This non-provisional application claims priority under 35 U.S.C. ยง 119(a) on Patent Application No(s). 201611056045.6 filed in China on Nov. 24, 2016, the entire contents of which are hereby incorporated by reference.
This disclosure relates to an object tracking method, and more particularly to an object tracking method of predicting a moving direction of an object to execute image recognition on the road image captured at a monitoring point.
Along with the development of the Internet and the progress of image recognition, a great amount of monitors have been widely installed on the streets in many places to investigate traffic accidents or criminal cases. However, although the massive installment of monitors can enlarge the range of monitoring and avoid blind spots that cause the difficulties in grasping the process of traffic accidents and criminal cases accurately, the voluminous amounts of monitor data make it a far more time-consuming task to search certain images.
Generally speaking, when, for example, a burglary occurs on a street, the police have to check all the data in the monitors in around the crime scenes in order to sift the image data related to the case. This method is not merely inefficient. Omissions are considerably inevitable in telling whether the image data is related to the case. In addition, when it comes to a sudden occurrence of burglary, if the monitoring system is capable of assisting with sifting the image data instantly, it can effectively support the police in arresting the criminals and enhance the efficiency of solving a case.
This disclosure provides an object tracking method, applied to an object tracking system, includes: defining a number of monitoring points in a physical geographic region, wherein at least one camera set at each of the monitoring points, and the camera at each of the monitoring points is configured to capture a road image; selecting one of the monitoring points to be an initial monitoring point according to a position signal, related to the physical geographic region; defining at least one first priority point, wherein the first priority point is selected from the monitoring points, and the first priority point has an adjacent relation to the initial monitoring point in the physical geographic region; determining whether the road image captured at the at least one first priority point comprises an object to be tracked; and when the road image comprises the object to be tracked, defining the first priority point, at which the object to be tracked is captured, as a next initial point.
The present disclosure will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only and thus are not limitative of the present disclosure and wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawings.
Please refer to
In step S11, the object tracking system 10 defines a number of monitoring points A-N in a physical geographic region 2. As shown in
As shown in
As shown in
In step S13, the route builder 103 of the object tracking system 10 selects one of the monitoring points A-N to be an initial monitoring point according to a position signal which relates to the physical geographic region 2. For example, the position signal is an address, such as an address where an event occurs, an address where an object 3 is detected or other address which is suitable for providing a position related to the object 3. The route builder 103 searches the road section 21 corresponding to the address (position signal) in the physical geographic region 2, and selects one of the monitoring points A-N to be the initial monitoring point. For example, in
In step S15, according to the initial monitoring point, the route builder 103 defines at least one first priority point, which is selected from the monitoring points A-N, and the first priority point has an adjacent relation to the initial monitoring point in the physical geographic region 2. If the monitoring point H is defined as the initial monitoring point in the previous step, the monitoring points G, the monitoring points E and the monitoring points I respectively have adjacent relations to the monitoring point H. The route builder 103 defines the monitoring points G, the monitoring points E and the monitoring points I as the first priority points according to the monitoring points adjacent to the monitoring point H, after defining the monitoring point H as the initial monitoring point.
In step S17, the image analyzer 101 determines whether the road image captured at each of the first priority points includes the object to be tracked 3. In other words, the image analyzer 101 obtains the road images respectively captured at the monitoring points G, the monitoring points E and the monitoring points I, and recognizes the road images to determine whether the road images include the object to be tracked 3. For example, if the object to be tracked 3 is transportation, the image analyzer 101 recognizes the license plate number of the transportation in order to check whether the road images includes the license plate number of the object to be tracked 3, but this disclosure does not intend to limit the image analyzer 101, according to which feature of the object to be tracked 3, determines whether the road image captured at each of the first priority points includes the object to be tracked 3.
In step S19, when the one or more road images include the object to be tracked 3, the first priority point at which the object to be tracked 3 is captured is defined as the next initial monitoring point. For example, in
The object tracking system 10 tracks an object by defining the initial monitoring point step by step, and predicts a moving direction of the object by defining one or more first priority points, so that the image analyzer 101 does not need to analyze road images captured by all cameras 105 in a region. The image analyzer 101 merely determines whether the object to be tracked 3 is captured at the monitoring point which is defined as the first priority point. Therefore, the amount of data to be processed by the object tracking system 10 is reduced so that the recognition rate and the efficiency of handling a case are enhanced.
