1. Field of the Invention
The present disclosure relates generally to a new and novel navigation and localization system capable of electromagnetically projecting precise localization coordinates and heading data to a cooperative transponder from a single terrestrial or non-terrestrial point of origin steered beacon. Still more particularly, the present invention relates to an obliquely disposed multi axis scanning beacon conveying navigation, localization and dead reckoning heading determination for terrestrial or non-terrestrial vehicles, agents, aircraft, badges, and other transponder attachable objects.
2. Description of the Related Art
Various navigation and localization approaches have been considered and or deployed over the years in an effort to provide navigational or contextual location awareness of persons, agents, objects, aircraft and livestock. These methodologies primarily relied upon the cooperative exchange of data between multiple fixed position interrogators, readers, sign posts or other beacons and mobile asset affixed tags, personnel worn badges, and other portable communicative devices. To accommodate communications between these devices designers experimented with various Sonar, and R.F. radiators and each approach revealed serious shortcomings. Sonar produced beacons that were difficult to focus and in outdoor applications had to be wind and noise compensated. The use of conventional R.F. carriers were very problematic insomuch as the carriers are subject to propagation phenomena like absorption, reflection, multi-path, and other performance hindering phenomena. Some of these devices rely upon RSSI or “Relative Signal Strength Indication” as a measure of proximity between a stationary beacon and a mobile tag. The problem with this approach is that RSSI is not a reliable indicator of proximity as it is also subject to propagation errors. More advanced approaches like TOF “Time of Flight” use a plurality of time synchronized cooperative interrogator/readers to triangulate or “trilateralize” a mobile transmitting tag or other electronic device within a known area of travel.
Such conventional localization Mechanisms can be categorized into four groups, “Active” where the system sends signals to localize a target transponder, “Cooperative” where the target transponder cooperates with the system, “Passive” where the system relies upon already present signals, and “Blind” where the system deduces transponder location without prior knowledge of its characteristics. The instant invention falls into the “cooperative infrastructure” producing a navigational location signal intended to be received and decoded by a cooperative mobile tag, transponder or like circuit residing within or attached to a host object or worn by a person or animal. The subject transponder may be a receiver or transceiver depending upon the application.
The unauthorized removal of wheeled assets like Shopping Carts and other human propelled carts from merchants, hospitals, and other enterprises is well known. The amount of financial loss globally, from shopping carts and wheel chairs alone exceed half a billion dollars annually. Over the last decade or so there have been many attempted solutions to address this problem. The localization and navigation of shopping carts and the shopping behavior of patrons who use them is of great import to merchants and those who provide goods for sale by merchants.
Accordingly, U.S. Pat. No. 4,772,880 to Goldstein discloses a shopping cart containment method that relies upon a radio receiver inside the lockable wheel detecting when the cart has traveled outside a predetermined electromagnetic field created by a corresponding transmitter and antenna. This is known in the art as an umbilical type device that creates a predetermined safe area of operation between an interrogator and a corresponding transponder. When this distance is exceeded one or both of the cooperative devices sounds an alarm or alert. The use of an electromagnetic or R.F. field or radiation based range area is fraught with pitfalls in attempting to create a predictable coverage area due to the inherent nonsymmetrical nature of Electromagnetic radiation displaced by one or more antennas used in this configuration. The range determining area of electromagnetic radiation would be severely influenced by propagation variables like dispersion multi-path, shadowing, and reflections from fixed and moving objects like metallic vehicles and other electromagnetically absorptive or reflective barriers that contribute to undesirable operation.
U.S. Pat. No. 5,357,182 to Wolfe discloses a dual loop perimeter antenna based cart containment system that is based on an inner and outer wired loop displaced about the perimeter of a predetermined area of authorized shopping cart usage. The outer and inner loops provide a lock and unlock signal command each respectively. The disclosed means of inhibiting the cart is a chain driven motor used as a dynamic brake when its terminals are shorted together. The use of a chain driven motor as a braking scheme in this type of application is impractical due to cost, exposure to the elements, regular lubrication of a chain, and the considerable drag that the motor would burden the cart with in its unlocked or normal operating state. The cost to trench a parking lot to bury and seal a signal wire loop wire is very expensive. The cost to bury two loops as disclosed would be so prohibitive that the installation costs alone would make the solution impractical.
