In conveyor or sorter systems, objects are generally transferred to or from a conveyor and/or from one conveyor to another (e.g., from a feed conveyor to a receiving conveyor). In many automated material handling systems, such transfers take place only after the object has reached a specific location (e.g., an object storage and/or retrieval location) along the conveying path. The capacity of a material handling system is determined, among other things, by the rate at which each object is transferred to and/or from the applicable location.
In some material handling systems, a conveyor may form part of a movable vehicle used to transport objects to, or retrieve the objects from, the location where a transfer operation is performed. In material systems of this type, failure to rapidly and accurately determine that an object has been transferred from or to the conveyor may delay (or prevent) the vehicle from advancing to the next location.
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, with emphasis instead being placed upon clearly illustrating the principles of the disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
An apparatus for sorting items and components thereof are shown throughout the figures.
From the loading station, the vehicles travel along a track to the destinations. The track may include a horizontal upper rail and a horizontal lower rail, which operates as a return leg. A number of parallel vertical track legs may extend between the upper rail and the lower return leg. The bins 606 may be arranged in columns between the vertical track legs.
The vehicles 604 are semi-autonomous vehicles that may have an onboard power source and an onboard motor to drive the vehicles along the track. The vehicles may include a loading/unloading mechanism, such as a conveyor, for loading pieces onto the vehicles and discharging the pieces from the vehicles.
Since the system includes a number of vehicles 604, the positioning of the vehicles is controlled to ensure that the different vehicles do not crash into each other. In one embodiment, the system uses a central controller that tracks the position of each vehicle 604 and provides control signals to each vehicle to control the progress of the vehicles along the track. The central controller may also control operation of the various elements along the track, such as the gates.
With continued reference to
Turning briefly to
Each vehicle 604-1 to 604-6 may be semi-autonomous and have an onboard power source and an onboard motor to drive the vehicle along the track system, and each includes a loading/unloading mechanism. In some embodiments, the loading/unloading mechanism comprises a belt conveyor which defines a substantially planar, object supporting surface that is driven by the same or a different onboard motor to convey the object in a first object transfer direction or in a second object transfer direction opposite to the first object transfer direction. In other embodiments, the loading/unloading mechanism includes a stationary object supporting surface and a pusher arrangement adapted to push the object across the object supporting surface and into one of the bins 606.
In embodiments consistent with the present disclosure, an object transfer cycle is initiated when the leading edge of an object enters a detection plane formed by a sensing arrangement such as sensing arrangement 100 of
With continued reference to
As seen in
The following description provides details of the various elements of the system, including a sensing arrangement that works in conjunction with the vehicles 400. The manner in which the system operates will then be described. In particular, the manner in which the items are delivered to bins 190 may be controlled based on the characteristics of the items.
The inventors have found that it is desirable to detect the leading and trailing edges of an item when the item is loaded onto a vehicle or discharged from the vehicle. Accordingly, each vehicle may include one or more sensors to detect items on the vehicle.
Each vehicle may include a plurality of detectors that detect items on the top of the vehicle (i.e. on the surface of the belt 406). One of the sensors may be positioned near the front edge to detect the items as the items are loaded onto or discharged from the front edge. Similarly, one of the sensors may be positioned adjacent the rear edge to detect items as the items are loaded onto or discharged from the rear edge. For instance, the leading sensor may be a beam break sensor so that when an item passes in front of the beam the beam is interrupted. When an item is loaded onto the vehicle 400, the leading edge of the item will interrupt the beam, thereby indicating that the leading edge of the item is on the vehicle. The item may continue to block the lead sensor until the trailing edge of the item passes the lead sensor. After the trailing edge of the item passes the lead sensor, the lead sensor will no longer detect the item, thereby indicating that the item is loaded onto the vehicle. After the trailing edge passes the lead sensor, the conveyor 406 may continue to drive the item toward the rear edge to ensure that the item is centered along the width of the vehicle. Similarly, the lead sensor may detect the leading and trailing edges of the item as the item is discharged from the front of the vehicle. Detection of the trailing edge passing the front sensor can be used to signal that the item has been discharged from the vehicle. The vehicle is then prompted to advance away from the discharge location. The description above of the use of the lead sensor to detect the leading and trailing edges of items being loaded onto or discharged from the front edge is similar to the use of the rear sensor in detecting the leading and trailing edges of an item as the item is loaded onto or discharged from the rear edge of the vehicle.
In the foregoing description, the sensors detect items being loaded onto and being discharged from the front edge or rear edge of the vehicle. In certain applications it may be desirable to incorporate a sensing assembly that provides for detection for a greater variety of items. For instance, when using a beam break sensor it may be difficult to detect the leading or trailing edge of the item if the item is very thin or if the item is transparent or translucent. Accordingly, the system may incorporate an alternate sensing arrangement described below. Although the sensing arrangement is described in connection with a vehicle of the material handling system, it should be understood that the sensing arrangement may incorporated into other aspects of the system, such as detecting an item as it passes along through the induction station. Further still, the sensing arrangement 500 described below may find further application in fields of endeavor outside the material handling field.
Embodiments of the edge sensing assembly include a system and method for aiding in the reliable and accurate detection of an event such as the traversal of a detection plane by the leading and/or trailing edge surface(s) of an object supported by an underlying conveyor surface. According to one or more embodiments, the detection plane is defined by optical energy, emitted by a laser and collimated by a lens system to form a diverging, constant width beam propagating within the detection plane. A linear array of photodetectors is maintained in alignment with the lens system such that the collimated optical energy will strike, at a non-normal angle of incidence, any object which crosses the detection plane.
