a graphical user interface for a user-based photo filter publication module.



FIG. 4C shows an example of an operation of the graphical user interface of FIG. 4B.



FIG. 4D illustrates an example of a publication of a user-based photo filter.



FIG. 5A shows a block diagram illustrating one example embodiment of a merchant-based photo filter publication module.



FIG. 5B illustrates an example of a common geolocation.



FIG. 5C illustrates an example of an operation of a merchant-based photo filter.



FIG. 6A shows a diagram illustrating an example of a photo filter operating with a count module.



FIG. 6B shows a diagram illustrating an example of a photo filter operating with a collection module.



FIG. 7 shows a flow diagram illustrating one example embodiment of an operation of the user-based photo filter publication module.



FIG. 8 shows a flow diagram illustrating one example embodiment of an operation of the merchant-based photo filter publication module.



FIG. 9 shows a flow diagram illustrating one example embodiment of an operation of the collection module.



FIG. 10 shows a flow diagram illustrating one example embodiment of an operation of the count module.



FIG. 11 shows a diagrammatic representation of machine, in the example form of a computer system, within which a set of instructions may be executed to cause the machine to perform any one or more of the methodologies discussed herein.



FIG. 12 is a block diagram illustrating a mobile device, according to an example embodiment.





DETAILED DESCRIPTION

Although the present disclosure is described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


The addition of labels, drawings and other artwork to photographs provides a compelling way for users to personalize, supplement and enhance these photographs before storage or publication to a broader audience. An example technology provides users with a set of photo filters (e.g., providing enhancements and augmentations) that can be applied to a photograph taken by the user. The set of photo filters (e.g., image overlays) may be determined based on a recognition of an object in the photograph that satisfies specified object criteria associated with a photo filter. In this way, the photo filters are presented to a user for selection and use with the photograph based on a recognized content of the photograph. For example, if the user takes a photograph and an object in the photograph is recognized as the Empire State Building, photo filters associated with the Empire State Building may be provided to the user for use with the photograph. In this example, a picture of the Empire State Building may use a King Kong filter that would place the giant ape on the Empire State Building in the photograph at different perspectives. Therefore, a picture of the south face of the Empire State Building might see King Kong's back, while a picture from the north face might see King Kong's face looking at you. In this example, provision of the King Kong filter may also be constrained by a geo-fence (e.g., geographic boundary) around the area in New York including the Empire State Building. Of course, further Empire State Building-themed photo filters may also be presented to the user. The presentation of the photo filters to the user may be in response to the user performing a gesture (e.g. a swipe operation) on a screen of the mobile device. Furthermore, although some example embodiments describe the use of filters in conjunction with photographs, it should be noted that other example embodiments contemplate the use of filters with videos.


Third party entities (e.g., merchants, restaurants, individual users, etc.) may, in one example embodiment, create photo filters for inclusion in the set presented for user selection based on recognition of an object satisfying criteria specified by the creator of the photo filter. For example, a photograph including an object recognized as a restaurant may result in the user being presented with photo filters that overly a menu of the restaurant on the photograph. Or a photograph including an object recognized as a food type may result in the user being presented with photo filters that let the user view information e.g., calories, fat content, cost or other information associated with the food type. Third party entities may also bid (or otherwise purchase opportunities) to have a photo filter included in a set presented to a user for augmentation of a particular photograph. Described below are various systems and methods for implementing the above described photograph enhancements.


More specifically, various examples of a photo filter application are described. The photo filter application includes a photo filter publication module that operates at a server, in some embodiments, and generates photo filters based on filter data associated with the satisfaction of specified object criteria by objects recognized in a photograph. In other embodiments, some or all of the functionality provided by the photo filter publication module may be resident on client devices. A photo filter may be generated based on supplied filter data that may include audio and/or visual content or visual effects that can be applied to augment the photograph at a mobile computing device. The photo filter publication module may itself include a user-based photo filter publication module and a merchant-based photo filter publication module.


The photo filter application also includes a photo filter engine that determines that a mobile device has taken a photograph and, based on the photograph including an object that satisfies the object criteria, provides the photo filter to the client device. To this end, the photo filter engine includes an object recognition module configured to find and identify objects in the photograph; and compare each object against the object criteria. The object criteria may include associations between an object and a source of image data, for example exhibits in a museum, in which case the associated photo filter may include images including data associated with a specific exhibit in the museum.


Using the user-based photo filter publication module, the photo filter publication application provides a Graphical User Interface (GUI) for a user to upload filter data for generating a photo filter and object criteria for comparing to recognized objects in a photograph. For example, the user may upload a logo image for the creation of a photo filter and specify criteria that must be satisfied by an object recognized in the photograph in order for the filter to be made available to a mobile device. Once the user submits the logo and specifies the object criteria, the photo filter publication module generates a photo filter that includes the logo and is associated with satisfaction of the specified object criteria. As such, mobile devices that have taken a photograph including a recognized object that satisfies the specified object criteria may have access to the logo-photo filter.


In other examples, if a photograph includes more than a specified number of objects that satisfy specified object criteria, the photo filter engine may use a photo filter priority module to generate a ranking of photo filters associated with object criteria satisfied by the objects in the photograph based on specified photo filter priority criteria. The photo filter engine may then provide the specified number of the photo filters to the client device according to the ranking of the photo filters, which may be based on any combination of a photo filter creation date, a photo filter type, a user ranking of the photo filter, etc.


Using the merchant-based photo filter publication module, the photo filter publication application provides a GUI for merchants to upload filter data and object criteria, and submit bids for the presentation of a photo filter based on the uploaded filter data based on the satisfaction of the uploaded object criteria by an object recognized in a photograph. A bidding process may be used to determine the merchant with the highest bid amount. That merchant can then exclude publication of photo filters from other merchants (with lower bids) that might otherwise be published based on satisfaction of the uploaded object criteria. Therefore, the photo filter of the highest bidding merchant may be the only photo filter that can be accessed by mobile devices that have taken a photograph including a recognized object that satisfies the uploaded object criteria. In examples, the common object criteria includes a type of object for which multiple merchants sell branded products of the same type.


The photo filter engine includes a collection module to store previously provided photo filters in a photo filter collection associated with a client device. The collection module may then instruct the photo filter publication module to provide a new photo filter to the client device in response to the photo filter collection including a specified number of a type of photo filter. The collection module may operate based on promotions from a merchant. For example, the collection module may be used to implement a game at a restaurant by providing certain premium photo filters to the client device only after the client device has collected a specified number of photo filters of a specified type, e.g., associated with recognition of a menu item. In an example, the premium photo filter may be used to obtain discounts and/or prizes at the restaurant.


The photo filter engine includes a count module to generate a count of objects of a specified object type identified in photographs taken by the client device. The count module may then instruct the photo filter publication module to adjust a content of a photo filter associated with the specified object type in response to the count reaching a specified threshold value. The count module may also operate based on promotions from a merchant. For example, the count module may be used to implement a game at a restaurant by adjusting the content of photo filters associated with a certain menu item only after the count of photos including objects recognized as the menu item of the brand reaches a specified threshold value. In an example, a photo filter associated with the menu item may be adjusted to include celebratory graphics that may be used to commemorate the user's achievements in ordering a certain number of menu items.


The photo filter publication modules include a video-creation module to provide a video-creation photo filter to the mobile device. For example, the photo filter engine may recognize an object in foreground of a photograph and alter the background (e.g., by adding motion) of the photograph to create a video including the recognized object (i.e., to make it appear as if the object is moving). Alternatively the photo filter engine may recognize an object in foreground of a photograph and add motion to the object in order to create a video including the recognized object.


System Architecture



FIG. 1 is a network diagram depicting a network system 100 having a client-server architecture configured for exchanging data over a network, according to one embodiment. For example, the network system 100 may be a messaging system where clients may communicate and exchange data within the network system 100. The data may pertain to various functions (e.g., sending and receiving text and photo communication, determining geolocation) and aspects (e.g., publication of photo filters, management of photo filters) associated with the network system 100 and its users. Although illustrated herein as client-server architecture, other embodiments may include other network architectures, such as peer-to-peer or distributed network environments.


A data exchange platform, in an example, includes a messaging application 120 and a photo filter application 122, and may provide server-side functionality via a network 104 (e.g., the Internet) to one or more clients. Although described as residing on a server in some embodiments, in other embodiments some or all of the functions of photo filter application 122 may be provided by a client device. The one or more clients may include users that use the network system 100 and, more specifically, the messaging application 120 and the photo filter application 122, to exchange data over the network 104. These operations may include transmitting, receiving (communicating), and processing data to, from, and regarding content and users of the network system 100. The data may include, but is not limited to, content and user data such as user profiles, messaging content, messaging attributes, photo attributes, client device information, geolocation information, photo filter data, object recognition data, object criteria for recognized objects in a photograph, among others.


In various embodiments, the data exchanges within the network system 100 may be dependent upon user-selected functions available through one or more client or user interfaces (UIs). The UIs may be associated with a client machine, such as client devices 110, 112 using a programmatic client 106, such as a client application. The programmatic client 106 may be in communication with the messaging application 120 and photo filter application 122 via an application server 118. The client devices 110, 112 include mobile devices with wireless communication components, and audio and optical components for capturing various forms of photo including photos and videos (e.g., photo application 107).


Turning specifically to the messaging application 120 and the photo filter application 122, an application program interface (API) server 114 is coupled to, and provides programmatic interface to one or more application server(s) 118. The application server 118 hosts the messaging application 120 and the photo filter application 122. The application server 118 is, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more databases 126.


The API server 114 communicates and receives data pertaining to messages and photo filters, among other things, via various user input tools. For example, the API server 114 may send and receive data to and from an application (e.g., via the programmatic client 106) running on another client machine (e.g., client devices 110, 112 or a third party server).


In one example embodiment, the messaging application 120 provides messaging mechanisms for users of the client devices 110, 112 to send messages that include text and photo content such as pictures and video. The client devices 110, 112 can access and view the messages from the messaging application 120. Components of the messaging application 120 are described in more detail below with respect to FIG. 2.


In one example embodiment, the photo filter application 122 provides a system and a method for operating and publishing photo filters for distribution via messages processed by the messaging application 120. The photo filter application 122 supplies a photo filter to the client device 110 based on a recognized object in a photograph taken with the client device 110 satisfying specified object criteria. In another example, the photo filter application 122 supplies a photo filter to the client device 110 based on the photo filter being associated with a winning bid from a merchant who created the photo filter. In other example embodiments, photo filters from merchants may be provided on a flat fee basis (e.g., a merchant agrees to pay a fixed amount for the presentation of filters), a cost per view basis, or the like.


The photo filter may include audio and visual content and visual effects. Examples of audio and visual content include pictures, texts, logos, animations, and sound effects. An example of a visual effect includes color filtering. The audio and visual content or the visual effects can be applied to a photograph stored at the client device 110. For example, the photo filter may include text that can be overlaid on top of a photograph taken by the client device 110. In other examples, the photo filter may include images associated with a location, a merchant, a brand, a work of art, an animal, a person, etc. For example, in regard to a merchant, the photo filter may include indicia associated with the merchant like logos and/or other images (e.g., a spokesperson) related to the merchant. The photo filters may be stored in the database(s) 126 and accessed through the database server 124.


The photo filter application 122 includes a photo filter publication module that generates photo filters based on filter data associated with the satisfaction of specified object criteria by objects recognized in a photograph taken by the client device 110. A photo filter may be generated based on supplied filter data that may include audio and/or visual content or visual effects that can be applied to augment the photograph. The photo filter publication module may itself include a user-based photo filter publication module and a merchant-based photo filter publication module.


In one example embodiment, the photo filter application 122 includes a user-based publication module that enables users to upload filter data for generating a photo filter and object criteria for comparing against recognized objects in a photograph. For example, the user may upload a logo image for the creation of a photo filter and specify criteria that must be satisfied by an object recognized in the photograph in order for the filter to be made available to a mobile device. Once the user submits the logo and specifies the object criteria, the photo filter publication module generates a photo filter that includes the logo and is associated with satisfaction of the specified object criteria.


