The present invention generally relates to a latch apparatus, particularly relates to a latch apparatus having a lever, and specifically relates to a latch apparatus having a lever where the lever draws a latch out of engagement with a post of a gated barrier and then draws the latch back into engagement with the post of the gated barrier.
A two action latch is something like a two step authentication or verification method to sign into an email account or secure website. A two action latch requires a first independent mechanical step and a second independent mechanical step prior to the gate of the gated barrier being capable of swinging from a closed position to an open position.
A feature of the present invention is the provision in a latch apparatus, of a housing having a proximal end and a distal end and of a latch slidably engaged to the housing, where the latch extends out the distal end of the housing.
Another feature of the present invention is the provision in such a latch apparatus, of the latch slidable along a straight axis, where the latch includes a latch distal end portion that engages an object.
Another feature of the present invention is the provision in such a latch apparatus, of the latch having a straight channel with an upper end straight portion and a lower end straight portion.
Another feature of the present invention is the provision in such a latch apparatus, of a lever where the lever includes a proximal end portion and a distal end portion, and where the lever is pivotably engaged to the housing.
Another feature of the present invention is the provision in such a latch apparatus, of the distal end portion of the lever having a first peg, where the first peg extends laterally such that, when the lever is pivoted, a travel of the first peg defines a first arc.
Another feature of the present invention is the provision in such a latch apparatus, of the first peg of the lever engaging the straight channel of the latch.
Another feature of the present invention is the provision in such a latch apparatus, of the straight channel being oblique relative to the straight axis along which the latch slides.
Another feature of the present invention is the provision in such a latch apparatus, of, when the lever is pivoted one way, the first peg traveling along the first arc from the upper end straight portion of the straight channel to the lower end straight portion of the straight channel and thereby slidingly drawing the latch toward the proximal end of the housing.
Another feature of the present invention is the provision in such a latch apparatus, of, when the lever is pivoted opposite of such one way, the first peg traveling along the first arc from the lower end straight portion of the straight channel to the upper end straight portion of the straight channel and thereby slidingly drawing the latch away from the proximal end of the housing.
Another feature of the present invention is the provision in such a latch apparatus, of the lever being pivotably engaged to the housing by a pivot pin laterally engaging the housing and lever, where the latch includes a slot that extends in a direction that the latch slides, and where the slot engages the pivot pin.
Another feature of the present invention is the provision in such a latch apparatus, of the distal end portion of the lever including a second peg, where the second peg extends laterally such that, when the lever is pivoted, a travel of the second peg defines a second arc, where the latch includes a latch edge, and where the second peg slides on the latch edge when the latch is drawn toward the distal end of the housing.
Another feature of the present invention is the provision in such a latch apparatus, of the lever having an open position and a closed position, where when the lever is in the open position the first peg is disposed distally of the second peg, and where when the lever is in the closed position the first peg is disposed distally of the second peg.
Another feature of the present invention is the provision in such a latch apparatus, of the lever having an open position and a closed position, where when the lever is in the open position the first peg is disposed at a greater altitude than the second peg, and where when the lever is in the closed position the first peg is disposed at a greater altitude than the second peg.
Another feature of the present invention is the provision in such a latch apparatus, of the latch including a latch head and a latch neck, where the latch head includes a greater width than the latch neck, where at least a portion of the latch neck is engaged in the housing, where the latch head is disposed outside of the housing when the lever is in the open position and when the lever is in the closed position, and where the straight channel is formed in the latch head.
Another feature of the present invention is the provision in such a latch apparatus, of the latch including a latch head and a latch neck, where the latch head includes a greater width than the latch neck, where at least a portion of the latch neck is engaged in the housing, where the latch head is disposed outside of the housing when the lever is in the open position and when the lever is in the closed position, where the latch head includes outer faces, where the lever includes inner faces, and where the inner faces of the lever extend over and are adjacent to the outer faces of the latch head.
Another feature of the present invention is the provision in such a latch apparatus, of the latch including a latch head and a latch neck, where the latch head includes a greater width than the latch neck, where at least a portion of the latch neck is engaged in the housing, where the latch head is disposed outside of the housing when the lever is in the open position and when the lever is in the closed position, where the latch head includes a U-shaped channel formed in part by first and second latch sides, and where the first latch side extends distally of the second latch side.
Another feature of the present invention is the provision in such a latch apparatus, of the first peg including a cylindrical portion.