Conventional “cross-beam” sensors may have a difficult time detecting clear objects, thin objects and/or irregular shaped objects. For example, a bowl of a soup ladle will trigger a cross-beam sensor, but depending on the relative height of the cross-beam, once the bowl has passed, and only the handle is proximate the cross-beam sensor, the cross-beam sensor may not be able to detect the presence of the ladle. In accordance with one more embodiments consistent with the present disclosure, irregularly shaped objects, such as soup ladles are readily sensed by a change in the intensity of the optical energy detected by one or more of the photodetectors in the array. In another example, if an optically opaque object is present, optical energy will be absorbed such that at least one of the photodetectors senses a drop in optical intensity. Alternatively, for an object that includes portions and/or packaging which is optically transparent, some light may pass and some may be reflected or refracted such that at least one of the photosensors senses a less pronounced, but nonetheless detectable, drop in optical intensity. Even relatively thin (on the order of 0.05 mm) objects may be reliably detected with an appropriate arrangement of the lens system and photodetectors.
Various embodiments of systems and methods for detecting traversal of a detection plane by the leading and/or trailing edge surface(s) of an object supported by an underlying conveyor surface are described. In the following detailed description, numerous specific details are set forth to provide a thorough understanding of the claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, methods, apparatuses or systems that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
Referring to
Turning now to
In some embodiments, the emitter 104 is a solid state laser that emits a beam of coherent light within the range of wavelengths visible to the human eye. For efficient and reliable detection of its output, the emitter 104 may be a laser which emits light at or near the peak sensitivity of the photodetectors 106. According to one embodiment, the photodetectors are phototransistors which, by way of example, may have a spectral range of sensitivity within a range of frequencies between 350 to 950 nm and a sensitivity peak of 560 nm. One such phototransistor is the SFH3710 manufactured by Osram Opto Semiconductors GmbH of Regensburg, Germany. It should be noted, however, that other photodetectors such, for example, as photodiodes, may be employed in place of phototransistors. The effects of ambient light on photodetector sensitivity may be addressed, if appropriate, by placing a bandpass filter over the array 108 to prevent light outside a narrow range centered around the sensitivity peak from reaching the photodetectors.
The emitter 104 may comprise a single laser having an integral lens system including one or more collimating lenses as lens 122. The lens 122 is dimensioned and arranged to receive optical energy emitted by the laser source and to collimate the received optical energy such that the light beam diverges within the curtain 102 along a major axis but does not diverge along a minor axis. As seen in
For example, from the perspective of
Depending on the components forming the collimating lens system, the intensity of light within line 200 in
Alternatively, the intensity across light curtain 102 may vary according to a Gaussian or other predictable distribution function. In either case, embodiments consistent with the present disclosure are configured to detect a change in optical intensity received at any of photodetectors 106 when an object crosses (or leaves) the light curtain 102. That is, when an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object on surface S, the output of at least one of the photodetectors 106 of array 108 will signal a change in state.
In an illustrative example where the sensing arrangement 100 forms part of a material handling system, a detected change of photodetector state may be used to confirm the successful transfer of an object into a storage or packing location, successful retrieval of an object from a storage location or picking location. Conversely, the failure to detect a signal indicative of a change in state may also be used to control an operation in a material handling or other system. For example, after a predetermined “timeout” interval, failure to register a change of state may be used as part of an alert sequence (e.g., to trigger an audible or visual alert to a human operator).
One possibility for increasing the coverage of the light detected by the detectors 106 would be to use a complementary pair of photodetector arrays and optical sources so as to increase the coverage of the light curtain. In the arrangement of
In some embodiments, the photodetector elements 106 and optical source 104 may be mounted on a common substrate 124 such, for example, as a printed circuit board. The collimated, diverging beam emitted by lens 122 of emitter 104 is reflected by the surface 130 (
To accommodate the detection of very thin objects, those photodetectors 106 of the array closer to the object support surface S may be more closely spaced than those further away from the object support surface. In the exemplary embodiment of
A transverse bore 126a and 126b may be defined in each of first rigid member 110 and second rigid member 118 to accommodate insertion of an optional mounting shaft such as mounting shaft 120 (
As explained in greater detail below, the reduction in intensity at the photodetector 306-1 can be processed by appropriate sensing logic as a change in state (e.g., a logical “1”) indicative of an object traversing the detection plane defined by a surface of a generated light curtain 102. Likewise, when no part of the object Oi remains within the light curtain, a second state transition occurs when the intensity of the optical energy received at photodetector 306-1 returns to the earlier state (e.g., a logical “0”).