In another example embodiment, the photo filter application 122 includes a merchant-based publication module that enables merchants to to upload filter data and object criteria, and submit bids for the presentation of a photo filter based on the uploaded filter data based on the satisfaction of the uploaded object criteria by an object recognized in a photograph. A bidding process may be used to determine the merchant with the highest bid. That merchant can then exclude publication of photo filters from other merchants (with lower bids) that might otherwise be published based on satisfaction of the uploaded object criteria. Components of the photo filter application 122 are described in more detail below with respect to FIG. 3.


Messaging Application



FIG. 2 shows a block diagram illustrating one example embodiment of the messaging application 120. The messaging application 120 may be hosted on dedicated or shared server machines (not shown) that are communicatively coupled to enable communications between server machines. The messaging application 120 and the photo filter application 122 themselves are communicatively coupled (e.g., via appropriate interfaces) to each other and to various data sources, so as to allow information to be passed between the messaging application 120 and the photo filter application 122, or so as to allow the messaging application 120 and the photo filter application 122 to share and access common data. The messaging application 120 and the photo filter application 122 may, furthermore, access the one or more databases 126 via the database server(s) 124.


The messaging application 120 is responsible for the generation and delivery of messages between users of the programmatic client 106. The messaging application 120 may use any one of a number of message delivery networks and platforms to deliver messages to users. For example, the messaging application 120 may deliver messages using electronic mail (e-mail), instant message (IM), Short Message Service (SMS), text, facsimile, or voice (e.g., Voice over IP (VoIP)) messages via wired (e.g., the Internet), plain old telephone service (POTS), or wireless networks (e.g., mobile, cellular, WiFi, Long Term Evolution (LTE), Bluetooth).


The messaging application 120 includes a photo receiver module 202, a photo filter application interface 204, a message generator module 206, an ephemeral message access module 208, and an ephemeral message storage module 210. The photo receiver module 202 receives a message from the programmatic client 106 of the client device 110. The message may include a combination of text, photo, or video. The photo receiver module 202 may also receive metadata associated with the message. The metadata may include a timestamp or geo-location information associated with the client device 110. The photo filter application interface 204 communicates with the photo filter application 122 to access and retrieve a photo filter associated with specified object criteria satisfied by an object recognized (e.g., by the photo filter engine) in a photograph taken by client device 110. The message generator module 206 attaches the retrieved photo filter to the message from the programmatic client 106 to create an ephemeral message and temporarily store the ephemeral message with the ephemeral message storage module 210.


The ephemeral message access module 208 notifies a recipient of the message of the availability of the ephemeral message. The ephemeral message access module 208 receives a request to access the ephemeral message from the recipient and causes the ephemeral message to be displayed on a client device of the recipient for a specified duration. Once the recipient views the message for the specified duration, the ephemeral message access module 208 causes the client device of the recipient to stop displaying the ephemeral message, and deletes the ephemeral message from the ephemeral message storage module 210.


Photo Filter Application



FIG. 3 shows a block diagram illustrating one example embodiment of the photo filter application 122. The photo filter application 122 includes a photo filter publication module 304 and a photo filter engine 306.


The photo filter publication module 304 provides a platform for publication of photo filters. In an example embodiment, the photo filter publication module 304 includes a user-based publication module 314 and a merchant-based publication module 316. The user-based publication module 314 enables users of client devices (either mobile or web clients) to upload filter data for generating a photo filter and object criteria for comparing against recognized objects in a photograph. The merchant-based publication module 316 enables merchants to upload filter data and object criteria, and submit bids for the presentation of a photo filter based on the uploaded filter data based on the satisfaction of the uploaded object criteria by an object recognized in a photograph. The user-based publication module 314 is described in more detail below with respect to FIG. 4A. The merchant-based publication module 316 is described in more detail below with respect to FIG. 5A.


The photo filter engine 306 identifies that a client device (e.g., 110) has taken a photograph and visually searches the photograph in order to recognize objects in the photograph. In one example embodiment, the photo filter engine 306 includes a photo filter priority module 318, an object recognition module 320, a merchant-based photo filter module 322, a collection module 324 and a count module 326. The photo filters provided to a client device 110 by the photo filter engine 306 may be based on: object criteria determined to be satisfied, via object recognition module 320, by a recognized object in the photograph; a ranking of photo filters by the photo filter priority module 318, and/or a winning bid from a merchant as determined via the merchant-based photo filter module 322.


In examples, the photo filter engine includes a collection module 324 to store previously provided photo filters in a photo filter collection associated with a client device 110. The collection module 324 may then instruct the photo filter publication module 314 to provide a new photo filter to the client device 110 in response to the photo filter collection including a specified number of a type of photo filter. The number may be specified by the user or merchant uploading the content used to generate the photo filter.


In examples, if a photograph includes more than a specified number of objects that satisfy specified object criteria, the photo filter engine 306 may use the photo filter priority module 318 to generate a ranking of photo filters associated with the object criteria satisfied by the objects in the photograph based on specified photo filter priority criteria. The photo filter engine 306 may then provide the specified number of the photo filters to the client device 110 according to the ranking of the photo filters, which may be based on any combination of: a photo filter creation date; a photo filter type; a user ranking of the photo filter; etc.


The object recognition module 320 first visually searches the photograph in order to find and identify objects in the photograph. This may be accomplished via known object recognition techniques such as edge matching, greyscale matching, large model bases, gradient matching, etc. The object recognition module 320 then compares each recognized object against the specified object criteria to determine if object criteria associated with a particular photo filter has been satisfied and, if so, providing said photo filter to the client device 110. The object criteria may include associations between an object and a source of image data, for example a specific animal, in which case the associated photo filter may include images including data associated with a specific animal.


The merchant-based photo filter module 322 supplies the client device with a merchant-based photo filter generated by the merchant-based photo filter publication module 316 based on a bidding process used to determine the merchant with the highest bid amount in regard to a specified object criteria. The merchant with the highest bid can then exclude publication of photo filters from other merchants with lower bids that might otherwise be published (to the client device 110) based on satisfaction of the specified object criteria.



FIG. 4A shows a block diagram illustrating an example embodiment of the user-based photo filter publication module 314. The user-based photo filter publication module 314 shown includes a user-based filter data upload module 402, a user-based object criteria upload module 404, a user based video creation module 406, and a user-based publication engine 408. The user-based photo filter publication module 314 may be implemented on a web server to allow a user to upload the content using a GUI as illustrated in FIG. 4B.


The user-based filter data upload module 402 receives uploaded content from a user. The content may include images such as a photo or a video or other image file types (e.g., .jpeg, .bmp, etc.) The content may also include other data used to generate a photo filter that operates as the user desires. For example, the user may select to have any previously provided photo filters (e.g., to a client device 110) stored in a photo filter collection associated with a client device. The user may then generate photo filters that refer to this collection (e.g., by querying its contents) before they may be provided as a new photo filter to client device 110. In another example, the user may select to have a count of objects of a specified object type identified in photographs taken by the client device 110 stored. The user may then generate photo filters that refer to this count (e.g., by querying its value) before they are provided as a new photo filter to client device 110 in order to adjust a content of the provided photo filter in response to the count reaching a specified threshold value.


The user-based object criteria upload module 404 receives object criteria requirements from the user to instruct photo filter engine 306 regarding the criteria that must be satisfied by an object recognized (e.g., via object recognition module 320) in a photograph before a user-based photo filter may be provided to client device 110. For example, a photograph including an object recognized as a human shoulder may result in the user being presented with photo filters that could overlay a pet bird resting on the shoulder in the photograph. Or a photograph including an object recognized as a known monument may result in the user being presented with photo filters that let the user view information (e.g., historical facts) associated with the monument.


The user-based video creation module 406 receives, from a user, video data (e.g., video or instructions for generating video from a photo by inserting motion) related to specific uploaded filter data and uploaded object criteria. This data may be used by the photo filter publication module engine 314 to generate a user-based photo filter that transforms a photograph into a video based on recognizing a particular object (e.g., the ocean) in the photograph. For example, if a ship is recognized in the foreground of a photograph then the photo filter may alter the background water (e.g., by adding motion) of the photograph to create a video including the recognized ship and ocean objects. Alternatively the photo filter may add motion to the ship object in the foreground of the photograph in order to create a video including the recognized objects.


The user-based publication engine 408 generates a user-based photo filter that associates the uploaded filter data from the user-based filter data upload module 402 with the uploaded object criteria from the user-based object criteria upload module 404. The user-based photo filter may also associate the uploaded video data from the user-based video creation module 402 with uploaded filter data from the user-based filter data upload module 402 and the uploaded object criteria from the user-based object criteria upload module 404. The user-based publication engine 408 publishes the user-based photo filter to client devices for which the photo filter engine 306 has determined that a photograph has been taken that includes a recognized object that satisfies the uploaded object criteria.



FIG. 4B illustrates an example of a GUI 410 for uploading filter data and for uploading object criteria with respect to recognized objects in a photograph. The GUI 410 displays an upload object models box 412, an upload image files box 414, an object criteria box 416, a filter data box 418, and a submit button 420. The upload image files box 414 enables a user to upload image files, (e.g., a photograph or a video) to the user-based filter data upload module 402. The object criteria box 416 enables the user to upload object criteria by inputting specific requirements that must be satisfied by a recognized object in the photograph. The syntax used for specifying object criteria may be particular to the photo filter application (e.g., 122) or a natural language description of the criteria that must be satisfied may be used. Furthermore, object criteria may be specified by the user more explicitly via the upload object models box 412. The user can upload a specific object model to be used by the photo filter engine 306 to compare to objects recognized in a photograph. The object criteria are submitted to the user-based object criteria upload module 404. The filter data box 418 enables the user to submit any other data needed to identify and/or operate the user-based photo filter, for example a title for the user-based photo filter. The user may submit the image files, filter data and object criteria by clicking on the submit button 420. Once the image files, filter data and object criteria are submitted, the user-based publication engine 408 generates a user-based photo filter based on the image files, filter data and object criteria.



FIG. 4C illustrates an example where the user has uploaded a picture of a gorilla 415 displayed in the upload image box 414. The user has entered the object criteria “Empire State Building” via the object criteria box 418 and uploaded an associated object model 422 via the upload object models box 412. The user has entered the title of the photo filter “King Kong!” in the filter data box 418. The user may submit the picture of the gorilla 415, the object criteria “Empire State Building” (which may be associated with a specified object model 422 in photograph 412) and the filter title “King Kong!” by clicking on the submit button 420. Once the picture of the gorilla 415, the filter title “King Kong!” (and any other filter data) and the object criteria “Empire State Building” are submitted, the user-based publication engine 408 generates a user-based photo filter based on the uploaded content.



FIG. 4D illustrates an example of a publication of a user-based photo filter. The photo filter application 122 detects that a mobile device 1200 has taken a photograph 424 that includes the recognized object 426 that corresponds sufficiently to specified object 422 and therefore satisfies the object criteria “Empire State Building”. The photo filter application 122 retrieves the user-based photo filter 440 (e.g., “King Kong!”) corresponding to the satisfied object criteria “Empire State Building” and publishes the user-based photo filter 440 to the mobile device 1200. The user-based photo filter 440 may then be selected for application to photo content 450 in a display 1210 of the mobile device 1200. For example, the image of a gorilla 415 may be positioned at various locations (e.g., by user tapping on the location) to appear as if King Kong was climbing the object 426 (recognized in photograph 424) that satisfies the object criteria “Empire State Building” associated with user-based photo filter 440.