U.S. Pat. No. 5,576,691 to Coakley et al discloses a locking wheel that relies upon a preprogrammed distance in its memory to determine that it has traveled outside a store parking lot. A static or fixed measurement of distance used as a reference to establish a barrier of predetermined area of authorized shopping cart usage does not take into effect several variables that would reflect human behavior like getting lost in a parking lot searching for their vehicle. Even if the worst case distance is used as a means of establishing a perimeter there is the chance that the patron could exit at a less than worst cast distance, resulting in the permitted distance stored in memory to be reached somewhere of the store property, maybe in the middle of a busy intersection crosswalk.
U.S. Pat. No. 5,831,530 to Lace et al discloses a locking wheel that relies upon a predetermined VLF (Very Low Frequency) signal emanating from a perimeter establishing buried wire loop in a retail parking lot. The wheel contains a circuit to detect the presence of the predetermined signal and hard locks the wheel using a brake band. The predetermined carrier detection scheme uses a resonant tank circuit to reject out of band frequencies and to pass the intended predetermined 8 kilohertz carrier. The use of a VLF resonant tank circuit at this low of a frequency requires an inductor that is so high in value that it is susceptible to being overloaded or saturated by a DC magnetic field like that produced by a small inexpensive magnet. Being able to circumvent the locking of the cart with such a readily available object is undesirable. The Braking mechanism by its nature will lock the wheel hard. If the user pushing the cart were unaware of the pending hard lock up of the cart, he or she could be injured posing a risk of liability to the cart's owner, the retailer. To unlock or reset the wheel in an effort to return the cart to normal operation, the locked cart must be dragged several feet away from the influence of the intentional signal carrier emanating from the loop it is captured upon or near. Once the locked cart is far enough away from the loop it can be unlocked with a hand held device. The need to have to drag a disabled cart that can't roll for several feet can cause injury to store personnel which can become a worker's compensation claim or worse. Because the locking wheel is opaque and all of its components are internal to the wheel there is no visible means of the wheel's state of disposition. A potential user of the subject cart can't tell if it is locked or broken creating confusion and frustration. The nature of this device also requires complete disassembly of the caster to make a customary battery change precluding store personnel from being able address this simple ongoing maintenance item.
U.S. Pat. No. 5,881,846 to French et al discloses a wheel that is disabled by a spring loaded shell that when activated by the same VLF perimeter signal method as disclosed in the Lace patent encompasses the lower portion or ground contacting half of the wheel. The shell's inherent resistance to sliding on some surfaces like concrete and asphalt make the cart difficult to navigate. Once the shell encompasses the cart's wheel it can only be reset after dragging the immobilized cart several feet away from the loop signal. Then, once a hand held remote control device electronically allows the shell to be retracted the store employee, by hand, elevating the cart and while the shell is not contacting the ground must reload the spring activated shell back into its standby state. This is a lot of effort and risk of injury just to free the cart for re-use. The external shell as it deploys inherently acts as a scoop to loose debris and snow making it susceptible to failure.
U.S. Pat. Application No. US 2006/0247847 to Carter et al discloses a wireless shopping cart containment system reliant upon a network of static or DC magnet based markers and fixed geometry R.F. created markers to aid in creating a navigational map of a operational perimeter. First a survey must be conducted to create a digitized map of the store property. From this map an area of allowable operation and other coordinates can be created. To detect, interpret and act upon the presence of these markers an in-wheel AMR “Anisotropic magneto resistance magnetic field sensor like those used in digital compassing is deployed. The intended function of this system relies upon compassing and distance as provided by a wheel rotation counter to arrive at direction and distance data that can be used to provide real time location of a fleet of shopping carts within a network.