Some of the light emitted by the emitter 304 will pass through clear portions of object O2, and in configurations in which the emitter is parallel to the surface S, the light may pass through the clear or translucent portion so that the system does not detect the object. In the present instance, since the light emitted by emitter 304 is transverse the support surface S on which object O2 is supported, the light passing through transparent or translucent portions of object O2 may be refracted such that the light does not impinge the detector array. For example, referring to
In relation to
As noted previously, the edge detection assembly 100 may be incorporated into a vehicle used in the material handling system described above. For instance, turning to
Each vehicle 400 may include a single object sensing arrangement for sensing object movement in a single direction along a conveying path. Alternatively, and as shown, each vehicle 400 may include a pair of object sensing arrangements in the form of detection assemblies 402 and 404. Each vehicle may also include one or more conveyors for conveying objects while the objects are on the vehicle. The belt forms a generally flat or planar surface for supporting objects on the vehicle 400. For instance, the conveyor 406 may be a conveyor belt. The first detection assembly 402 may be positioned adjacent a rear edge of the vehicle 402 so that the emitter is positioned below the top surface of the conveyor belt 406. The detectors of the detection assembly 402 may be positioned above the surface of the conveyor belt. Additionally, the detection assembly may be positioned adjacent the rear edge of the conveyor belt so that the surface of the conveyor belt does not extend between the emitter and detector of the detection assembly. In this way, as an object passes onto the rear edge of the vehicle the object will first pass between the emitter and detector array of the detection assembly 402. Similarly, when an object is being discharged from the rear edge of the vehicle, the leading edge of the item will pass between the emitter and detector array of the detection assembly if the leading edge extends past the end of the conveyor. Similarly, the front detection assembly 404 is positioned adjacent the front edge of the vehicle so that front detection assembly 404 detects the leading edge of objects as the object is being loaded onto or discharged from the leading edge of the vehicle.
Detection assembly 402 may, for example, signal a first change in logic state when an object is moved by conveyor 406 in a first transfer direction “A” such that the leading edge of the object crosses a first light curtain detection plane of the edge sensing assembly, as previously described in connection with assembly 100. Such a signal would be indicative of the leading edge of the item being discharged from the rear edge of the vehicle. Likewise, detection assembly 402 may signal a subsequent (e.g., second) change in logic state if and when continued movement of the object by conveyor 406 in the direction A results in the trailing edge of the object exiting the first light curtain detection plane. Such a signal would be indicative of the trailing edge of the object being discharged from the rear edge of the vehicle, thereby indicating that the item has been discharged from the vehicle.
Similarly, detection assembly 404 may signal a first change in logic state when an object is moved by conveyor 406 in a second transfer direction “B” and its leading edge crosses a second light curtain detection plane of the edge sensing assembly 404. Likewise, detection assembly 404 may signal a subsequent (e.g., second) change in logic state if and when continued movement of the object by conveyor 406 in the direction B results in the trailing edge of the object exiting the second light curtain detection plane.
The vehicle 400 may include side walls dimensioned and arranged to prevent translation of an object on conveyor surface 405 as the vehicle moves along a travel path transverse to the conveyance path directions A and B. Movement of the conveyor 406 in either the A or B direction is, in some embodiments, performed by a reversible electric motor 410 which uses a belt 412 to transfer power to conveyor shaft. A separate motor drives the track engaging wheels (e.g., 414a, 414b, 414c) of vehicle 400.
The output of each common-emitter amplifier circuit is created by connecting a corresponding resistor (R1 to R10) between a voltage supply VB and the collector pin of the associated phototransistor. The values of resistors R1 to R10 are chosen to set the detection threshold (e.g. to discriminate between anticipated levels of ambient light at a given installation). A low value (a few thousand ohms) for the threshold resistors sets a high threshold level for the incident light to exceed before switching takes place (i.e, low sensitivity) while a high value sets a low threshold level (i.e, high sensitivity). Using, for example, the SFH3710 phototransistor manufactured by Osram Opto Semiconductors GmbH of Regensburg with a voltage VB on the order of 3.0 to 3.5 volts, under conditions normally applicable to an indoor warehouse environment, a resistance value for R1 to R10 on the order of 300 ohms may yield a circuit which is not impaired by noise or interference from ambient light sources such as indoor lighting. In addition, or alternatively, a filter which limits the light reaching the phototransistors to a relatively narrow (e.g, +/−2 nm) passband centered at a selected wavelength within the sensitivity envelope of the phototransistors (not shown) may also be used.
The sensing logic 502 may comprise any arrangement capable of quickly sensing the output of each photodetector and signal and/or process a state change indicative of a light curtain excursion. In one example consistent with the embodiment of
In other embodiments, the sensing logic may be implemented by a microprocessor which senses or samples the output of each respective photodetector during a corresponding clock cycle and initiates action in response to any of the photodetectors going from a high to a low state or vice versa and, in a subsequent cycle, when all of the photodetectors are once again all outputting a high state. In some embodiments, a vehicle such as the vehicle 400 of
Embodiments consistent with the present disclosure may employ sensing arrangements, such as the arrangement 100 of
Transfer of an object onto or from the object support surface(s) of a system constructed in accordance with embodiments of the present disclosure may be performed in a number of ways. By way of illustrative example, a pusher bar or other structure may apply positive forces moving the object onto, across, and/or from the object support surface. Alternatively, or in addition, an object supporting surface may itself be reoriented (e.g., tilted) by an object transfer mechanism such that an object moves, by gravity, onto another object support surface or into a bin or carton at a destination. By way of still further example, an object transfer mechanism may include a conveyor having, for example, a belt that defines the object support surface. In such embodiments, the belt may be driven in a first direction to transfer the object toward a first discharge end of the object transfer mechanism so that it may fall into, for example, a first waiting container. Similarly, the same belt may be driven in a second direction to transfer the object toward a second discharge end of the object transfer mechanism so that it may fall into, for example, a second waiting container.