FIG. 5A shows a block diagram illustrating one example embodiment of the merchant-based photo filter publication module 316. The merchant-based photo filter publication module 316 includes a merchant-based filter data upload module 502, a merchant-based object criteria upload module 504, a merchant-based video creation module 506, a merchant-based bidding module 508, and a merchant-based publication engine 510. The merchant-based photo filter publication module 316 may be implemented on a web server to allow a user to upload the content using a GUI similar to the GUI illustrated in FIG. 4B.


The merchant-based content upload module 502, the merchant-based object criteria upload module 504 and the merchant-based video creation module 506 function in a similar fashion to the respective user based modules 402, 404 and 406. The merchant-based bidding module 508 provides an interface to enable a merchant to submit a bid amount for specific object criteria if other merchants have also uploaded the same object criteria as part of their own merchant-based photo filters. In this way, if a photograph includes a recognized object that satisfies said object criteria common to multiple merchant-based photo filters, then the merchant-based photo filter uploaded by the merchant with the highest bid amount would be provided to the device that took the photograph. A bidding process may be used to determine the merchant with the highest bid amount and that merchant can then exclude publication of photo filters from other merchants that might otherwise be published based upon satisfaction of the common object criteria. The common object criteria may include, for example, a shopping centre sign associated with a shopping centre in which several businesses operate (e.g., have the same street address but different suite numbers). A photograph including a recognized object that satisfies the object criteria (i.e., a photo containing the sign) would then be provided with the merchant-based photo filter uploaded by the merchant with the highest bid amount for the common object criteria.



FIG. 5B illustrates an example of a common object criteria. Merchant A photo filter object criteria overlaps with merchant B photo filter object criteria 514 to define a common object criteria 516. Thus, merchants A and B may submit respective bids corresponding to the common object criteria 516. In one example embodiment, the merchant-based object criteria module 504 determines common object criteria from the object criteria uploaded by the merchants. The merchant-based bidding module 508 identifies a highest bidder for the common object criteria and awards the highest bidder with the ability to exclude other merchant-based photo filters (associated with the common object criteria) from being provided to a device that has taken a photograph including a recognized object that satisfies the common object criteria for a predefined amount of time, e.g., until a next time period for submitting new bids for object criteria.


In another example embodiment, the merchant-based bidding module 508 prorates bid amounts based on corresponding time duration information submitted with the bid. For example, merchant A submits a bid amount of $100 for one day for specific object criteria. Merchant B submits a bid amount of $160 for two days for the same object criteria. The merchant-based bidding module 508 may prorate the bid from merchant B for one day (e.g., $80) and compare both bids for the same period of time (e.g., one day) to determine a highest bidder.


The merchant-based publication engine 510 generates a merchant-based photo filter that associates the uploaded filter data of the highest bidder with the object criteria uploaded by the highest bidder. The merchant-based publication engine 510 publishes the merchant-based photo filter to client devices that have taken a photograph including a recognized object that satisfies the common object criteria 516. Merchant-based photo filters from other merchants that are also associated with the object criteria 516 are excluded from publication to the client devices. In another embodiment, instead of a single merchant-based photo filter for common object criteria, a quota may be placed on the number of merchant-based photo filters available for the common object criteria 516. For example, the merchant-based publication engine 510 may publish and make available a limited number of merchant-based photo filters (e.g., a maximum of two merchant-based photo filters) for the common object criteria 516.


In another example embodiment, the merchant-based publication engine 510 forms a priority relationship that associates the uploaded filter data of the higher bidders with the common object criteria 516. For example, an order in which photo filters are displayed at the client device 110 may be manipulated based on the results from the merchant-based bidding module 508. A photo filter of a merchant with the highest bid may be prioritized and displayed first at the client device 110 when a photograph satisfies the common object criteria 516. Photo filters from other merchants may be displayed at the client device 110 after the photo filter of the highest bidder. Again, as described above, merchant photo filters may be prioritized and displayed according to other processes, including, e.g., on a fix/flat fee or per view/display basis, etc.



FIG. 5C shows a diagram illustrating an example of a merchant-based photo filter selected based on a bidding process. The object criteria 540 of merchant A and the criteria 550 of merchant B overlap at common object criteria 545. The mobile device 1200 is used to generate the photo content 570 (e.g., used to takes a picture) in the display 1210 of the mobile device 1200. The photo content 570 includes a recognized object 580 that satisfies the common object criteria 545. A photo filter of the merchant with the highest bid for the common object criteria 545 is published to the mobile device 1200. In the present example, merchant B has outbid merchant A for the common object criteria “object type: coffee”. The common object criteria “object type: coffee” may refer to any object commonly associated with coffee as well as explicit examples of coffee objects such as a cup of coffee or a coffee bean. As such, photo filter 560 of merchant B (associated with a brand of coffee sold by merchant B) is provided and displayed in the display 1210 on top of the photo content 570. The photo filter 560 is based on the uploaded filter data from merchant B. It should be noted that ‘merchant’ in the context of the current example embodiments may include not only entities involved in the trade or sale of merchandise but any other entity as well, including individuals, universities, non-profit organizations, student organizations, clubs, etc.



FIG. 6A shows a diagram illustrating an example of a photo filter 610 published on the basis of a count of an object type (e.g., satisfies a specified object criteria such as “cup of coffee”) across all of the photographs taken by a mobile device 1200. This count may be processed by count module 326 of photo filter engine 306. For example, the photo filter 610 includes a digital coupon 620 that can be redeemed at a coffee shop “Coffee House”. The photo filter 610 may include dynamic content 630. For example, the dynamic content 630 may include a remaining number of times the coupon can be used. The photo filter 610 may include an action button 640 for executing a related action such as printing the coupon. Furthermore, the photo filter 610 may be provided to mobile device 1200 only after the count for the specified object type (e.g., cups of coffee) has surpassed a specified threshold value uploaded by the merchant (e.g., uploaded filter data) associated with the photo filter 610. The mobile device 1200 displays the photo filter 610 with the photo content 650.



FIG. 6B shows a diagram illustrating an example of a photo filter 660 published on the basis of a collection of photo filters previously published to a mobile device 1200. In an example embodiment this collection may be processed by collection module 324 of photo filter engine 306. The photo filter 660 can be published to the mobile device 1200 in response to the photo filter publication module 314 determining that a photo filter collection associated with mobile device 1200 has exceeded a minimum number of photo filters a specified type, after which a premium photo filter may be accessed. For example, the collection based photo filter may be used to implement a game at a restaurant (e.g., Mike's Deli) by providing certain premium photo filters (e.g., a “free sandwich” photo filter) to mobile device 1200 only after the mobile device 1200 has collected the required amount of “menu item” type photo filters associated with Mike's Deli. In an example, the premium photo filter may be used to obtain discounts and/or prizes at the restaurant, e.g., a free sandwich. The mobile device 1200 displays the photo filter 660 on top of the photo content 650.



FIG. 7 shows a flow diagram illustrating one example embodiment of a method 700 of the user-based photo filter publication module 314. At operation 702, the user-based photo filter publication module 314 receives uploaded filter data and uploaded object criteria from a first client device. In one example embodiment, operation 702 may be implemented with the user-based filter data upload module 402, the user-based object criteria upload module 404, and the user-based video creation module 406 of FIG. 4A.


At operation 704, the user-based photo filter publication module 314 generates a user-based photo filter based on the uploaded filter data, and is associated with the uploaded object criteria. In one example embodiment, operation 704 may be implemented with the user-based publication engine 408 of FIG. 4A.


At operation 706, the photo filter engine 306 determines that a photograph has been taken by a second client device and visually searches the photograph in order to perform object recognition on the photograph. At operation 708, the photo filter engine 306 determines whether a recognized object in the photograph satisfies the uploaded object criteria from the first client device. If not, then the method 700 returns to operation 706 in order to search for more objects in the photograph. If the recognized object does satisfy the uploaded object criteria from the first client device then, at operation 710, the user-based photo filter publication module 314 publishes the user-based photo filter from the first client device to the second client device in response. In one example embodiment, operation 710 may be implemented with the user-based publication engine 408 of FIG. 4A.



FIG. 8 shows a flow diagram illustrating one example embodiment of a method 800 of operation for the merchant-based photo filter publication module 316. At operations 802 and 804, the merchant-based photo filter publication module 316 receives uploaded filter data, object criteria, and corresponding bid amounts from two merchants. For example, at operation 802, the merchant-based filter data upload module 502 receives filter data A from merchant A. The merchant-based object criteria upload module 504 receives object criteria X from merchant A. The merchant-based bidding module 508 receives bid amount A from merchant A.


At operation 804, the merchant-based content upload module 502 receives content B from merchant B. The merchant-based filter data upload module 502 receives filter data B from merchant B. The merchant-based object criteria upload module 504 receives object criteria X from merchant B. The merchant-based bidding module 508 receives bid amount B from merchant B.


At operation 806, the highest bid amount is determined. In one example embodiment, operation 806 may be implemented with the merchant-based bidding module 508 of FIG. 5A. If bid amount A is greater than bid amount B (as determined by the merchant-based photo filter publication module 322), the merchant-based publication engine 510 generates a merchant-based photo filter A (associated with object criteria X) based on filter data A at operation 808. At operation 810, the merchant-based publication engine 510 supplies merchant-based photo filter A to client devices that have taken a photograph including a recognized object that satisfies object criteria X.


If bid amount B is greater than bid amount A, the merchant-based publication engine 510 generates a merchant-based photo filter B (associated with object criteria X) based on filter data B at operation 814. At operation 816, the merchant-based publication engine 510 supplies merchant-based photo filter B to client devices that have taken a photograph including a recognized object that satisfies object criteria X.



FIG. 9 shows a flow diagram illustrating one example embodiment of a method 900 of operation for collection module 324 of photo filter engine 306. At operation 902, a new photo filter is received by a client device. At operation 904, the collection module 324 determines whether the photo filter is of the same type as the photo filters in a collection of photo filters associated with the client device. If so, at operation 906, the collection module 324 adds the new photo filter to the collection associated with the client device. If not the method 900 ends. At operation 908, the collection module 324 determines whether the collection has reached a specified size threshold. If so, at operation 910, the collection module 324 instructs the photo filter publication module 304 to provide a new premium photo filter to the client device. If not the method 900 ends.



FIG. 10 shows a flow diagram illustrating one example embodiment of a method 1000 of operation for count module 326 of photo filter engine 306. At operation 1002, a new photo is taken by a client device. At operation 1004, the count module 324 determines whether the photo includes an object of a specified type, e.g., a type of food. If so, at operation 1006, the count module 326 increases a count of photographed objects (of the specified type) associated with the client device. If not the method 1000 ends. At operation 1008, the count module 326 determines whether the value of the count associated with the client device has reached a specified value threshold. If so, at operation 1010, the count module 324 instructs the photo filter publication module 304 to adjust the content of a photo filter associated with the object type. If not the method 1000 ends.


Modules, Components and Logic


Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied (1) on a non-transitory machine-readable medium or (2) in a transmission signal) or hardware-implemented modules. A hardware-implemented module is a tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client, or server computer system) or one or more processors may be configured by software (e.g., an application or application portion) as a hardware-implemented module that operates to perform certain operations as described herein.


In various embodiments, a hardware-implemented module may be implemented mechanically or electronically. For example, a hardware-implemented module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware-implemented module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware-implemented module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the term “hardware-implemented module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily or transitorily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware-implemented modules are temporarily configured (e.g., programmed), each of the hardware-implemented modules need not be configured or instantiated at any one instance in time. For example, where the hardware-implemented modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respectively different hardware-implemented modules at different times. Software may, accordingly, configure a processor, for example, to constitute a particular hardware-implemented module at one instance of time and to constitute a different hardware-implemented module at a different instance of time.


Hardware-implemented modules can provide information to, and receive information from, other hardware-implemented modules. Accordingly, the described hardware-implemented modules may be regarded as being communicatively coupled. Where multiples of such hardware-implemented modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses that connect the hardware-implemented modules). In embodiments in which multiple hardware-implemented modules are configured or instantiated at different times, communications between such hardware-implemented modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware-implemented modules have access. For example, one hardware-implemented module may perform an operation, and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware-implemented module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware-implemented modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.


Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment, or a server farm), while in other embodiments the processors may be distributed across a number of locations.


The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via the network 104 (e.g., the Internet) and via one or more appropriate interfaces (e.g., APIs).


Electronic Apparatus and System


Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, or software, or in combinations of them. Example embodiments may be implemented using a computer program product (e.g., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers).


A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.


In example embodiments, operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry (e.g., an FPGA or an ASIC).


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In embodiments deploying a programmable computing system, it will be appreciated that both hardware and software architectures merit consideration. Specifically, it will be appreciated that the choice of whether to implement certain functionality in permanently configured hardware (e.g., an ASIC), in temporarily configured hardware (e.g., a combination of software and a programmable processor), or in a combination of permanently and temporarily configured hardware may be a design choice. Below are set out hardware (e.g., machine) and software architectures that may be deployed in various example embodiments.


Example Computer System



FIG. 11 shows a diagrammatic representation of a machine in the example form of a machine or computer system 1100 within which a set of instructions 1124 may be executed causing the machine to perform any one or more of the methodologies discussed herein. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine 110 and 112 in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions 1124 (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions 1124 to perform any one or more of the methodologies discussed herein.


The example computer system 1100 includes a processor 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), a main memory 1104, and a static memory 1106, which communicate with each other via a bus 1108. The computer system 1100 may further include a video display unit 1110 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system 1100 also includes an alphanumeric input device 1112 (e.g., a keyboard), a UI navigation device 1114 (e.g., a mouse), a drive unit 1116, a signal generation device 1118 (e.g., a speaker), and a network interface device 1120.


The drive unit 1116 includes a computer-readable medium 1122 on which is stored one or more sets of data structures and instructions 1124 (e.g., software) embodying or used by any one or more of the methodologies or functions described herein. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104 or within the processor 1102 during execution thereof by the computer system 1100, with the main memory 1104 and the processor 1102 also constituting machine-readable photo.


The instructions 1124 may further be transmitted or received over a network 1126 via the network interface device 1120 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).


While the computer-readable medium 1122 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple photo (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 1124. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions 1124 for execution by the machine that cause the machine to perform any one or more of the methodologies of the present disclosure, or that is capable of storing, encoding, or carrying data structures used by or associated with such a set of instructions 1124. The term “computer-readable medium” shall, accordingly, be taken to include, but not be limited to, solid-state memories, optical photo, and magnetic photo.


Furthermore, the machine-readable medium is non-transitory in that it does not embody a propagating signal. However, labeling the tangible machine-readable medium “non-transitory” should not be construed to mean that the medium is incapable of movement—the medium should be considered as being transportable from one physical location to another. Additionally, since the machine-readable medium is tangible, the medium may be considered to be a machine-readable device.


Example Mobile Device



FIG. 12 is a block diagram illustrating a mobile device 1200, according to an example embodiment. The mobile device 1200 may include a processor 1202. The processor 1202 may be any of a variety of different types of commercially available processors 1202 suitable for mobile devices 1200 (for example, an XScale architecture microprocessor, a microprocessor without interlocked pipeline stages (MIPS) architecture processor, or another type of processor 1202). A memory 1204, such as a random access memory (RAM), a flash memory, or another type of memory, is typically accessible to the processor 1202. The memory 1204 may be adapted to store an operating system (OS) 1206, as well as applications 1208, such as a mobile location enabled application that may provide location-based services (LBSs) to a user. The processor 1202 may be coupled, either directly or via appropriate interphotory hardware, to a display 1210 and to one or more input/output (I/O) devices 1212, such as a keypad, a touch panel sensor, a microphone, and the like. Similarly, in some embodiments, the processor 1202 may be coupled to a transceiver 1214 that interfaces with an antenna 1216. The transceiver 1214 may be configured to both transmit and receive cellular network signals, wireless data signals, or other types of signals via the antenna 1216, depending on the nature of the mobile device 1200. Further, in some configurations, a GPS receiver 1218 may also make use of the antenna 1216 to receive GPS signals.


Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.


As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present invention. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present invention as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.


Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A method comprising: receiving first filter data and first object criteria from a first merchant, and second filter data, and second object criteria from a second merchant;identifying common object criteria between the first object criteria and the second object criteria;receiving a first bid amount and a first time duration from the first merchant and a second bid amount and a second time duration from the second merchant;identifying that the first bid amount is higher than the second bid amount by: prorating the first bid amount based on the first time duration;prorating the second bid amount based on the second time duration; andidentifying that the prorated first bid amount is higher than the prorated second bid amount;identifying that a client device has captured an image;determining that the image comprises an object that satisfies the common object criteria;generating a first merchant-based photo filter based on the first filter data; andproviding the first merchant-based photo filter to the client device.
  • 2. The method of claim 1, wherein the method further comprises: causing display of the first merchant-based photo filter as an option on a user interface of the client device.
  • 3. The method of claim 1, further comprising: generating a ranking of merchant-based photo filters associated with the common object criteria based on bid amounts associated with the merchant-based photo filters; andwherein providing the first merchant-based photo filter to the client device is based on being ranked first in the ranking of the photo filters.
  • 4. The method of claim 1, wherein the method further comprises: generating a second merchant-based photo filter based on the second filter data;providing the second merchant-based photo filter to the client device based on the image including the object that satisfies the common object criteria; andcausing display of the first merchant-based photo filter as a first option and of the second merchant-based photo filter as a second option on a user interface of the client device, the second option being displayed after the first option.
  • 5. The method of claim I, wherein the common object criteria includes a type of object for which the first merchant and the second merchant sell branded products.
  • 6. The method of claim 1, wherein the first merchant-based photo filter is provided to the client device based on identifying that the client device has captured the image during the first time duration.
  • 7. The method of claim 1, further comprising: generating a second merchant-based photo filter based on the second filter data; andwherein the second merchant-based photo filter is provided to the client device based on identifying that the client device has captured the image during the second time duration.
  • 8. The method of claim 1, further comprising: determining a quota of merchant-based photo filters available for the common object criteria, the quota indicating a limited number of merchant-based photo filters available for the common object criteria; andbased on the quota, providing, to the client device, both the first merchant-based photo filter and a second merchant-based photo filter based on the second filter data.
  • 9. The method of claim 1, further comprising: receiving third filter data and third object criteria from a third merchant;determining a quota of merchant-based photo filters available for the common object criteria, the quota indicating a limited number of merchant-based photo filters available for the common object criteria; andbased on the quota, providing both the first merchant-based photo filter and a second merchant-based photo filter generated based on the second filter data, but not a third merchant-based photo filter generated based on the third filter data.
  • 10. A system comprising: a processor; anda memory storing instructions that, when executed by the processor, configure the system to perform operations comprising:receiving first filter data and first object criteria from a first merchant, and second filter data, and second object criteria from a second merchant;identifying common object criteria between the first object criteria and the second object criteria;receiving a first bid amount and a first time duration from the first merchant and a second bid amount and a second time duration from the second merchant;identifying that the first bid amount is higher than the second bid amount by: prorating the first bid amount based on the first time duration;prorating the second bid amount based on the second time duration; andidentifying that the prorated first bid amount is higher than the prorated second bid amount;identifying that a client device has captured an image;determining that the image comprises an object that satisfies the common object criteria;generating a first merchant-based photo filter based on the first filter data; andproviding the first merchant-based photo filter to the client device.
  • 11. The system of claim 10, wherein the operations further comprise: causing display of the first merchant-based photo filter as an option on a user interface of the client device.
  • 12. The system of claim 10, wherein the operations further comprise: generating a ranking of merchant-based photo filters associated with the common object criteria based on bid amounts associated with the merchant-based photo filters; andproviding the first merchant-based photo filter to the client device based on being ranked first in the ranking of the photo filters.
  • 13. The system of claim 10, wherein the operations further comprises: generating a second merchant-based photo filter based on the second filter data;providing the second merchant-based photo filter to the client device based on the image including the object that satisfies the common object criteria;causing display of the first merchant-based photo filter as a first option and of the second merchant-based photo filter as a second option on a user interface of the client device, the second option being displayed after the first option.
  • 14. The system of claim 10, wherein the common object criteria includes a type of object for which the first merchant and the second merchant sell branded products.
  • 15. The system of claim 10, wherein the first merchant-based photo filter is provided to the client device based on identifying that the client device has captured the image during the first time duration.
  • 16. The system of claim 12, further comprising: generating a second merchant-based photo filter based on the second filter data; andwherein the second merchant-based photo filter is provided to the client device based on identifying that the client device has captured the image during the second time duration.
  • 17. The system of claim 10, the operations further comprising: determining a quota of merchant-based photo filters available for the common object criteria, the quota indicating a limited number of merchant-based photo filters available for the common object criteria; andbased on the quota, providing, to the client device, both the first merchant-based photo and a second merchant-based photo filter based on the second filter data.
  • 18. The system of claim 10, the operations further comprising: receiving third filter data and third object criteria from a third merchant;determining a quota of merchant-based photo filters available for the common object criteria, the quota indicating a limited number of merchant-based photo filters available for the common object criteria; andbased on the quota, providing both the first merchant-based photo filter and a second merchant-based photo filter generated based on the second filter data, but not a third merchant-based photo filter generated based on the third filter data.
  • 19. A computer-readable storage medium having no transitory signals and storing a set of instructions that, when executed by a processor of a machine, cause the machine to perform operations comprising: receiving first filter data and first object criteria from a first merchant, and second filter data, and second object criteria from a second merchant;identifying common object criteria between the first object criteria and the second object criteria;receiving a first bid amount and a first time duration from the first merchant and a second bid amount and a second time duration from the second merchant;identifying that the first hid amount is higher than the second bid amount by: prorating the first bid amount based on the first time duration:prorating the second bid amount based on the second time duration; andidentifying that the prorated first bid amount is higher than the prorated second bid amount;identifying that a client device has captured an image;determining that the image comprises an object that satisfies the common object criteria;generating a first merchant-based photo filter based on the first filter data; andproviding the first merchant-based photo filter to the client device.
  • 20. The computer-readable storage medium of claim 19, the operations further comprising: determining a quota of merchant-based photo filters available for the common object criteria, the quota indicating a limited number of merchant-based photo filters available for the common object criteria; andbased on the quota, providing, to the client device, both the first merchant-based photo filter and a second merchant-based photo filter based on the second filter data.
PRIORITY

This application is a continuation of and claims the benefit of priority of U.S. patent application Ser. No. 15/965,038, filed on Apr. 27, 2018, which is a continuation of and claims the benefit of priority of U.S. patent application Ser. No. 15/661,966, filed on Jul. 27, 2017, and is a continuation of and claims the benefit of priority of U.S. patent application Ser. No. 15/661,978, filed on Jul. 27, 2017, which is a continuation of and claims the benefit of priority of U.S. patent application Ser. No. 14/593,065, filed on Jan. 9, 2015, which is hereby incorporated by reference herein in its entirety