In an embodiment, after the monitoring point, at which the object to be tracked 3 is captured, is defined as the initial monitoring point, the first priority point is defined further according to a capturing direction of the camera 105 which captures the object to be tracked 3, in step S15. In other words, explained by the aforementioned embodiment, when there are three cameras 105 set at the monitoring point H and the cameras 105 capture the road images respectively toward the monitoring point G, the monitoring point E and the monitoring point I, the cameras 105 of the monitoring point H are further arranged to capture images toward the driving direction of the object to be tracked 3. Therefore, after the monitoring point H is defined as the initial monitoring point, the moving direction of the object to be tracked 3, from the monitoring point H to the monitoring point E, can be obtained according to the camera 105, at the monitoring point H, which captures the object to be tracked 3. Therefore, the route builder 103 is able to define the monitoring point E as the first priority point according to the moving direction of the object to be tracked 3 so as to reduce the amount of image data which the image analyzer 101 processes.
Besides reducing the amount of image data processed by the image analyzer 101, the route builder 103 defines the first priority point by determining the moving direction of the object to be tracked 3 so that the route builder 103 is able to double check whether the object to be tracked 3 leaves the road section 21, between the monitoring point H and the monitoring point E, through another one of three road sections 21 connected to the monitoring point E. When the object to be tracked 3 does not leave the road section 21 between the monitoring point H and the monitoring point E through another one of three road sections 21 connected to the monitoring point E, the object to be tracked 3 stays the road section 21 between the monitoring point H and the monitoring point E. At the same time, the route builder 103 is further able to notify the police to patrol at the road section 21 between the monitoring point H and the monitoring point E via the added notifier. In an embodiment, the route builder 103 defines the initial monitoring point step by step to track the object so that a moving route of the object to be tracked 6 can be built. The moving route of the object to be tracked 6 can further be announced, by wireless transmission via the added notifier, to the network of the police for providing the moving route of the object to be tracked 6 to the police.
In an embodiment, when the camera 105 at the monitoring point, which is defined as the first priority point in step 15, does not capture the road image, the route builder 103 is further able to define a number of second priority points according to the first priority point at which the road image is not captured. For example, the damage to the camera 105 at the monitoring point, the files saved in the camera 105 or the transmission route, or other reason may cause that the camera 105 at the monitoring point does not capture the road image. The second priority points are similarly selected from the monitoring points A-N and have adjacent relations to the first priority point in the physical geographic region 2.
For example, in step S15, when the monitoring point E is defined as the first priority point but the camera 105 at the monitoring point E does not capture the road image, the monitoring point D, the monitoring point B and the monitoring point F, which have adjacent relations to the monitoring point E, are selected to be the second priority point. Afterwards, in step S17, besides determining whether the road image captured at each first priority point includes the object to be tracked 3, the image analyzer 101 also determines whether the road image captured at each second priority point includes the object to be tracked 3. When the camera 105 at the second priority point captures the object to be tracked 3, the second priority point is similarly defined as the next initial monitoring point, and then the prediction of the moving direction of the object to be tracked 3 is executed.
Similarly, when the camera 105 at the monitoring point which is defined as the second priority point does not capture the road image, the route builder 103 is further able to define a number of third priority points according to the second priority point at which the road image is not captured. The third priority points are similarly selected from the monitoring points A-N, and have adjacent relations to the above second priority point. Person has ordinary skill in the art is able to design the third priority points according to the practical requirement so the related details are not described again.
In an embodiment, the road image which includes the object to be tracked 3 and is captured at the first priority point is stored in data storage, so that the road image can be one piece of evidence after the mission of tracking the object to be tracked 3 is completed, and the moving route of the object to be tracked 3 can be analyzed. In other words, besides the image analyzer 101, the route builder 103 and one or more cameras 105, the object tracking system 10 further includes the data storage, such as the memory or other suitable device.