In some embodiments, one or more object support surfaces of a material handling system and, optionally, one or more object transfer mechanisms, may be moved by a vehicle to an object transfer destination. In one embodiment, a conveyor equipped vehicle such as vehicle 400 of
In some embodiments an object transfer cycle is initiated when the leading edge of an object enters a detection plane formed by a sensing arrangement such as sensing arrangement 100 of
The system operates as follows. An item is processed at the induction station to identify a characteristic of the item that is indicative of where the piece should be sorted. As described previously, the item may also be processed to determine whether the item is qualified to be transported by one of the vehicles based on physical characteristics of the item. The central controller maintains data that correlates various data to identify the destination bin or location for the items being processed.
The induction station may process the items automatically or manually. In a manual mode, the operator manually enters information regarding a piece and then drops the piece on a conveyor. The system electronically tags the piece with the sort information and the conveyor conveys the piece toward the loading station. Alternatively, if the input system is an automated system, the piece is automatically scanned to identify the relevant sort characteristic. For instance, the input station may use a scanner, such as a bar code scanner to read the bar code on a piece, or the input station may include an imaging device, such as a high speed line scan camera in combination with an OCR engine to read information on the piece.
To prepare to receive an item, a vehicle 400 moves along the track toward the loading station in the loading column. When the vehicle 400 moves into position at the loading station the home sensor detects the presence of the vehicle and sends a signal to the central processor indicating that the vehicle is positioned at the loading station.
Once the vehicle is positioned at the loading station, the input station conveys an item onto the vehicle. As the item is being conveyed onto the vehicle 400, the loading mechanism on the vehicle loads the item onto the vehicle. Specifically, the input station conveys the item into contact with the conveyor belts 406 on the vehicle. The conveyor belts 406 rotate toward the rearward side of the vehicle, thereby driving the item rearwardly on the vehicle.
The operation of the conveyor belts is controlled by the loading sensors. The forward loading sensor detects the leading edge of the item as the item is loaded onto the vehicle. Once the forward loading sensor detects the trailing edge of the item, a controller onboard the vehicle determines that the item is loaded on the vehicle and stops the conveyor motor. Additionally, the onboard controller may control the operation of the conveyor in response to signals received from the rearward sensor. Specifically, if the rearward sensor detects the leading edge of the item, then the leading edge of the item is adjacent the rearward edge of the vehicle. To ensure that the item does not overhang from the rearward edge of the vehicle, the controller may stop the conveyor once the rearward sensor detects the leading edge of the item. However, if the rearward sensor detects the leading edge of the item before the forward sensor detects the trailing edge of the item, the controller may determine that there is a problem with the item (i.e. it is too long or two overlapping items were fed onto the vehicle. In such an instance, the system may tag the piece as a reject and discharge the item to the reject bin positioned behind the loading station. In this way, if there is an error loading an item onto a vehicle, the item can simply be ejected into the reject bin, and a subsequent item can be loaded onto the vehicle.
After an item is loaded onto the vehicle, the vehicle moves away from the loading station. Specifically, once the onboard controller detects that an item is properly loaded onto the vehicle, the onboard controller sends a signal to start the drive motor. The drive motor rotates the axles, which in turn rotates the gears on the wheels. The gears mesh with the drive surface of the vertical rails in the loading column to drive the vehicle upwardly. Specifically, the gears and the drive surfaces mesh and operate as a rack and pinion mechanism, translating the rotational motion of the wheels into linear motion along the track.
Since the vehicles move up the loading column from the loading station, the destination for the vehicle does not need to be determined until after the vehicle reaches the first gate along the upper rail. For instance, if an automated system is used at the induction station to scan and determine the characteristic used to sort the items, it may take some processing time to determine the relevant characteristic and/or communicate that information with a central controller to receive destination information. The time that it takes to convey the item onto the vehicle and then convey the vehicle up the loading column will typically be sufficient time to determine the relevant characteristic for the item. However, if the characteristic is not determined by the time the vehicle reaches the upper rail, the system may declare that the item is not qualified for sorting and the vehicle may be directed to the re-induction station to discharge the item onto the discharge assembly. From the re-induction station, the vehicle travels down the second column to the lower rail, and then back to the loading column.
Once the item is qualified for sorting, the central controller determines the appropriate bin 190 for the item. Based on the location of the bin for the item, the route for the vehicle is determined. Specifically, the central controller determines the route for the vehicle and communicates information to the vehicle regarding the bin into which the item is to be delivered. The central controller then controls the gates along the track to direct the vehicle to the appropriate column. Once the vehicle reaches the appropriate column the vehicle moves down the column to the appropriate bin. The vehicle stops at the appropriate bin 190 and the onboard controller sends an appropriate signal to the conveyor motor to drive the conveyor belts 406, which drives the item forwardly to discharge the item into the bin. Specifically, the top of the vehicle aligns with the gap between the appropriate bin 190 and the bottom edge of the bin that is immediately above the appropriate bin.
In the present instance, the orientation of the vehicles does not substantially change as the vehicles move from travelling horizontally (along the upper or lower rails) to vertically (down one of the columns). Specifically, when a vehicle is travelling horizontally, the two front geared wheels cooperate with the upper or lower horizontal rail or of the front track, and the two rear geared wheels cooperate with the corresponding upper or lower rail of the rear track. As the vehicle passes through a gate and then into a column, the two front geared wheels engage a pair of vertical legs in the front track, and the two rear geared wheels engage the corresponding vertical legs in the rear track.