Another feature of the present invention is the provision in such a latch apparatus, of the second peg including a peg edge with first and second peg edge portions, where the first peg edge portion engages the latch edge when the lever is in the closed position, and where the second peg edge portion engages the latch edge when the lever is in the open position.
Another feature of the present invention is the provision in such a latch apparatus, of the lever being springless.
Another feature of the present invention is the provision in such a latch apparatus, of a housing having a proximal end and a distal end; of a latch slidably engaged to the housing, where the latch extends out the distal end of the housing, where the latch is slidable along a straight axis, where the latch includes a latch distal end portion that engages the object, and where the latch includes a channel with an upper end portion and a lower end portion; of a lever having a proximal end portion and a distal end portion, where the lever is pivotably engaged to the housing, where the distal end portion of the lever includes a first peg, where the first peg extends laterally such that, when the lever is pivoted, a travel of the first peg defines a first arc, and where the first peg of the lever engages the channel of the latch such that: i) when the lever is pivoted one way, the first peg travels along the first arc from the upper end portion of the channel to the lower end portion of the channel and thereby slidingly draws the latch toward the proximal end of the housing; and ii) when the lever is pivoted opposite of said one way, the first peg travels along the first arc from the lower end portion of the channel to the upper end portion of the straight channel and thereby slidingly draws the latch away from the proximal end of the housing; and of the distal end portion of the lever including a second peg, where the second peg extends laterally such that, when the lever is pivoted, a travel of the second peg defines a second arc, where the latch includes a latch edge, and where the second peg slides on the latch edge when the latch is drawn toward the distal end of the housing.
Another feature of the present invention is the provision in such a latch apparatus, of a housing having a proximal end and a distal end; of a latch slidably engaged to the housing, where the latch extends out the distal end of the housing, where the latch is slidable along a straight axis, where the latch includes a latch distal end portion that engages the object, where the latch includes a channel with an upper end portion and a lower end portion; of a lever having a proximal end portion and a distal end portion, where the lever is pivotably engaged to the housing, where the distal end portion of the lever includes a first peg, where the first peg extends laterally such that, when the lever is pivoted, a travel of the first peg defines a first arc, where the first peg of the lever engages the channel of the latch such that: i) when the lever is pivoted one way, the first peg travels along the first arc from the upper end portion of the channel to the lower end portion of the channel and thereby slidingly draws the latch toward the proximal end of the housing; and ii) when the lever is pivoted opposite of said one way, the first peg travels along the first arc from the lower end portion of the channel to the upper end portion of the channel and thereby slidingly draws the latch away from the proximal end of the housing; and of the latch including a latch head and a latch neck, where the latch head includes a greater width than the latch neck, where at least a portion of the latch neck is engaged in the housing, where the latch head is disposed outside of the housing when the lever is in the open position and when the lever is in the closed position, where the latch head includes outer faces, where the lever includes inner faces, and where the inner faces of the lever extend over and are adjacent to the outer faces of the latch head; and of the channel being formed in the latch head.
An advantage of the present invention is that the lengthwise size of the latch apparatus is minimized. One feature that contributes to this advantage is the channel that is obliquely oriented and that is engaged when the lever is opened. Another feature that contributes to this advantage is the placement of the oblique channel in the head of the latch.
Another advantage of the present invention is that the latch slides straight and true with minimum wobble. One feature that contributes to this advantage is the first peg that engages the oblique channel on the head of the latch. A second feature that contributes to this advantage is the second peg that engages an edge of the head of the latch. A third feature that contributes to this advantage is that the entire latch, including the head of the latch, is disposed between sides of the lever. Each of the first and second pegs continuously relatively slides on its respective portion of the head of the latch so as to continuously engage the head of the latch while the latch slides into and out of the housing.
Another advantage of the present invention is that a pinching of fingers is minimized. One feature contributing to this advantage is that the widest portion of the latch apparatus is the lever. The distance between inner sides of the lever is greater than the distance between outer sides of the head of the latch. Another feature contributing to this advantage is that the housing includes an extension that covers up a transition from the neck of the latch to the head of the latch.
Another advantage of the present invention is that the present latch apparatus is a two action latch. In other words, prior to an opening of the attendant gated barrier, a first mechanical independent step must be performed and subsequently a second mechanical independent step must be performed. If an attempt is made to first perform the second mechanical independent step, the latch apparatus cannot be opened without destroying an integrity of the latch apparatus.
Another advantage of the present invention is that the present latch apparatus includes a minimum of parts.
Another advantage of the present invention is that the present latch apparatus is inexpensive to manufacture.