Please refer to
In step S403, the route builder 103 selects one monitoring point and defines it as the initial monitoring point according to a position signal which relates to the physical geographic region 5. In other words, the route builder 103 searches the road section 51 corresponding to the position signal in the physical geographic region 5, and selects one of the monitoring points A-N to be the initial monitoring point according to the corresponding road section 51. In step S405, according to the initial monitoring point, the route builder 103 defines at least one first priority point, which is selected from the monitoring points A-N, and the first priority point has an adjacent relation to the initial monitoring point in the physical geographic region 5. In this embodiment, after defining the monitoring point, at which the object to be tracked 6 is captured, as the initial monitoring point, in step S405, the route builder 103 defines the first priority point further according to the moving direction of the object to be tracked 6. In a practical example, as shown in
In step S407, the image analyzer 101 determines whether the road image captured at each of the first priority points includes the object to be tracked 6. For example, the image analyzer 101 determines whether any road image captured by the monitoring point J, the monitoring point I and the monitoring point M includes the object to be tracked 6 by recognizing whether the license plate number of the object to be tracked 6 is included in the road image captured at each of the first priority points. When the object to be tracked 6 is included in the road images, in step S409, the first priority point, at which the object to be tracked 6 is captured, is defined as the next initial monitoring point, and after step S409, steps S401 to S407 are repeated to continue predicting the moving direction of the object to be tracked 6.
When the object to be tracked 6 is not included in the road images, the object to be tracked 6 does not leave the region formed by the road sections 51 among the monitoring point C, the monitoring point J, the monitoring point M and the monitoring point I. As a practical example, the object to be tracked 6 may stay in the road section 51 among the monitoring point C, the monitoring point J, the monitoring point I and the monitoring point M, as shown in
Therefore, in step S411, at least one tracking feature related to the object to be tracked 6 is defined. The tracking feature is, for example, the band, type, color, or other suitable tracking feature of the object to be tracked 6. In step S413, a historical record corresponding to both of the road image captured at the initial monitoring point and the road images captured at the first priority points according to a time point on which one of the monitoring points A-N is defined as the initial monitoring point. In other words, in this embodiment, the initial monitoring point is the monitoring point C so that the image analyzer 101 captures the historical record corresponding to the road images captured at the monitoring point C, the monitoring point J, the monitoring point I and the monitoring point M.
In step S415, a suspicious object is defined according to the captured historical record. More specifically, the image analyzer 101 searches the object to be tracked 6 from the historical record by determining which object has the tracking feature of the object to be tracked 6. Besides, the route builder 103 defines the object with the tracking feature as the suspicious object, and considers the suspicious object to be the object to be tracked 6. For example, the route builder 103 searches the suspicious object by its license plate number. In step S417, the image analyzer 101 determines whether the road image captured at the initial monitoring point and the road image captured at each first priority point includes the suspicious object. In step S419, when either the road image captured at the one of the first priority point or the road image captured at the initial monitoring point includes the suspicious object, the route builder 103 defines the first priority point, at which the suspicious object is captured, as the next initial monitoring point. For example, as shown in
More concretely, the suspicious object is regarded as an object to be tracked which is same as the object to be tracked 6 but is tracked independently of the object to be tracked 6. For example, a first suspicious object and a second suspicious object are defined in step S415. When the first suspicious object is captured at the monitoring point C, the route builder 103 defines the monitoring point C as the initial monitoring point, and tracks the first suspicious object by one or more monitoring points which have adjacent relations to the monitoring point C. When the second suspicious object is captured at the monitoring point M, the route builder 103 defines the monitoring point M as the initial monitoring point and tracks the second suspicious object by one or more monitoring points which have adjacent relations to the monitoring point M, and the tracking details are not described again.
In view of the above statement, this disclosure provides an object tracking method. By setting the monitoring point, at which an object to be tracked is found, as an initial monitoring point, defining one or more first priority points according to the initial monitoring point, predicting a moving direction of the object to be tracked, and executing image recognition of one or more road images captured on the predicted moving direction of the object to be tracked, the amount of data which the object tracking system has to execute the image recognition is reduced, and the object tracking system does not need to execute the image recognition of all the road images in a region at a time, so that the efficiency of the image recognition is enhanced and the object tracking method may real-time support the police to track the object to be tracked to enhance the efficiency of solving a case.
Number | Date | Country | Kind |
---|---|---|---|
201611056045.6 | Nov 2016 | CN | national |