US Referenced Citations (692)
Number Name Date Kind
666223 Shedlock Jan 1901 A
4581634 Williams Apr 1986 A
4975690 Torres Dec 1990 A
5072412 Henderson, Jr. et al. Dec 1991 A
5493692 Theimer et al. Feb 1996 A
5713073 Warsta Jan 1998 A
5754939 Herz et al. May 1998 A
5855008 Goldhaber et al. Dec 1998 A
5883639 Walton et al. Mar 1999 A
5999932 Paul Dec 1999 A
6012098 Bayeh et al. Jan 2000 A
6014090 Rosen et al. Jan 2000 A
6029141 Bezos et al. Feb 2000 A
6038295 Mattes Mar 2000 A
6049711 Yehezkel et al. Apr 2000 A
6154764 Nitta et al. Nov 2000 A
6158044 Tibbetts Dec 2000 A
6167435 Druckenmiller et al. Dec 2000 A
6204840 Petelycky et al. Mar 2001 B1
6205432 Gabbard et al. Mar 2001 B1
6216141 Straub et al. Apr 2001 B1
6285381 Sawano et al. Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6310694 Okimoto et al. Oct 2001 B1
6317789 Rakavy et al. Nov 2001 B1
6334149 Davis, Jr. et al. Dec 2001 B1
6349203 Asaoka et al. Feb 2002 B1
6353170 Eyzaguirre et al. Mar 2002 B1
6446004 Cao et al. Sep 2002 B1
6449657 Stanbach et al. Sep 2002 B2
6456852 Bar et al. Sep 2002 B2
6484196 Maurille Nov 2002 B1
6487586 Ogilvie et al. Nov 2002 B2
6487601 Hubacher et al. Nov 2002 B1
6523008 Avrunin Feb 2003 B1
6542749 Tanaka et al. Apr 2003 B2
6549768 Fraccaroli Apr 2003 B1
6618593 Drutman et al. Sep 2003 B1
6622174 Ukita et al. Sep 2003 B1
6631463 Floyd et al. Oct 2003 B1
6636247 Hamzy et al. Oct 2003 B1
6636855 Holloway et al. Oct 2003 B2
6643684 Malkin et al. Nov 2003 B1
6658095 Yoakum et al. Dec 2003 B1
6665531 Soderbacka et al. Dec 2003 B1
6668173 Greene Dec 2003 B2
6684238 Dutta Jan 2004 B1
6684257 Camut et al. Jan 2004 B1
6698020 Zigmond et al. Feb 2004 B1
6700506 Winkler Mar 2004 B1
6701347 Ogilvie Mar 2004 B1
6711608 Ogilvie Mar 2004 B1
6720860 Narayanaswami Apr 2004 B1
6724403 Santoro et al. Apr 2004 B1
6757713 Ogilvie et al. Jun 2004 B1
6832222 Zimowski Dec 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6836792 Chen Dec 2004 B1
6898626 Ohashi May 2005 B2
6959324 Kubik et al. Oct 2005 B1
6970088 Kovach Nov 2005 B2
6970907 Ullmann et al. Nov 2005 B1
6980909 Root et al. Dec 2005 B2
6981040 Konig et al. Dec 2005 B1
7020494 Spriestersbach et al. Mar 2006 B2
7027124 Foote et al. Apr 2006 B2
7072963 Anderson et al. Jul 2006 B2
7085571 Kalhan et al. Aug 2006 B2
7110744 Freeny, Jr. Sep 2006 B2
7124164 Chemtob Oct 2006 B1
7149893 Leonard et al. Dec 2006 B1
7173651 Knowles Feb 2007 B1
7188143 Szeto Mar 2007 B2
7203380 Chiu et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7227937 Yoakum et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7240089 Boudreau Jul 2007 B2
7243163 Friend et al. Jul 2007 B1
7269426 Kokkonen et al. Sep 2007 B2
7278168 Chaudhury et al. Oct 2007 B1
7280658 Amini et al. Oct 2007 B2
7315823 Brondrup Jan 2008 B2
7349768 Bruce et al. Mar 2008 B2
7356564 Hartselle et al. Apr 2008 B2
7376715 Cunningham et al. May 2008 B2
7394345 Ehlinger et al. Jul 2008 B1
7411493 Smith Aug 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7454442 Cobleigh et al. Nov 2008 B2
7478402 Christensen et al. Jan 2009 B2
7496347 Puranik Feb 2009 B2
7508419 Toyama et al. Mar 2009 B2
7512649 Faybishenko et al. Mar 2009 B2
7519670 Hagale et al. Apr 2009 B2
7535890 Rojas May 2009 B2
7546554 Chiu et al. Jun 2009 B2
7564486 Ikeda Jul 2009 B2
7565139 Neven, Sr. et al. Jul 2009 B2
7607096 Oreizy et al. Oct 2009 B2
7639943 Kalajan Dec 2009 B1
7650231 Gadler Jan 2010 B2
7668537 DeVries Feb 2010 B2
7703140 Nath et al. Apr 2010 B2
7770137 Forbes et al. Aug 2010 B2
7778973 Choi Aug 2010 B2
7779444 Glad Aug 2010 B2
7787886 Markhovsky et al. Aug 2010 B2
7796946 Eisenbach Sep 2010 B2
7801954 Cadiz et al. Sep 2010 B2
7856360 Kramer et al. Dec 2010 B2
7912896 Wolovitz et al. Mar 2011 B2
8001204 Burtner et al. Aug 2011 B2
8032586 Challenger et al. Oct 2011 B2
8082255 Carlson, Jr. et al. Dec 2011 B1
8090351 Klein Jan 2012 B2
8098904 Ioffe et al. Jan 2012 B2
8099109 Altman et al. Jan 2012 B2
8112716 Kobayashi Feb 2012 B2
8131597 Hudetz Mar 2012 B2
8135166 Rhoads Mar 2012 B2
8136028 Loeb et al. Mar 2012 B1
8146001 Reese Mar 2012 B1
8161115 Yamamoto Apr 2012 B2
8161417 Lee Apr 2012 B1
8170957 Richard May 2012 B2
8195203 Tseng Jun 2012 B1
8199747 Rojas et al. Jun 2012 B2
8208943 Petersen Jun 2012 B2
8214443 Hamburg Jul 2012 B2
8234350 Gu et al. Jul 2012 B1
8238947 Lottin et al. Aug 2012 B2
8244593 Klinger et al. Aug 2012 B2
8276092 Narayanan et al. Sep 2012 B1
8279319 Date Oct 2012 B2
8280406 Ziskind et al. Oct 2012 B2
8285199 Hsu et al. Oct 2012 B2
8287380 Nguyen et al. Oct 2012 B2
8301159 Hamynen et al. Oct 2012 B2
8306922 Kunal et al. Nov 2012 B1
8312086 Velusamy et al. Nov 2012 B2
8312097 Siegel et al. Nov 2012 B1
8326315 Phillips et al. Dec 2012 B2
8326327 Hymel et al. Dec 2012 B2
8332475 Rosen et al. Dec 2012 B2
8352546 Dollard Jan 2013 B1
8379130 Forutanpour et al. Feb 2013 B2
8385950 Wagner et al. Feb 2013 B1
8400548 Bilbrey et al. Mar 2013 B2
8402097 Szeto Mar 2013 B2
8405773 Hayashi et al. Mar 2013 B2
8418067 Cheng et al. Apr 2013 B2
8423409 Rao Apr 2013 B2
8471914 Sakiyama et al. Jun 2013 B2
8472935 Fujisaki Jun 2013 B1
8510383 Hurley et al. Aug 2013 B2
8527345 Rothschild et al. Sep 2013 B2
8554627 Svendsen et al. Oct 2013 B2
8560612 Kilmer et al. Oct 2013 B2
8570907 Garcia, Jr. et al. Oct 2013 B2
8594680 Ledlie et al. Nov 2013 B2
8613089 Hollaway et al. Dec 2013 B1
8660358 Bergboer et al. Feb 2014 B1
8660369 Llano et al. Feb 2014 B2
8660793 Ngo et al. Feb 2014 B2
8682350 Altman et al. Mar 2014 B2
8718333 Wolf et al. May 2014 B2
8724622 Rojas May 2014 B2
8732168 Johnson May 2014 B2
8744523 Fan et al. Jun 2014 B2
8745132 Obradovich Jun 2014 B2
8761800 Kuwahara Jun 2014 B2
8768876 Shim et al. Jul 2014 B2
8775972 Spiegel Jul 2014 B2
8788680 Naik Jul 2014 B1
8790187 Walker et al. Jul 2014 B2
8797415 Arnold Aug 2014 B2
8798646 Wang et al. Aug 2014 B1
8856349 Jain et al. Oct 2014 B2
8874677 Rosen et al. Oct 2014 B2
8886227 Schmidt et al. Nov 2014 B2
8909679 Root et al. Dec 2014 B2
8909714 Agarwal et al. Dec 2014 B2
8909725 Sehn Dec 2014 B1
8914752 Spiegel Dec 2014 B1
8972357 Shim et al. Mar 2015 B2
8977627 Vijayanarasimhan et al. Mar 2015 B1
8995433 Rojas Mar 2015 B2
9015285 Ebsen et al. Apr 2015 B1
9020745 Johnston et al. Apr 2015 B2
9040574 Wang et al. May 2015 B2
9055416 Rosen et al. Jun 2015 B2
9083770 Drose et al. Jul 2015 B1
9094137 Sehn et al. Jul 2015 B1
9100806 Rosen et al. Aug 2015 B2
9100807 Rosen et al. Aug 2015 B2
9113301 Spiegel et al. Aug 2015 B1
9119027 Sharon et al. Aug 2015 B2
9123074 Jacobs et al. Sep 2015 B2
9143382 Bhogal et al. Sep 2015 B2
9143681 Ebsen et al. Sep 2015 B1
9148424 Yang Sep 2015 B1
9152477 Campbell et al. Oct 2015 B1
9191776 Root et al. Nov 2015 B2
9204252 Root Dec 2015 B2
9225805 Kujawa et al. Dec 2015 B2
9225897 Sehn et al. Dec 2015 B1
9237202 Sehn Jan 2016 B1
9258459 Hartley Feb 2016 B2
9264463 Rubinstein et al. Feb 2016 B2
9276886 Samaranayake Mar 2016 B1
9294425 Son Mar 2016 B1
9344606 Hartley et al. May 2016 B2
9385983 Sehn Jul 2016 B1
9396354 Murphy et al. Jul 2016 B1
9407712 Sehn Aug 2016 B1
9407816 Sehn Aug 2016 B1
9430783 Sehn Aug 2016 B1
9439041 Parvizi et al. Sep 2016 B2
9443227 Evans et al. Sep 2016 B2
9450907 Pridmore et al. Sep 2016 B2
9459778 Hogeg et al. Oct 2016 B2
9482882 Hanover et al. Nov 2016 B1
9482883 Meisenholder Nov 2016 B1
9489661 Evans et al. Nov 2016 B2
9491134 Rosen et al. Nov 2016 B2
9532171 Allen et al. Dec 2016 B2
9537811 Allen et al. Jan 2017 B2
9560006 Prado et al. Jan 2017 B2
9628950 Noeth et al. Apr 2017 B1
9652896 Jurgensen et al. May 2017 B1
9659244 Anderton et al. May 2017 B2
9693191 Sehn Jun 2017 B2
9705831 Spiegel Jul 2017 B2
9710821 Heath Jul 2017 B2
9742713 Spiegel et al. Aug 2017 B2
9754355 Chang et al. Sep 2017 B2
9785796 Murphy et al. Oct 2017 B1
9825898 Sehn Nov 2017 B2
9854219 Sehn Dec 2017 B2
9961520 Brooks et al. May 2018 B2
9978125 Chang et al. May 2018 B1
10157449 Chang et al. Dec 2018 B1
10380720 Chang et al. Aug 2019 B1
20020047868 Miyazawa Apr 2002 A1
20020078456 Hudson et al. Jun 2002 A1
20020087631 Sharma Jul 2002 A1
20020097257 Miller et al. Jul 2002 A1
20020122659 Mcgrath et al. Sep 2002 A1
20020128047 Gates Sep 2002 A1
20020144154 Tomkow Oct 2002 A1
20030001846 Davis et al. Jan 2003 A1
20030016247 Lai et al. Jan 2003 A1
20030017823 Mager et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030037124 Yamaura et al. Feb 2003 A1
20030052925 Daimon et al. Mar 2003 A1
20030101230 Benschoter et al. May 2003 A1
20030110503 Perkes Jun 2003 A1
20030126215 Udell Jul 2003 A1
20030148773 Spriestersbach et al. Aug 2003 A1
20030164856 Prager et al. Sep 2003 A1
20030217106 Adar et al. Nov 2003 A1
20030229607 Zellweger et al. Dec 2003 A1
20040008263 Sayers et al. Jan 2004 A1
20040027371 Jaeger Feb 2004 A1
20040064429 Hirstius et al. Apr 2004 A1
20040078367 Anderson et al. Apr 2004 A1
20040100487 Mori et al. May 2004 A1
20040111467 Willis Jun 2004 A1
20040158739 Wakai et al. Aug 2004 A1
20040189465 Capobianco et al. Sep 2004 A1
20040203959 Coombes Oct 2004 A1
20040215625 Svendsen et al. Oct 2004 A1
20040243531 Dean Dec 2004 A1
20040243688 Wugofski Dec 2004 A1