Another advantage of the present invention is that the present latch apparatus is simple to use when the operation is an opening of the latch.
Another advantage of the present invention is that the present latch apparatus is simple to use when the operation is a closing of the latch.
As shown in
The gate 22 includes outer or end support members 50, 52. End support member 52 defines the pivot axis of the gate 22. Gate 22 further includes an upper horizontal or transverse support member 54 and a lower horizontal or transverse support member 56. Gate 22 further includes, disposed between end support member 50, 52, a set of vertical support members 58, 60, 62, 64, and 66 that extend from the lower horizontal support member 56 to the upper horizontal support member 54. Vertical support members 50, 58, and 60 extend into the latch apparatus 10 and are engaged to the upper horizontal support member 54. In
Lever 16 swings or pivots on a pivot pin 76. Pivot pin 76 engages the housing 12, further engages the latch 14, and further engages the gate upper horizontal support member 54. Pivot pin 76 is secured to the latch apparatus 16 by a lock washer or clip 77.
Latch 14 includes a latch head 78. Latch head 78 includes a U-shape that includes a first longer extension 80 and a second shorter extension 82. Latch head longer extension 80 is shown in
Latch 14 is closed in
In each of the closed and open positions as shown in
In
In
In
Left and right housing portions 96, 98 include respective upper horizontal plates 136, 138 and respective lower horizontal plates 140, 142. The plates 136, 138, 140, 142 extend from the sides 102, 108 and confront the upper and lower sides of the gate upper support member 54. Housing portions 96, 98 include respective ribs 144, 146 running between the left plates 136, 140 and the right plates 138, 142. Ribs 144, 146 confront the left and right sides of the gate upper support member 54. Plates 136, 138, 140, 142 and ribs 144, 146 are inner housing support members for the gate upper support member 54 to minimize wobble of the housing 12 relative to the gate upper support member 54.
Left and right housing portions 96, 98 include respective vertical plates 148, 150 for confronting the inner face of end vertical support member 50 of gate 22. Left and right housing portions 96, 98 include respective edges 152, 154 for confronting the outer face of end vertical support member 50 of gate 22. Left housing portion 96 includes a horizontal edge 156 and vertical rib 158 for confronting a left side of end vertical support member 50 and right housing portion 98 includes a horizontal edge 160 and vertical rib 162 for confronting a right side of end vertical support member 50. Edges 152, 154, 156, 160 form opening 118.
Gate upper support member 54 and gate end vertical support member 50 are engaged to each other, as shown in
The inside of the housing 12 includes a set of depending ribs 168, 170. Ribs 168 extend from the top 100 of housing half portion 96. Ribs 170 extend from the top 104 of housing half portion 98. Ribs 168, 170 terminate short of a plane defined by the bottom face of plate portions 136, 138. Ribs 168, 170 terminate about in a plane defined by the upper face of plate portions 146, 138. Ribs 168, 170 confront the top 172 of the latch neck 134 as the latch neck 134 slides on gate upper horizontal support member 54.
The inside of the housing 12 further includes cylindrical pin receptors 174, 176, 177, 178, 180, 181. Receptors 174, 176, 177 are disposed in housing portion 96. Receptors 178, 180, 181 are disposed in housing portion 98. Receptors 178, 180, 181 have male ends that engage female ends 174, 176, 177, respectively. Pin connectors 182, 184, 185 engage the receptors 174, 176, 177, 178, 180, 181 and draw the housing portions 96, 98 together. As the housing portions 96, 98 are drawn together, locator tabs 186, 190 of housing half portion 98 engage respective locator slots 188, 192 of housing half portion 96.
The inside of housing 12 further includes plate portions 193, 194. Plate portion 193 is in housing portion 96. Plate portion 194 is in housing portion 98. Plate portions 193, 194 lead in from opening 132 and support distal edge portions 196, 198 of respective sides 200, 202 of latch neck 134. Sides 200, 202 further include bottom proximal edge portions 201, 203 that extend at a higher altitude than do edge portions 196, 198.
Lever 16 includes top 86, and sides 88, 90. Lever 16 includes a proximal end portion 204 that is lifted by the hand or fingers and a distal end portion 206. On the inside of each of the sides 88, 90, at the distal end portion 206, lever 16 includes a first peg 208 and a second peg 210. First peg 208 is cylindrical. Second peg 210 is a triangular or tear drop shape. Second peg 210 includes a base having two sides that taper from the base toward each other to terminate at a tip or apex. Second peg 210 extends to a slightly greater depth than does first peg 208. Each of the sides 88, 90 of lever 16 includes respective openings 212, 214 for pivot pin 76.