As the vehicle travels from the horizontal rails to the vertical columns or from vertical to horizontal, the tracks allow all four geared wheels to be positioned at the same height. In this way, as the vehicle travels along the track it does not skew or tilt as it changes between moving horizontally and vertically.
Since the system includes a number of vehicles 400, the system controls the operation of the different vehicles to ensure the vehicles do not collide into one another. In the following discussion, this is referred to as traffic control. Exemplary methodologies for controlling the flow of traffic are described in U.S. Pat. No. 7,861,844, filed Jan. 14, 2008 which is hereby incorporated by reference as if set forth in its entirety herein.
In the present instance, some of the columns may have two vertical rails that are independent from the adjacent columns. For instance, the loading column has two independent rails that are not shared with the adjacent column. Therefore, vehicles can travel up the loading column without regard to the position of vehicles in the column next to the loading column. Furthermore, it may be desirable to configure the column next to the loading column so that it also has two independent vertical rails. In this way, vehicles can more freely travel up the loading column and down the adjacent column.
In the foregoing discussion, the sorting of items was described in relation to an array of bins disposed on the front of the sorting station. However, the number of bins in the system can be doubled by attaching a rear array of bins on the back side of the sorting station. In this way, the vehicles can deliver items to bins on the front side of the sorting station by traveling to the bin and then rotating the conveyor on the vehicle forwardly to eject the piece into the front bin. Alternatively, the vehicles can deliver items to bins on the rear side of the sorting station by traveling to the bin and then rotating the conveyor on the vehicle rearwardly to eject the piece into the rear bin. Additionally, the sorting station 100 is modular and can be readily expanded as necessary simply by attaching an additional section to the left end of the sorting station.
One or more characteristics of an item being transported by a vehicle may be detected or determined for the item during processing. This detected information can be used to control the further processing of the item. In particular, the control of the vehicle between the loading station and the destination bin 190 may be varied in response to the detected information. More specifically, the movement of the vehicle along the track may be varied in response to the detected characteristic(s).
A variety of movement variables for the vehicle may be varied based on the detected information. The list of movement variables includes, but is not limited to: acceleration profile (i.e. how rapidly the vehicle accelerates), braking profile (i.e. how rapidly the vehicle brakes) and cornering speed (i.e. how fast the vehicle goes around corners). Another manner in which the vehicle may be controlled in response to the detected information is the manner in which items are ejected from the vehicle. In particular, the belt speed of the vehicle may be increased or decreased to vary the speed with which an item is ejected.
By way of example, the system may have a default control profile that is used to control the movement of the vehicles along the track. Under the default profile, the vehicle moves along the track at first peak velocity, accelerating at a first rate and braking at a first rate. Additionally, under the default movement profile, the vehicle has a first peak speed as the vehicle travels around a curve from horizontal to vertical or from vertical to horizontal. The default profile may apply to a variety of items having a series of characteristics that fit within a default characteristic profile, such as flat items having a reasonable weight (.e.g. a book, a box weighing a few ounces or more, etc.). However, if the system detects a characteristic that varies from the default characteristic profile, the system may vary the control of the vehicle movement. In particular, the system may control the movement according to a second movement profile. For example, if the system detects that an element is cylindrical the system may control the vehicle according to a movement profile that is different than the default profile. The vehicle may accelerate more slowly than the default profile to reduce the likelihood of the item rolling on the vehicle. Similarly, the vehicle may brake more slowly and may travel around corners at a slower rate to reduce the likelihood of the item rolling on the vehicle.
As discussed above, the control of the vehicle may be controlled according to a movement profile and the movement profile may vary based on one or more characteristics determined for the item to be conveyed by the vehicle. It should be understood that the system may store a number of movement profiles, each of which controls the movement of the vehicle along the track according to different parameters. Each movement profile may correlate to one or more characteristics of a particular item. In this way, a variety of items having one or more shared characteristic may share the same movement profile. For instance, all fragile non-round items may all share the same movement profile and all fragile round or cylindrical items may all share the same movement profile.
In this way, the system can dynamically control the movement of each vehicle based on one or more characteristic determined for each item being carried by each vehicle. The characteristic can be determined by either directly detecting the characteristic (scanning, weighing, measuring etc.) or the characteristic(s) may be stored in a central database and the characteristic(s) are determined by identifying the item, such as by a product code. In addition to or instead of storing information about the characteristics for an item, the database may simply include data that identifies the movement profile to be used for an item. In such an instance, the system or operator scans an item to detect a product identification characteristic (such as a bar code or other identifying information). The vehicle movement profile is identified in the central base for the item so that the system retrieves the vehicle movement profile data from the central database after the item is identified.
The system can control the movement of the vehicle based on detected or determined information about the item being conveyed on the vehicle. Additionally, the destination of the vehicle may be varied based on one or more characteristic(s) of an item. For instance, information regarding the physical characteristics of various items may be stored in a central data base. By scanning an item for a product identification code the system can retrieve the data regarding the physical characteristics of the item from the central data base. This data is the expected physical characteristics for the item. For example, based on the data stored for a product identification code, the item may be expected to be 5″ long, 3″ wide and weigh 8 ounces. If the scanning station 80 measures the item to be 8″ long and/or weigh 16 ounces, the system may modify the destination for the item. Specifically, based on the scanned product code the system may direct the vehicle to deliver the item to bin “X”. However, when the system detects a physical characteristic that does not match the expected characteristic the system may alter the destination bin. In the example above, if the item is scanned and weigh 16 ounces, the system may deliver the item to bin “y”, which may be an alternate larger bin or may be an outsort or reject bin for receiving items that vary from the expected physical characteristic.