The use of a magnetic sensor to determine heading in an environment like a shopping center inside a shopping cart wheel is nearly impossible due to stray magnetic fields from soft and hard irons found throughout such an environment. The use of heading calibrating markers like those taught in US 2006/0247847 will only provide marginal improvements to heading data accuracy as accumulated dead reckoning errors will be so great that an impractical amount of these markers would be necessary to maintain enough navigational accuracy to be of any use within such an application.
Another technological shortcoming taught in US 2006/0247847 is the deployment of R.F. radiators to provide proximity measurements of a shopping cart by use of RSSI or “Relative Signal Strength Indication”. This concept is well known in the art to be incapable of providing reliable correlation between signal strength to distance due to propagation induced errors and other error contributive factors.
Another technological shortcoming taught in US 2006/0247847 is the deployment of DC magnets about the property to provide navigation calibration. It is well known that over time magnets lose their strength and will become less detectable over time and temperature. Also magnets can attract ferrous debris like iron ore particulates and every day items like paper clips, nails, and other like materials.
The prior art heretofore known suffer from a number of disadvantages.
A highly integrated navigation and localization system consisting of one or more obliquely oriented multi-axis EM Wave Plotters broadcasting location coordinate navigation patterns into a space above ground level where corresponding EM detecting and decoding transponder equipped wheeled vehicles or objects navigate in a space be terrestrial or extra-terrestrial.
In one embodiment consisting of a mobile system, internal sensors like accelerometers, gyros, and other devices to compensate for pitch, roll, yaw, altitude, acceleration and any other error conditions that may skew self localization and the orientation of the EM plotter and or EM pixel beacons.
In another preferred embodiment a corresponding transponder may be an autonomous tag like device may be carried about by a person, animal, or object. As the EM transponder intercepts EM pixels within EM navigation zones it decodes the EM pixel's imbedded location coordinate and using an internal digital map determines its location. Other information may be contained within the same or EM pixel like a time and date stamp, housekeeping, firmware upgrades, etc. The transponder may report periodically, randomly, or by some predetermined distance, event, change in state, condition, or elapsed period time. Dead reckoning heading data is inherently provided by simple computation between each location coordinate update. The transponder or wheeled vehicle may locally maintain in memory, a digital map of one or more navigation boundaries. This digital map is dynamically created and assigned by the EM Plotter, hand held device, network, or similar means.
In one of many preferred embodiments the instant invention is ideally suited to provide navigation and localization for shopping carts or trolleys as they are often referred to as outside the U.S. The utility realized in this embodiment is the real time navigational mapping provided to shopping carts outfitted with a corresponding imbedded EM detector decoder circuit. Such an application would provide real time location of carts inside and outside the store allowing store personnel to quickly locate shopping cart inventories and determine when a cart roundup is practical or essential.
In a similar preferred embodiment the instant invention is ideally suited to provide real time location of shopping carts outfitted with shopper display terminals to let shoppers know where store items are located and provide shopping cart navigation pattern data to retailers and manufacturers.
In another similar preferred embodiment the instant invention provides real time location of shopping carts outfitted with security devices like locking wheels and other forms of disabling the carts when they reach a predetermined boundary like the perimeter of a retail shopping center parking lot. The current state of the art in shopping cart containment (locking shopping carts) is to immobilize a cart when it reaches a boundary consisting of a buried parking lot perimeter wire emitting a VLF “Very Low Frequency” detectable carrier that is OOK “On Off Keyed” modulated with a “Lock” command. As long as the immobilized cart is within the influence of the lock signal it cannot be unlocked which is accomplished by use of a hand held low power remote control emitting an “unlock” command.
The instant invention would not require such a device to free the decommissioned cart. To return an immobilized cart to full service it would simply be a matter of pointing the cart in a direction toward the interior of the parking lot and traveling just a short distance to intercept and receive just one coordinate point.
In another similar preferred embodiment the instant invention provides real time location of shopping carts outfitted with security devices like locking wheels and other forms of disabling the carts if they attempt to exit the store without first paying for merchandise, an act known as “push out” in the loss prevention industry.