20050021444 Bauer et al. Jan 2005 A1
20050022211 Veselov et al. Jan 2005 A1
20050048989 Jung Mar 2005 A1
20050078804 Yomoda Apr 2005 A1
20050097176 Schatz et al. May 2005 A1
20050102381 Jiang et al. May 2005 A1
20050104976 Currans May 2005 A1
20050114783 Szeto May 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20050122405 Voss et al. Jun 2005 A1
20050193340 Amburgey et al. Sep 2005 A1
20050193345 Klassen et al. Sep 2005 A1
20050198128 Anderson Sep 2005 A1
20050223066 Buchheit et al. Oct 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20060026067 Nicholas et al. Feb 2006 A1
20060107297 Toyama et al. May 2006 A1
20060114338 Rothschild Jun 2006 A1
20060119882 Harris et al. Jun 2006 A1
20060242239 Morishima et al. Oct 2006 A1
20060252438 Ansamaa et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287878 Wadhwa et al. Dec 2006 A1
20070004426 Pfleging et al. Jan 2007 A1
20070038715 Collins et al. Feb 2007 A1
20070040931 Nishizawa Feb 2007 A1
20070064899 Boss et al. Mar 2007 A1
20070073517 Panje Mar 2007 A1
20070073823 Cohen et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070082707 Flynt et al. Apr 2007 A1
20070136228 Petersen Jun 2007 A1
20070182541 Harris et al. Aug 2007 A1
20070192128 Celestini Aug 2007 A1
20070198340 Lucovsky et al. Aug 2007 A1
20070198495 Buron et al. Aug 2007 A1
20070208751 Cowan et al. Sep 2007 A1
20070210936 Nicholson Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070214216 Carrer et al. Sep 2007 A1
20070233556 Koningstein Oct 2007 A1
20070233801 Eren et al. Oct 2007 A1
20070233859 Zhao et al. Oct 2007 A1
20070243887 Bandhole et al. Oct 2007 A1
20070244750 Grannan et al. Oct 2007 A1
20070247668 Fuchs et al. Oct 2007 A1
20070255456 Funayama Nov 2007 A1
20070281690 Altman et al. Dec 2007 A1
20080022329 Glad Jan 2008 A1
20080025701 Ikeda Jan 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080033930 Warren Feb 2008 A1
20080043041 Hedenstroem et al. Feb 2008 A2
20080049704 Witteman et al. Feb 2008 A1
20080055269 Lemay et al. Mar 2008 A1
20080062141 Chandhri Mar 2008 A1
20080069477 Engels et al. Mar 2008 A1
20080075361 Winn et al. Mar 2008 A1
20080076505 Ngyen et al. Mar 2008 A1
20080092233 Tian et al. Apr 2008 A1
20080094387 Chen Apr 2008 A1
20080104503 Beall et al. May 2008 A1
20080109844 Baldeschweiler et al. May 2008 A1
20080120409 Sun et al. May 2008 A1
20080147730 Lee et al. Jun 2008 A1
20080148150 Mall Jun 2008 A1
20080158230 Sharma et al. Jul 2008 A1
20080168033 Ott et al. Jul 2008 A1
20080168489 Schraga Jul 2008 A1
20080189177 Anderton et al. Aug 2008 A1
20080207176 Brackbill et al. Aug 2008 A1
20080208692 Garaventi et al. Aug 2008 A1
20080021421 Rasanen et al. Sep 2008 A1
20080222545 Lemay Sep 2008 A1
20080255976 Altberg et al. Oct 2008 A1
20080256446 Yamamoto Oct 2008 A1
20080256577 Funaki et al. Oct 2008 A1
20080266421 Takahata et al. Oct 2008 A1
20080270938 Carlson Oct 2008 A1
20080288338 Wiseman et al. Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080313329 Wang et al. Dec 2008 A1
20080313346 Kujawa et al. Dec 2008 A1
20080318616 Chipalkatti et al. Dec 2008 A1
20090006191 Arankalle et al. Jan 2009 A1
20090006565 Velusamy et al. Jan 2009 A1
20090015703 Kim et al. Jan 2009 A1
20090024956 Kobayashi Jan 2009 A1
20090028444 Hwang et al. Jan 2009 A1
20090030774 Rothschild et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090040324 Nonaka Feb 2009 A1
20090042588 Lottin et al. Feb 2009 A1
20090058822 Chaudhri Mar 2009 A1
20090079846 Chou Mar 2009 A1
20090008971 Wood et al. Apr 2009 A1
20090089678 Sacco et al. Apr 2009 A1
20090093261 Ziskind Apr 2009 A1
20090132341 Klinger May 2009 A1
20090132453 Hangartner et al. May 2009 A1
20090132665 Thomsen et al. May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090153492 Popp Jun 2009 A1
20090157450 Athsani et al. Jun 2009 A1
20090157752 Gonzalez Jun 2009 A1
20090160970 Fredlund et al. Jun 2009 A1
20090163182 Gatti et al. Jun 2009 A1
20090177299 Bartel Marinus Jul 2009 A1
20090192900 Collision Jul 2009 A1
20090196465 Menon Aug 2009 A1
20090199242 Johnson et al. Aug 2009 A1
20090215469 Fisher et al. Aug 2009 A1
20090232354 Camp, Jr. et al. Sep 2009 A1
20090234815 Boerries et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090257623 Tang et al. Oct 2009 A1
20090265647 Martin et al. Oct 2009 A1
20090288022 Almstrand et al. Nov 2009 A1
20090291672 Treves et al. Nov 2009 A1
20090292608 Polachek Nov 2009 A1
20090319607 Belz et al. Dec 2009 A1
20090327073 Li Dec 2009 A1
20100027961 Gentile et al. Feb 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100062794 Han Mar 2010 A1
20100082427 Burgener et al. Apr 2010 A1
20100082693 Hugg et al. Apr 2010 A1
20100100568 Papin et al. Apr 2010 A1
20100113065 Narayan et al. May 2010 A1
20100130233 Lansing May 2010 A1
20100131880 Lee et al. May 2010 A1
20100131895 Wohlert May 2010 A1
20100153144 Miller et al. Jun 2010 A1
20100159944 Pascal et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100161831 Haas et al. Jun 2010 A1
20100162149 Sheleheda et al. Jun 2010 A1
20100183280 Beauregard et al. Jul 2010 A1
20100185552 Deluca et al. Jul 2010 A1
20100185665 Horn et al. Jul 2010 A1
20100191631 Weidmann Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198683 Aarabi Aug 2010 A1
20100198694 Muthukrishnan Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198828 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100201482 Robertson et al. Aug 2010 A1
20100201536 Robertson et al. Aug 2010 A1
20100214436 Kim et al. Aug 2010 A1
20100002501 Johnston et al. Sep 2010 A1
20100223128 Dukellis et al. Sep 2010 A1
20100223343 Bosan et al. Sep 2010 A1
20100257196 Waters et al. Oct 2010 A1
20100259386 Holley et al. Oct 2010 A1
20100260426 Huang et al. Oct 2010 A1
20100273509 Sweeney et al. Oct 2010 A1
20100281045 Dean Nov 2010 A1
20100306669 Della Pasqua Dec 2010 A1
20110004071 Faiola et al. Jan 2011 A1
20110010205 Richards Jan 2011 A1
20110029512 Folgner et al. Feb 2011 A1
20110040783 Uemichi et al. Feb 2011 A1
20110040804 Peirce et al. Feb 2011 A1
20110000509 Ellenby et al. Mar 2011 A1
20110050915 Wang et al. Mar 2011 A1
20110064388 Brown et al. Mar 2011 A1
20110066743 Hurley et al. Mar 2011 A1
20110081047 Momosaki Apr 2011 A1
20110083101 Sharon et al. Apr 2011 A1
20110099507 Nesladek et al. Apr 2011 A1
20110102630 Rukes May 2011 A1
20110119133 Igelman et al. May 2011 A1
20110137881 Cheng et al. Jun 2011 A1
20110137895 Petrou et al. Jun 2011 A1
20110145564 Moshir et al. Jun 2011 A1
20110159890 Fortescue et al. Jun 2011 A1
20110164163 Bilbrey et al. Jul 2011 A1
20110194747 Wieczorek Aug 2011 A1
20110197194 D'Angelo et al. Aug 2011 A1
20110202598 Evans et al. Aug 2011 A1
20110202968 Nurmi Aug 2011 A1
20110211534 Schmidt et al. Sep 2011 A1
20110213845 Logan et al. Sep 2011 A1
20110215966 Kim et al. Sep 2011 A1
20110225048 Nair Sep 2011 A1
20110238763 Shin et al. Sep 2011 A1
20110255736 Thompson et al. Oct 2011 A1
20110273575 Lee Nov 2011 A1
20110282799 Huston Nov 2011 A1
20110283188 Farrenkopf Nov 2011 A1
20110286586 Saylor et al. Nov 2011 A1
20110314419 Dunn et al. Dec 2011 A1
20110320373 Lee et al. Dec 2011 A1
20120028659 Whitney et al. Feb 2012 A1
20120033718 Kauffman et al. Feb 2012 A1
20120036015 Sheikh Feb 2012 A1
20120036443 Ohmori et al. Feb 2012 A1
20120054797 Skog et al. Mar 2012 A1
20120059722 Rao Mar 2012 A1
20120062805 Candelore Mar 2012 A1
20120084731 Filman et al. Apr 2012 A1
20120084835 Thomas et al. Apr 2012 A1
20120099800 Llano et al. Apr 2012 A1
20120108293 Law et al. May 2012 A1
20120110096 Smarr et al. May 2012 A1
20120113143 Adhikari et al. May 2012 A1
20120113272 Hata May 2012 A1
20120123830 Svendsen et al. May 2012 A1
20120123871 Svendsen et al. May 2012 A1
20120123875 Svendsen et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124176 Curtis et al. May 2012 A1
20120124458 Cruzada May 2012 A1
20120131507 Sparandara et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120001651 Lalancette et al. Jun 2012 A1
20120143760 Abulafia et al. Jun 2012 A1
20120150978 Monaco Jun 2012 A1
20120166971 Sachson et al. Jun 2012 A1
20120169855 Oh Jul 2012 A1
20120172062 Altman et al. Jul 2012 A1
20120173991 Roberts et al. Jul 2012 A1
20120176401 Hayward et al. Jul 2012 A1
20120184248 Speede Jul 2012 A1
20120197724 Kendall Aug 2012 A1
20120200743 Blanchflower et al. Aug 2012 A1
20120201472 Blanchflower et al. Aug 2012 A1
20120209921 Adafin et al. Aug 2012 A1
20120209924 Evans et al. Aug 2012 A1
20120210244 De Francisco et al. Aug 2012 A1
20120212632 Mate et al. Aug 2012 A1
20120220264 Kawabata Aug 2012 A1
20120226748 Bosworth et al. Sep 2012 A1
20120233000 Fisher et al. Sep 2012 A1
20120236162 Imamura Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120250951 Chen Oct 2012 A1
20120252418 Kandekar et al. Oct 2012 A1
20120254325 Majeti et al. Oct 2012 A1
20120263385 Van Zwol et al. Oct 2012 A1
20120278387 Garcia et al. Nov 2012 A1
20120278692 Shi Nov 2012 A1
20120290637 Perantatos et al. Nov 2012 A1
20120299954 Wada et al. Nov 2012 A1
20120304052 Tanaka et al. Nov 2012 A1
20120304080 Wormald et al. Nov 2012 A1
20120003199 Lee et al. Dec 2012 A1