The system may also control how an item is discharged or delivered at an output bin 190 based on the determined or detected physical characteristics of an item. If an item is fragile, the system may control the vehicle so that the conveyor belts rotate more slowly to discharge the item into the output bin more slowly. Additionally or alternatively, the position of the vehicle relative to the output bin may be varied based on the detected or determined characteristic. For example, if an item is fragile, the system may stop the vehicle lower relative to the bin so that the item is closer to the bottom of the bin and therefore has less of a vertical fall when the item is discharged into the bin.
When multiple items are to be delivered to the same output bin 190, the system may control the position of the vehicle 400 relative to the output bin 190 to reduce the distance that the items must fall when being discharged and to reduce the likelihood of the items causing a jam as the items stack on top of one another. The control of the position of the vehicle during delivery may be varied depending on the detected or determined characteristic(s) of one or more of the items being sorted to the delivery bin. When multiple items are to be delivered to a single bin, the system may divide the single output bin into three virtual sort destinations. The system then sorts the three items to the three virtual sort locations. For instance, the output bin 190 may be segmented into three virtual sort locations: location 1, location 2, and location 3. In
However, the size of each virtual location may be varied based on one or more characteristic determined or detected for an item. Additionally, the virtual locations can be prioritized based on the determined or detected characteristic(s) of the items. For instance, if a plurality of items are to be delivered to an output bin and one of the items is fragile and one of the items is heavy and/or dense, the system may prioritize the virtual locations by prioritizing the heavy item to be delivered into the bin first and the fragile item is delivered into the bin second to minimize the likelihood of damage. In order to prioritize the order of delivery, the system may control the flow of vehicles to stage or delay the vehicle transporting the fragile item.
Similarly, rather than virtually split a single output bin into a plurality of sort locations, the system may virtually merge a plurality of bins into a single virtual bin based on the characteristics determined or detected for multiple items in an order. For instance, if multiple items are to be delivered to a single output bin, but the physical attributes of the different items dictates the order in which the items should be placed into the bin, the system may deliver the items to two or more bins (preferably adjacent bins). The items are then sorted to the different bins. Returning again to the example of a first item that is fragile and a second item that is heavy, when the system detects or determines these features, the system may dynamically reassign the delivery of the items to two separate output bins rather than a single bin if the fragile item is delivered to the output bin before the vehicle with the second item reaches the output bin. After the two items are delivered to two separate bins, the system provides a signal to the operator indicating that the items in the two separate bins should be withdrawn together and treated as a single order rather than being two separate orders.
When an output bin is separated into multiple sort locations as shown in
As shown in
As described above, various parameters of how an item is delivered to an output bin may be varied based on the physical characteristic(s) determined or detected for an item. Additionally, the system may include additional elements that are optionally used during delivery based on the determined or detected characteristics for the items. For example, the vehicles may include a separate extendable belt or the conveyor belts 406 may be mounted onto a carriage that can be displaced relative to the wheels of the vehicle so that the conveyor belts can extend or telescope outwardly toward the output bin. Specifically, the conveyor belts may extend into the output bin and the conveyor belts can the rotate forwardly to discharge the belt into the output bin. Be extending the conveyor belts into the output bin the item drops less when it is delivered into the output bin. Additionally, the conveyor belt may be controlled so that the conveyor belt does not start until the conveyor belt is completely extended into the output bin. The conveyor belt is rotated to discharge the item. While the conveyor belt is rotating, the conveyor belt is retracted toward the vehicle. The simultaneous operation of discharging the item while withdrawing the belt drops the item more gently into the output bin.
Alternatively, rather than utilizing an extendable conveyor belt, the system may selectively utilize a chute at the output bin in response to the detection or determination of a physical characteristic of an item. Specifically, in response to detection or determination of an item having a select characteristic, the system may advance the vehicle to a particular output bin. A chute may be mounted on the rack and the vehicle may drive the chute so that the item is discharged down the chute into the output bin.
It will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. For instance, in the foregoing discussion the system is described as a series of vehicles guided by a track. However, it should be understood that the system need not include a track. For example, the vehicles may travel along the ground rather than traveling along a track. The vehicles may be guided along the ground by one or more sensors and/or a controller. Optionally, the vehicles may be guided in response to signals from other vehicles and/or from a central controller, such as a computer that monitors each of the vehicles and controls movement of the vehicles to prevent the vehicles from colliding with one another. Additionally, the central controller may provide signals to direct each vehicle along a path to a storage location or transfer location.
In addition to a system in which the vehicles move along the ground without a track, the system may incorporate a guidance assembly that includes one or more rails or other physical guides that contact a mechanism on the vehicle to direct the vehicle along a path. For instance, the vehicles may each include one or more contact elements such as wheels, rollers, guide tabs, pins or other elements that may engage the guidance assembly. The guidance assembly mail be a linear element such as a straight rail or it may be a curved element. The guidance assembly may curve within a horizontal plane so that the rail stays within a plane or the guide may curve vertically so that the rail is within a single plane. The guidance assembly may include a plurality of guides or rails vertically spaced from one another so that the vehicles may move horizontally at a plurality of vertical levels. The guide may also include an elevator for moving the vehicles between the vertically spaced rails.