In another preferred embodiment the instant invention is ideally suited to provide real time location and containment of pets both indoors and outdoors. Pet travel indoors could be limited by zones within the home. Expensive furniture could be mapped as a “restricted zone” and attempted excursion into the zone would result in an audible tone or mild shock from the pet's collar.
In a similar preferred embodiment the instant invention is ideally suited to provide real time location, containment and segregation of livestock. In the management of cattle in open pasture, fertile cows and bulls can share the same grazing space by using shock collar technology to maintain a predetermined boundary between them.
In a similar preferred embodiment the instant invention is ideally suited to provide real time location, segregation of persons by sex in schools where commingling is not accepted during times like recess, lunch, and events.
In a similar preferred embodiment the instant invention is ideally suited to provide real time location, segregation of persons by risk factors pertaining to health, biohazard, etc.
In another preferred embodiment the instant invention is ideally suited to provide real time location, containment and segregation of tagged persons, objects, or other transponder equipped items in dynamically assigned zones that can be modified in size, shape, or purpose.
In another preferred embodiment the instant invention is ideally suited for advanced indoor navigation applications where the instant invention plots patterns of high resolution EM pixels onto surfaces, walls, ceilings, and objects to provide an ideal navigation system for agents like autonomous floor cleaners like the Roomba (Protected name) and toy robots. The EM images could consist of infrared bar codes or other easily image read indicia.
In another preferred embodiment the instant invention is ideally suited for advanced security applications where the instant invention plots patterns of high resolution EM pixels onto surfaces, walls, ceilings, objects or near space and a corresponding imager looks for and alarms upon any scene change that would be indicative of intrusion.
In another preferred embodiment the instant invention is ideally suited for local temporary air traffic navigation primarily for RC “Remote Control” aircraft. In this embodiment the EM plotter is inverted upside down and plots EM pixels in a predetermined pattern where the corresponding transponder equipped aircraft will be flying. RC aircraft must be very light in weight and the present invention could provide flight data that would normally be provided by onboard systems that would add undesirable weight. Such data includes but is not limited to altitude, air speed, and of course coordinate location and heading.
The zonal containment of canines within a residential property is primarily accomplished using a buried perimeter prescribing wire loop that emits a detectable low frequency carrier that is received by the pet's collar worn receiver when within range or proximate to the loop. The installation of this subterranean loop and driver is time consuming, laborious and beyond the abilities of a large segment of the buying public.
The zonal containment of the infirmed or children or a child's ride on toy within a residential or day care property could prevent an unsafe event.
Before describing the instant invention in detail, several terms used in the context of the present invention will be defined. In addition to these terms, others are defined elsewhere in the specification, as necessary. Unless otherwise expressly defined herein, terms of art used in this specification will have their art-recognized meanings.
A “patentable” composition, process, machine, or article of manufacture according to the invention means that the subject matter satisfies all statutory requirements for patentability at the time the analysis is performed. For example, with regard to novelty, non-obviousness, or the like, if later investigation reveals that one or more claims encompass one or more embodiments that would negate novelty, non-obviousness, etc., the claim(s), being limited by definition to “patentable” embodiments, specifically exclude the unpatentable embodiment(s). Also, the claims appended hereto are to be interpreted both to provide the broadest reasonable scope, as well as to preserve their validity. Furthermore, if one or more of the statutory requirements for patentability are amended or if the standards change for assessing whether a particular statutory requirement for patentability is satisfied from the time this application is filed or issues as a patent to a time the validity of one or more of the appended claims is questioned, the claims are to be interpreted in a way that (1) preserves their validity and (2) provides the broadest reasonable interpretation under the circumstances. A “plurality” means more than one.
Other features and advantages of the invention will be apparent from the following drawings, detailed description, and appended claims.
a, b, c, d, e, and f illustrates a representative example of possible scanner patterns
As those in the art will appreciate, the following detailed description describes certain preferred embodiments of the invention in detail, and is thus only representative and does not depict the actual scope of the invention. Before describing the present invention in detail, it is understood that the invention is not limited to the methodologies described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention defined by the appended claims.