20120307096 Ford et al. Dec 2012 A1
20120307112 Kunishige et al. Dec 2012 A1
20120323933 He et al. Dec 2012 A1
20120324018 Metcalf et al. Dec 2012 A1
20130006759 Srivastava et al. Jan 2013 A1
20130024757 Doll et al. Jan 2013 A1
20130036364 Johnson Feb 2013 A1
20130045753 Obermeyer et al. Feb 2013 A1
20130050260 Reitan Feb 2013 A1
20130055083 Fino Feb 2013 A1
20130057587 Leonard et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130060690 Oskolkov et al. Mar 2013 A1
20130063369 Malhotra et al. Mar 2013 A1
20130066738 Lee Mar 2013 A1
20130067027 Song et al. Mar 2013 A1
20130071093 Hanks et al. Mar 2013 A1
20130080254 Thramann Mar 2013 A1
20130085790 Palmer et al. Apr 2013 A1
20130086072 Peng et al. Apr 2013 A1
20130090171 Holton et al. Apr 2013 A1
20130095857 Garcia et al. Apr 2013 A1
20130104053 Thornton et al. Apr 2013 A1
20130110885 Brundrett, III May 2013 A1
20130111514 Slavin et al. May 2013 A1
20130128059 Kristensson May 2013 A1
20130129252 Lauper May 2013 A1
20130132477 Bosworth et al. May 2013 A1
20130145286 Feng et al. Jun 2013 A1
20130159110 Rajaram et al. Jun 2013 A1
20130159919 Leydon Jun 2013 A1
20130169822 Zhu et al. Jul 2013 A1
20130173729 Starenky et al. Jul 2013 A1
20130182133 Tanabe Jul 2013 A1
20130185131 Sinha et al. Jul 2013 A1
20130191198 Carlson et al. Jul 2013 A1
20130194301 Robbins et al. Aug 2013 A1
20130198176 Kim Aug 2013 A1
20130218965 Abrol et al. Aug 2013 A1
20130218968 Mcevilly et al. Aug 2013 A1
20130222323 Mckenzie Aug 2013 A1
20130227476 Frey Aug 2013 A1
20130232194 Knapp et al. Sep 2013 A1
20130263031 Oshiro et al. Oct 2013 A1
20130265450 Barnes, Jr. Oct 2013 A1
20130267253 Case et al. Oct 2013 A1
20130275505 Gauglitz et al. Oct 2013 A1
20130290443 Collins et al. Oct 2013 A1
20130304646 De Geer Nov 2013 A1
20130311255 Cummins et al. Nov 2013 A1
20130314434 Shetterly et al. Nov 2013 A1
20130325964 Berberat Dec 2013 A1
20130329060 Yim Dec 2013 A1
20130344896 Kirmse et al. Dec 2013 A1
20130346869 Asver et al. Dec 2013 A1
20130346877 Borovoy et al. Dec 2013 A1
20140006129 Heath Jan 2014 A1
20140011538 Mulcahy et al. Jan 2014 A1
20140012417 Zelivinski et al. Jan 2014 A1
20140019264 Wachman et al. Jan 2014 A1
20140032682 Prado et al. Jan 2014 A1
20140000432 Basnayake et al. Feb 2014 A1
20140045530 Gordon et al. Feb 2014 A1
20140047016 Rao Feb 2014 A1
20140047045 Baldwin et al. Feb 2014 A1
20140047335 Lewis et al. Feb 2014 A1
20140049652 Moon et al. Feb 2014 A1
20140052485 Shidfar Feb 2014 A1
20140052633 Gandhi Feb 2014 A1
20140057660 Wager Feb 2014 A1
20140071045 Muchnick et al. Mar 2014 A1
20140082651 Sharifi Mar 2014 A1
20140092130 Anderson et al. Apr 2014 A1
20140096029 Schultz Apr 2014 A1
20140114565 Aziz Apr 2014 A1
20140122658 Haeger et al. May 2014 A1
20140122787 Shalvi et al. May 2014 A1
20140129953 Spiegel May 2014 A1
20140143143 Fasoli et al. May 2014 A1
20140149519 Redfern et al. May 2014 A1
20140155102 Cooper et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140173424 Hogeg et al. Jun 2014 A1
20140173457 Wang et al. Jun 2014 A1
20140176732 Cohen et al. Jun 2014 A1
20140189592 Benchenaa et al. Jul 2014 A1
20140192137 Kim et al. Jul 2014 A1
20140201527 Krivorot Jul 2014 A1
20140207679 Cho Jul 2014 A1
20140214471 Schreiner, III Jul 2014 A1
20140222564 Kranendonk et al. Aug 2014 A1
20140240352 Kuncl et al. Aug 2014 A1
20140244488 Kim et al. Aug 2014 A1
20140258405 Perkin Sep 2014 A1
20140265359 Cheng et al. Sep 2014 A1
20140266703 Dalley, Jr. et al. Sep 2014 A1
20140279061 Elimeliah et al. Sep 2014 A1
20140279436 Dorsey et al. Sep 2014 A1
20140279540 Jackson Sep 2014 A1
20140280537 Pridmore et al. Sep 2014 A1
20140282096 Rubinstein et al. Sep 2014 A1
20140287779 O'keefe et al. Sep 2014 A1
20140289833 Briceno Sep 2014 A1
20140306986 Gottesman et al. Oct 2014 A1
20140317302 Naik Oct 2014 A1
20140324627 Haver et al. Oct 2014 A1
20140324629 Jacobs Oct 2014 A1
20140325383 Brown et al. Oct 2014 A1
20140341425 Babacan et al. Nov 2014 A1
20140341482 Murphy-chutorian et al. Nov 2014 A1
20140359024 Spiegel Dec 2014 A1
20140359032 Spiegel et al. Dec 2014 A1
20150009349 Kim Jan 2015 A1
20150020086 Chen et al. Jan 2015 A1
20150046278 Pei et al. Feb 2015 A1
20150071619 Brough Mar 2015 A1
20150087263 Branscomb et al. Mar 2015 A1
20150088622 Ganschow et al. Mar 2015 A1
20150095020 Leydon Apr 2015 A1
20150096042 Mizrachi Apr 2015 A1
20150116529 Wu et al. Apr 2015 A1
20150117777 Hsun Apr 2015 A1
20150169827 Laborde Jun 2015 A1
20150172534 Miyakawa et al. Jun 2015 A1
20150178260 Brunson Jun 2015 A1
20150193982 Mihelich et al. Jul 2015 A1
20150199082 Scholler et al. Jul 2015 A1
20150206349 Rosenthal Jul 2015 A1
20150213315 Gross Jul 2015 A1
20150222814 Li et al. Aug 2015 A1
20150227602 Ramu et al. Aug 2015 A1
20150261917 Smith Sep 2015 A1
20150302465 Pieper Oct 2015 A1
20150312184 Langholz et al. Oct 2015 A1
20150350136 Flynn, III et al. Dec 2015 A1
20150365795 Allen et al. Dec 2015 A1
20150378502 Hu et al. Dec 2015 A1
20160006927 Sehn Jan 2016 A1
20160014063 Hogeg et al. Jan 2016 A1
20160085773 Chang et al. Mar 2016 A1
20160085863 Allen et al. Mar 2016 A1
20160086670 Gross et al. Mar 2016 A1
20160099901 Allen et al. Apr 2016 A1
20160127653 Lee et al. May 2016 A1
20160180887 Sehn Jun 2016 A1
20160182422 Sehn et al. Jun 2016 A1
20160182875 Sehn Jun 2016 A1
20160203586 Chang et al. Jul 2016 A1
20160239248 Sehn Aug 2016 A1
20160277419 Allen et al. Sep 2016 A1
20160321708 Sehn Nov 2016 A1
20160359957 Laliberte Dec 2016 A1
20160359987 Laliberte Dec 2016 A1
20170006094 Abou Mahmoud et al. Jan 2017 A1
20170061308 Chen et al. Mar 2017 A1
20170161382 Ouimet Jun 2017 A1
20170263029 Yan et al. Sep 2017 A1
20170287006 Azmoodeh et al. Oct 2017 A1
20170295250 Samaranayake et al. Oct 2017 A1
20170374003 Allen et al. Dec 2017 A1
20170374508 Davis et al. Dec 2017 A1
Foreign Referenced Citations (44)
Number Date Country
2887596 Jul 2015 CA
102769775 Nov 2012 CN
107430767 Dec 2017 CN
107430767 May 2019 CN
110046274 Jul 2019 CN
2051480 Apr 2009 EP
2151797 Feb 2010 EP
2399928 Sep 2004 GB
19990073076 Oct 1999 KR
20010078417 Aug 2001 KR
101881715 Jul 2018 KR
102277313 Jul 2021 KR
WO-1996024213 Aug 1996 WO
WO-1999063453 Dec 1999 WO
WO-2000058882 Oct 2000 WO
WO-2001029642 Apr 2001 WO
WO-2001050703 Jul 2001 WO
WO-2006118755 Nov 2006 WO
WO-2007092668 Aug 2007 WO
WO-2009043020 Apr 2009 WO
WO-2011040821 Apr 2011 WO
WO-2011119407 Sep 2011 WO
WO-2012000107 Jan 2012 WO
WO-2013008238 Jan 2013 WO
WO-2013008251 Jan 2013 WO
WO-2013045753 Apr 2013 WO
WO-2014006129 Jan 2014 WO
WO-2014068573 May 2014 WO
WO-2014115136 Jul 2014 WO
WO-2014194262 Dec 2014 WO
WO-2015192026 Dec 2015 WO
WO-2016044424 Mar 2016 WO
WO-2016054562 Apr 2016 WO
WO-2016065131 Apr 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100318 Jun 2016 WO
WO-2016100342 Jun 2016 WO
WO-2016112299 Jul 2016 WO
WO-2016149594 Sep 2016 WO
WO-2016179166 Nov 2016 WO
WO-2016179235 Nov 2016 WO
WO-2017176739 Oct 2017 WO
WO-2017176992 Oct 2017 WO
WO-2018005644 Jan 2018 WO
Non-Patent Literature Citations (73)
Entry
“A Whole New Story”, Snap, Inc., [Online] Retrieved from the internet: <URL: https://www.snap.com/en-US/news/>, (2017), 13 pgs.
“Adding photos to your listing”, eBay, [Online] Retrieved from the internet: <URL: http://pages.ebay.com/help/sell/pictures.html>, (accessed May 24, 2017), 4 pgs.
“U.S. Appl. No. 14/593,065 Response filed Jan. 31, 2017 to Final Office Action dated Oct. 31, 2016”, 13 pgs.
“U.S. Appl. No. 14/593,065, Advisory Action dated Jan. 22, 2016”, 3 pgs.
“U.S. Appl. No. 14/593,065, Advisory Action dated Feb. 17, 2017”, 3 pgs.
“U.S. Appl. No. 14/593,065, Final Office Action dated Oct. 15, 2015”, 18 pgs.
“U.S. Appl. No. 14/593,065, Final Office Action dated Oct. 31, 2016”, 18 pgs.
“U.S. Appl. No. 14/593,065, Non Final Office Action dated May 22, 2015”, 20 pgs.
“U.S. Appl. No. 14/593,065, Non Final Office Action dated Jun. 30, 2016”, 18 pgs.
“U.S. Appl. No. 14/593,065, Notice of Allowability dated Aug. 1, 2017”, 4 pgs.
“U.S. Appl. No. 14/593,065, Notice of Allowance dated Apr. 27, 2017”, 9 pgs.
“U.S. Appl. No. 14/593,065, Response filed Apr. 15, 2016 to Advisory Action dated Jan. 22, 2016”, 16 pgs.
“U.S. Appl. No. 14/593,065, Response filed Jul. 22, 2015 to Non Final Office Action dated May 22, 2015”, 11 pgs.
“U.S. Appl. No. 14/593,065, Response filed Sep. 30, 2016 to Non Final Office Action dated Jun. 30, 2016”, 12 pgs.
“U.S. Appl. No. 14/593,065, Response filed Dec. 14, 2015 to Final Office Action dated Oct. 15, 2015”, 15 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowability dated Feb. 1, 2018”, 4 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowability dated Oct. 11, 2018”, 4 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowability dated Nov. 20, 2018”, 4 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowance dated Jan. 23, 2018”, 9 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowance dated Jun. 1, 2018”, 7 pgs.
“U.S. Appl. No. 15/661,966, Notice of Allowance dated Sep. 25, 2018”, 7 pgs.
“U.S. Appl. No. 15/661,978, Notice of Allowability dated Feb. 1, 2018”, 4 pgs.