As can be seen from the above, the system may be incorporated into a variety of systems that use physical guide mechanisms or guide the vehicles along open areas by directing the path to guide the vehicles to storage locations or transfer locations. As discussed above, the movement of each vehicle may be controlled in response to a determination of one or more physical characteristics of the item carried by each respective vehicle.
The systems and methods described herein may be implemented in software, hardware, or a combination thereof, in different embodiments. In addition, the order of methods may be changed, and various elements may be added, reordered, combined, omitted or otherwise modified. All examples described herein are presented in a non-limiting manner. Various modifications and changes may be made as would be obvious to a person skilled in the art having benefit of this disclosure. Realizations in accordance with embodiments have been described in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance.
Boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of claims that follow. Finally, structures and functionality presented as discrete components in the example configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of embodiments as defined in the claims that follow.
It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention as set forth in the claims.
Examples of the embodiments of the present disclosure can be described in view of the following clauses:
1. An apparatus for sorting a plurality of items, comprising: a plurality of sort destinations; a plurality of delivery vehicles for delivering items to the sort destinations, wherein each vehicle comprises: a surface for supporting items to be delivered; and an edge-detection assembly for detecting an edge of an item when the item is conveyed onto or discharged from the vehicle, wherein the edge-detection assembly comprises: an emitter for emitting a beam of light toward the surface, wherein the emitter is positioned below the surface so that the beam of light is projected transverse the surface; and a plurality of detectors for detecting the beam of light, wherein an object on the surface of the vehicle affects the beam of light received by the detectors; a controller for controlling the loading of an item onto one of the vehicles or the discharge of an item from the vehicle based on signals from the edge-detection assembly.
2. The apparatus of clause 1 comprising a track for guiding the vehicles to the sort destinations.
3. The apparatus of any of preceding clause wherein the plurality of detectors comprises a linear array of aligned detectors.
4. The apparatus of any of preceding clause comprising a mirror wherein the emitter emits the beam of light toward the mirror and the mirror reflects the beam of light toward the plurality of detectors.
5. The apparatus of any of preceding clause wherein the emitter and the plurality of detectors are mounted on a first support element and the mirror is mounted on a second support element spaced apart from the first support element.
6. The apparatus of any of preceding clause wherein the edge-detection assembly is configured to detect elements on the surface having a thickness of as thin as approximately 0.05 mm.
7. The apparatus of any of preceding clause wherein the edge-detection assembly is configured to detect elements on the surface having a thickness of as thin as approximately 0.5 mm.
8. The apparatus of any of preceding clause wherein the edge-detection assembly is configured to detect elements on the surface having a thickness of as thin as approximately 1.0 mm.
9. The apparatus of any of preceding clause wherein the edge-detection assembly is configured to detect elements on the surface having a thickness of as thin as approximately 2.0 mm.
10. The apparatus of any of preceding clause wherein the edge-detection assembly is configured to detect elements on the surface having a thickness of as thin as approximately 3.0 mm.
11. The apparatus of any of preceding clause wherein the emitter comprises a laser.
12. The apparatus of any of preceding clause wherein the emitter comprises a lens for dispersing the light to create a beam of light having sufficient height to impinge on each of the detectors.
13. The apparatus of any of preceding clause wherein the edge-detection assembly is mounted adjacent an end of the surface of the vehicle.
14. The apparatus of any of preceding clause wherein the first support element is mounted adjacent a first edge of the surface and the second support element is mounted adjacent a second edge of the surface so that the first and second support are on opposite sides of the vehicle.
15. The apparatus of any of preceding clause, wherein the detectors are photodiodes or photo transistors.
16. The apparatus of any of preceding clause wherein the controller is adapted to register a first change in logic state when a leading surface of an object moving in a first direction crosses an object detection plane formed by the beam of light.
17. The apparatus of any of preceding clause wherein the controller is further adapted to register a second change in logic state when a trailing surface of an object moving in the first direction crosses the object detection plane.
18. A sensing arrangement for sensing an intersection between an object and a detection plane transverse to a plane defined by an object support surface, comprising: a plurality of photodetector elements disposed in a linear array; a laser light source; and a lens system dimensioned and arranged to receive optical energy from the laser light source and to collimate the received optical energy into a line aligned with the plurality of photodetector elements, wherein optical energy of the line is received by each photodetector element of the plurality of photodetector elements unless an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object intersecting the detection plane.
19. The sensing arrangement of any of preceding clause, wherein each of the photodetectors of the linear array is mounted on a rigid substrate.
20. The sensing arrangement of any of preceding clause, wherein the laser light source is mounted on the rigid substrate.
21. The sensing arrangement of any of preceding clause, wherein the sensing arrangement further includes a reflecting mirror dimensioned and arranged to receive the line of collimated optical energy following propagation along a first portion of an object detection plane and to redirect the line of collimated optical energy along a second portion of the object detection plane for sensing by the photodetector elements.
22. The sensing arrangement of any of preceding clause, further including a mounting member coupling the mirror to the substrate so as to maintain a fixed alignment between the lens system and linear array of photodetector elements despite transient reorientation of the detection plane relative to an object supporting surface.
23. The sensing arrangement of any of preceding clause, wherein the photodetector elements are photodiodes or photo transistors.
24. The sensing arrangement of any of preceding clause, further including logic coupled to each of the photodetector elements is adapted to register a first change in logic state when a leading surface of an object moving in a first direction crosses the object detection plane.