The present invention relates to devices and methods that provide for . . . .
Turning now with reference to the figures, in certain preferred embodiments . . . . . For example, as shown in
a through
Assumptions:
Equation:
a=120/tan 35 or 120/0.700208 or 171.38 in.
Mobile versions of the instant invention may use stationary EM Plotters as a means of acquiring its own location coordinates or other means like GPS or improved GPS. As the mobile EM plotter navigates about its course either randomly or by a predetermined pattern its EM pixel beacons update corresponding EM transponders.
The frequency and distance dependence of the loss between two isotropic antennas is expressed in absolute numbers by the following equation:
L
FSL=(4kR/X)2
Free Space Loss where R: distance between transmit and receive antennas;
X: operating wavelength. After converting to units of frequency and in dB, the equation becomes:
L
FSL dB=92.4+20 log f+20 log R
where f: frequency in GHz; R: Line-of-Sight range between antennas in km.
The short wavelengths of millimeter wave signals result in low diffraction. Like light waves, the signals are subject more to shadowing and reflection than typical R.F. anomalies.
The localization or tracking of objects, conditions, persons and animals is a difficult task primarily due to limitations presented by the use of stationary fixed angle of view interrogators attempting to detect and transact with transponders that are often obscured to detection by orientation, propagation or other barriers. In asset tracking applications the localization of objects typically involves one or more reader/interrogators detecting the presence of one or more passive or active tags then reporting the event to a network. To provide a high level of resolution of an object multiple reader/interrogators must be deployed in relatively close proximity to create a means of triangulation typically relying upon TOA “Time of flight” or other like schemes. The cost of reader/interrogators is substantial as is the cost of installation.
Now referring to the same assembly depicted as being rotated 90 degrees. In this view the cube shaped EM reflector faces forward 066. The
The I.R. laser receiver 069 provides an additional communication receiver for software updates, “wake on command”, and an alternate EM navigation beacon receiver.
Network communications is handled with a wireless 802.11a/g router 098. The EM plotter system can communicate with an on premises workstation or with the addition of a pcs/gsm cellular phone module can call the factory or local service rep in case of malfunction.
In case of power failure the EM plotter does have a UPS battery 092 managed by a battery management circuit.
The EM plotter's Zigbee transceiver 078 provides the transponder network interface and communications as a stationary node in an ad hoc or mesh network. The network is self healing. To synchronize the EM plotters to a known timing source 079 there are a couple preferred methods. WWB in Fort Collins Colo. broadcasts a GMT clock pulse that is detectable and decodable using inexpensive Low Frequency WWB receiver I.C.s. There is also a precision version of the common GPS system called RTK “Real Time Kinematic” that produces localization accuracies of 2 centimeters. This board may be dockable as to allow different types of clock signals to be optimized to the locality of the system installation. To ensure the EM Plotter is properly oriented and maximally level, an internal dual axis accelerometer 080 is deployed to precisely indicate inclination in reference to gravity. Such sensors are inexpensive and readily available. To determine the EM plotter's own physical relation to true north a MEMS AMR type magnetic sensor 082. Once the EM plotter is set to run after an install it self calibrates it compassing reference to true north thereby establishing a count location on the 085 azimuth motor's rotary encoder 084 as a true north heading count. More specifically the azimuth rotary encoder is a 3600 pulse per revolution device. To calibrate it for compassing it may be rotated at a slow speed like 10 RPM for 10 revolutions. During this calibration process the system's micro-controller is logging the azimuth encoder 084 count upon each full revolution looking for a majority wins or best fit count location that best aligns with the compass data. To auto-calibrate the EM plotter's altitude an altimeter circuit 081 is deployed. The calibration process occurs on power up.
This application claims the full benefit and priority of U.S. Provisional Application Ser. No. 60/931,356, filed on May 23, 2007, the disclosure of which is fully incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
60931356 | May 2007 | US |