“U.S. Appl. No. 15/661,978, Notice of Allowance dated Jan. 23, 2018”, 9 pgs.
“U.S. Appl. No. 15/965,038, Examiner Interview Summary dated Aug. 23, 2018”, 3 pgs.
“U.S. Appl. No. 15/965,038, Final Office Action dated Jan. 8, 2019”, 21 pgs.
“U.S. Appl. No. 15/965,038, Non Final Office Action dated Jun. 14, 2018”, 20 pgs.
“U.S. Appl. No. 15/965,038, Notice of Allowance dated Mar. 29, 2019”, 10 pgs.
“U.S. Appl. No. 15/965,038, Response filed Sep. 11, 2018 to Non Final Office Action dated Jun. 14, 2018”, 13 pgs.
“U.S. Appl. No. 15/965,038, Response filed Mar. 8, 2019 to Final Office Action dated Jan. 8, 2019”, 9 pgs.
“BlogStomp”, StompSoftware, [Online] Retrieved from the internet: <URL: http://stompsoftware.com/blogstomp>, (accessed May 24, 2017), 12 pgs.
“Chinese Application Serial No. 201680014578.X, Office Action dated Aug. 22, 2018”, w/English Translation, 10 pgs.
“Chinese Application Serial No. 201680014578.X, Response filed Nov. 26, 2018 to Office Action dated Aug. 22, 2018”, w/ English Claims, 60 pgs.
“Cup Magic Starbucks Holiday Red Cups come to life with AR app”, Blast Radius, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20160711202454/http://www.blastradius.com/work/cup-magic>, (2016), 7 pgs.
“Daily App: InstaPlace (iOS/Android): Give Pictures a Sense of Place”, TechPP, [Online] Retrieved from the Internet: <URL: http://techpp.com/2013/02/15/instaplace-app-review>, (2013), 13 pgs.
“European Application Serial No. 16735481.0, Communication Pursuant to Article 94(3) EPC dated Mar. 6, 2019”, 5 pgs.
“European Application Serial No. 16735481,0. Extended European Search Report dated Dec. 19, 2017”, 8 pgs.
“InstaPlace Photo App Tell the Whole Story”, [Online] Retrieved from the Internet: <URL: https://youtu.be/uF__gFkg1hBM>, (Nov. 8, 2013), 113 pgs., 1:02 min.
“International Application Serial No. PCT/US2015/037251, International Search Report dated Sep. 29, 2015”, 2 pgs.
“International Application Serial No. PCT/US2016/012661, International Preliminary Report on Patentability dated Jul. 20, 2017”, 10 pgs.
“International Application Serial No. PCT/US2016/012661, International Search Report dated Mar. 18, 2016”, 5 pgs.
“International Application Serial No. PCT/US2016/012661. Written Opinion dated Mar. 18, 2016”, 8 pgs.
“Introducing Snapchat Stories”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20131026084921/https://www.youtube.com/watch?v=88Cu3yN-LIM>, (Oct. 3, 2013), 92 pgs.; 00:47 min.
“Korean Application Serial No. 10-2017-7022263, Notice of Preliminary Rejection dated Feb. 1, 2018”, w/ English Translation, 5 pgs.
“Korean Application Serial No. 10-2017-7022263, Response filed Mar. 30, 2018 to Notice of Preliminary Rejection dated Feb. 1, 2018”, w/ English Claims, 14 pgs.
“Macy's Believe-o-Magic”, [Online] Retrieved from the Internet: <URL: https://web.archive.org/web/20190422101854/https://www.youtube.com/watch?v=xvzRXy3J0Z0&feature=youtu.be>, (Nov. 7, 2011), 102 pgs.; 00:51 min.
“Macy's Introduces Augmented Reality Experience in Stores across Country as Part of Its 2011 Believe Campaign”, Business Wire, [Online] Retrieved from the Internet: <URL: https://www.businesswire.com/news/home/20111102006759/en/Macys-Introduces-Augmented-Reality-Experience-Stores-Country>, (Nov. 2, 2011), 6 pgs.
“Starbucks Cup Magic”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=RWwQXi9RG0w>, (Nov. 8, 2011), 87 pgs.; 00:47 min.
“Starbucks Cup Magic for Valentine's Day”, [Online] Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=8nvqOzjq10w>, (Feb. 6, 2012), 88 pgs.; 00:45 min.
“Starbucks Holiday Red Cups Come to Life, Signaling the Return of the Merriest Season”, Business Wire, [Online] Retrieved from the Internet: <URL: http://www.businesswire.com/news/home/20111115005744/en/2479513/Starbucks-Holiday-Red-Cups-Life-Signaling-Return>, (Nov. 15, 2011), 5 pgs.
“The New IKEA Catalog App: Create Your Space—YouTube (with video)”, IKEA USA, [Online], Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=uaxtLru4-Vw>, (Aug. 2, 13), 3 pgs.; video: 1 minute, 23 seconds.
Carthy, Roi, “Dear All Photo Apps: Mobli Just Won Filters”, TechCrunch, [Online] Retrieved from the Internet: <URL: https://techcrunch.com/2011/09/08/mobli-filters>, (Sep. 8, 2011), 10 pgs.
Castelluccia, Claude, et al., “EphPub: Toward robust Ephemeral Publishing”, 19th IEEE International Conference on Network Protocols (ICNP), (Oct. 17, 2011), 18 pgs.
Fajman, “An Extensible Message Format for Message Disposition Notifications”, Request for Comments: 2298, National Institutes of Health, (Mar. 1998), 28 pgs.
Janthong, Isaranu, “Instaplace ready on Android Google Play store”, Android App Review Thailand, [Online] Retrieved from the Internet: <URL: http://www.android-free-app-review.com/2013/01/instaplace-android-google-play-store.html>, (Jan. 23, 2013), 9 pgs.
Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online] Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/>, (Dec. 12, 2005), 1 pg.
MacCarthy, Andrew, “How to Create a Snapchat Geofilter tutorial + Photoshop & Illustrator Templates (.psd and .ai)”, [Online] Retrieved from the Internet: <URL: http://andrewmacarthy.com/andrew-macarthy-social-media/how-to-create-snapchat-geofilter-photoshop-illustrator-template>, (Dec. 6, 2014), 18 pgs.
Macleod, Duncan, “Macys Believe-o-Magic App”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/macys-believe-o-magic-app>, (Nov. 14, 2011), 10 pgs.
Macleod, Duncan, “Starbucks Cup Magic Lets Merry”, [Online] Retrieved from the Internet: <URL: http://theinspirationroom.com/daily/2011/starbucks-cup-magic>, (Nov. 12, 2011), 8 pgs.
Melanson, Mike, “This text, message will self destruct in 60 seconds”, [Online] Retrieved from the Internet: <URL: http://readwrite.com/2011/02/11/this_text_message_will_self_destruct_in_60_seconds>. (Feb. 18, 2015), 4 pgs.
Metaio AR, “Metaio presents Augmented Reality for Smart Watches—YouTube (with video)”, [Online], Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=XyO972dT4TI>, (Jul. 8, 2014), 3 pgs.; video: 1 minute, 26 seconds.
Notopoulos, Katie, “A Guide To The New Snapchat Filters and Big Fonts”, [Online] Retrieved from the Internet: <URL: https://www.buzzfeed.com/katienotopoulos/a-guide-to-the-new-snapchat-filters-and-big-fonts?utm_term=.bkQ9qVZWe#.nv58YXpkV>, (Dec. 22, 2013), 13 pgs.
Panzarino, Matthew, “Snapchat Adds Filters, A Replay Function and for Whatever Reason, Time, Temperature and Speed Overlays”, TechCrunch, [Online] Retrieved form the Internet: <URL: https://techcrunch.com/2013/12/20/snapchat-adds-filters-new-font-and-for-some-reason-time-temperature-and-speed-overlays/>, (Dec. 20, 2013), 12 pgs.
Sawers, Paul, “Snapchat for iOS Lets You Send Photos to Friends and Set How long They're Visible for”, [Online] Retrieved from the Internet; <URL: https://thenextweb.com/apps/2012/05/07/snapchat-for-ios-lets-you-send-photos-to-friends-and-set-how-long-theyre-visible-for/>, (May 7, 2012), 5 pgs.
Silverstein, Goodby, “Haagen-Dazs, “Concerto Timer”—YouTube (with video)”, [Online]. Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=vYJWifof8vY>, (Oct. 21, 2013), 3 pgs.; video: 1 minute, 10 seconds.
Tripathi, Rohit, “Watermark Images in PHP and Save File on Server”, [Online] Retrieved from the Internet: <URL: http://code.rohitink.com/2012/12/28/watermark-images-in-php-and-save-file-on-server>, (Dec. 28, 2012), 4 pgs.
Vaas, Lisa, “StealthText, Should You Choose to Accept It”, [Online] Retrieved from the Internet: <URL: http://www.eweek.com/print/c/a/MessagingandCollaboration/StealthTextShouldYouChoosetoAcceptIt>, (Dec. 13, 2005), 2 pgs.
“European Application Serial No. 16735481.0, Response filed Jul. 16, 2019 to Communication Pursuant to Article 94(3) EPC dated Mar. 6, 2019”, w/ English Claims, 16 pgs.
Shein, Esther, “Ephemeral Data”, Communications of the ACM, vol. 56, No. 9, (Sep. 2013), 3 pgs.
“Korean Application Serial No. 10-2018-7020578, Notice of Preliminary Rejection dated Nov. 1, 2020”, w/ English Translation, 4 pgs.
“Korean Application Serial No. 10-2018-7020578, Response filed Dec. 30, 2020 to Notice of Preliminary Rejection dated Nov. 1, 2020”, w/ English Claims, 14 pgs.
“European Application Serial No. 21156908.2, Extended European Search Report dated Apr. 30, 2021”, 9 pgs.
MacCarthy, Andrew, “How to Create a Snapchat Geofilter tutorial + Photoshop & Illustrator Templates (.psd and .ai)”, [Online], Retrieved from the Internet: <URL:http://andrewmacarthy.com/andrew-macarthy-social-media/how-to-create-snapchat-geofilter-photoshop-illustrator-template>, (Dec. 6, 2014).
Taylor, Lorenz, “Snapchat reveals geofilters that can only be unlocked in the right place”, [Online], Retrieved from the Internet: <http://www.dailymail.co.uk/sciencetech/article-2693196/Snapchatintroduces-location-specific-Geofilters.html>, (Jul. 17, 2014).
Related Publications (1)
Number Date Country
20190333188 A1 Oct 2019 US
Continuations (4)
Number Date Country
Parent 15965038 Apr 2018 US
Child 16505703 US
Parent 15661966 Jul 2017 US
Child 15965038 US
Parent 15661978 Jul 2017 US
Child 15661966 US
Parent 14593065 Jan 2015 US
Child 15661978 US