25. The sensing arrangement of any of preceding clause, wherein the logic coupled to each of the photodetector elements is further adapted to register a second change in logic state when a trailing surface of an object moving in the first direction crosses the object detection plane.
26. A vehicle for conveying objects along a conveying path in a material handling system, comprising: a pair of shafts comprising a first shaft and a second shaft extending in a direction transverse to an object transfer direction; a conveyor belt supported by the pair of shafts, the conveyor belt defining an object support surface; an electric motor for driving at least one of the shafts and causing movement of the conveyor belt and any object disposed on the object support surface following movement of the vehicle along the conveying path to an object transfer location; and a sensing arrangement for sensing an intersection between an object and a detection plane transverse to a plane defined by the object support surface, the sensing arrangement including a: plurality of photodetector elements disposed in a linear array; a laser light source; and a lens system dimensioned and arranged to receive optical energy from the laser light source and to collimate the received optical energy into a line aligned with the plurality of photodetector elements, wherein optical energy of the line is received by each photodetector element of the plurality of photodetector elements unless an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object disposed on the object support surface.
27. The vehicle of clause 26, wherein each of the photodetectors of the linear array is mounted on a rigid substrate and wherein the laser light source is mounted on the rigid substrate.
28. The vehicle of any of preceding clause, wherein the sensing arrangement further includes a reflecting mirror dimensioned and arranged to receive the line of collimated optical energy following propagation along a first portion of an object boundary sensing plane and to redirect the line of collimated optical energy along a second portion of the object sensing plane for sensing by the photodetector elements.
29. The vehicle of any of preceding clause further including a mounting member coupling the mirror to the substrate so as to maintain a fixed alignment between the lens system and linear array of photodetector elements despite transient reorientation of the boundary sensing plane relative to the object supporting surface during movement of the vehicle.
30. The vehicle of any of preceding clause, further including logic coupled to each of the photodetector elements is adapted to register a first change in logic state when a leading surface of an object moving in a first direction along the object support surface crosses the object sensing boundary.
31. The vehicle of any of preceding clause, wherein the logic coupled to each of the photodetector elements is further adapted to register a second change in logic state when a trailing surface of an object moving in the first direction along the object support surface crosses the object sensing boundary.
32. The vehicle of any of preceding clause, wherein the sensing arrangement is a first sensing arrangement disposed adjacent the first shaft, and wherein the vehicle further includes a second sensing arrangement adjacent to second shaft, the second sensing arrangement being dimensioned and arranged to sense intersection between an object and a second detection plane transverse to the plane defined by the object support surface and including a second plurality of photodetector elements disposed in a linear array; a second laser light source; and a second lens system dimensioned and arranged to receive optical energy from the second laser light source and to collimate the received optical energy into a line aligned with the second plurality of photodetector elements, wherein optical energy of the line is received by each photodetector element of the second plurality of photodetector elements unless an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object intersecting the second object detection plane.
33. A system for conveying objects along a conveying path, comprising: an object support surface; an object transfer mechanism operative to move an object, supported by the object support surface, in at least one object transfer direction; and a sensing arrangement for sensing an intersection between an object and a detection plane, the sensing arrangement including: a plurality of photodetector elements disposed in a linear array; a laser light source; and a lens system dimensioned and arranged to receive optical energy from the laser light source and to collimate the received optical energy into a line aligned with the plurality of photodetector elements, wherein optical energy of the line is received by each photodetector element of the plurality of photodetector elements unless an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object disposed on the object support surface.
34. The system of any of preceding clause, wherein the object transfer mechanism includes a conveyor belt defining at least a portion of the object support surface.
35. The system of any of preceding clause, wherein the object transfer mechanism is movable in a first object transfer direction orthogonal to the conveyor path.
36. The system of any of preceding clause, wherein the object transfer mechanism is movable in a second object transfer direction opposite to the first object transfer direction.
37. The system of any of preceding clause, further including a vehicle for moving the object supporting surface along the conveying path.
38. The system of any of preceding clause, wherein object transfer mechanism is mounted on the vehicle for movement along the conveying path.
39. The system of any of preceding clause, wherein the sensing arrangement is a first sensing arrangement mounted proximate a first discharge end of the vehicle, and wherein the vehicle further includes a second sensing arrangement disposed proximate a second discharge end of the vehicle, the second sensing arrangement being dimensioned and arranged to sense intersection between an object and a second detection plane and including a second plurality of photodetector elements disposed in a linear array; a second laser light source; and a second lens system dimensioned and arranged to receive optical energy from the second laser light source and to collimate the received optical energy into a line aligned with the second plurality of photodetector elements, wherein optical energy of the line is received by each photodetector element of the second plurality of photodetector elements unless an amount of optical energy above a sensitivity threshold is absorbed, reflected or refracted by an object intersecting the second object detection plane.
40. The system of any of preceding clause, wherein the first and second sensing arrangements are dimensioned and arranged such that the first and second detection planes are parallel to one another.
41. The system of any of preceding clause, wherein the first and second sensing arrangements are dimensioned and arranged such that each of the first and second detection lanes are orthogonal and transverse to a plane defined by the object support surface.
This application claims priority to U.S. Provisional Patent Application No. 62/374,218, filed Aug. 12, 2016, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/046638 | 8/11/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62374218 | Aug 2016 | US |