Latch 14 includes latch head 78 having extensions 80, 82. Latch head 78 further includes base 92. Extensions 80, 82 and base 92 form a U-shape that engages a portion of standard 26 and a portion of corner portion 42. As a whole, latch head 78 is H-shaped. Standard 26 and corner portion 42 are portions of the frame 20 of the gated barrier 18. Latch 14 further includes a latch neck 134 having a pair of sides 200, 202. Side 202 includes an edge portion 198. Side 200 includes edge portion 196. Latch neck 134 further includes a top 172. Latch neck top 172 and latch sides 200, 202 form a U-shape that engages and slides on gate upper horizontal support member 54. Latch head extension 80 projects further distally than latch head extension 82. The width between outer faces of latch head extensions 80 and 82 is greater than the width between outer faces of the latch neck sides 200, 202. Latch head 78 includes a pair of stepped base edges 216, 218. Each of the stepped edges 216, 218 includes an upper and lower straight edge portion that are offset from each other. Stepped edge 216 is opposite of distal vertical edge 220 of latch head extension 80. Stepped edge 218 is opposite of distal vertical edge 222 of latch head extension 82. The outer face of latch head extension 80 includes an oblique channel 224. The outer face of latch head extension 82 includes an oblique channel 226. Each of the oblique channels 224, 226 is straight. The top of each of the oblique channels 224, 226 is proximal relative to the latch neck 134 and adjacent to its respective stepped edge 216, 218. The bottom of each of the oblique channels 224, 226 is distal relative to the latch neck 134 and spaced from its respective stepped edge 216, 218. The top of each of the oblique channels 224, 226 is adjacent to a top 228 of the latch head 78. The bottom of each of the oblique channels 224, 226 is adjacent to a bottom 230 of the latch head 78. Bottom 230 is shown in
Latch head extension 80 includes a pair of horizontal upper and lower channels 232, 234 that open distally on the vertical edge 220 and that are closed with an oblique edge proximally. Latch head extension 82 includes a pair of horizontal upper and lower channels 236, 238 that open distally on the vertical edge 222 and that are closed with an oblique edge proximally. Such proximal edges disposed at the closed end of the channels 232, 234, 236, 238 run parallel to the axis of the oblique channels 224, 226.
Latch neck 134 includes a pair of horizontal slots 240, 242. Slot 240 is formed in latch side 200. Slot 242 is formed in latch side 202. Slots 240, 242 are aligned and extend horizontally. Gate upper horizontal support member 54 includes a pivot opening 244, shown in
Latch head 78 is H-shaped such that a base 92 ties the longer latch head extension 80 to the shorter latch head extension 82. The distal face of base 92 includes upper, lower, and intermediate horizontal ribs projecting distally from base 92, as shown in
The height of the latch neck 134 is greater than the height of the latch head 78 whether the height of the latch neck 134 is measured 1) between latch neck top 172 and any of the distal latch edge portions 196, 198 or 2) between latch neck top 172 and any of the proximal latch edge portions 201, 203.
Slide lock 68 is spring biased. Slide lock 68 includes a slide pin 246 engaged with the slide lock main body 72 and further slidingly engaged in aligned slots 248 formed in each of the sides of the gate upper horizontal support member 54. Slide lock 68 includes the coil spring 70 having a proximal end engaged to slide pin 246 and a distal end engaged to pivot pin 76. Slide lock 68 is thus continually biased in the distal direction so as to keep the ledge 74 biased toward the locked position. Ledge 74 includes an upper tapered edge and the proximal end of lever 16 includes a lower edge oppositely tapered such that lever 16 can snap by the tapered edge of ledge 74 and into its closed position even when slide lock 68 is in its closed position.
In operation, as shown in
In operation, to close the gate 22, the lever 16 is maintained in its open position. Lever 16 is maintained in its position by a friction fit between latch neck 134 and the gate upper horizontal support member 54, by a friction fit between latch neck 134 and the internal supports of the housing 12, and by a friction fit between the sides 88, 90 of the lever 16 and the sides 102, 106 of the housing 12. If an attempt to close the gate 22 is made when the lever 16 is in its closed and locked position engaged under the slide lock ledge 74, the outer face of the latch head extension 82 will hit the front faces of the standard 26 and frame corner portion 42. After gate 22 is closed with the latch head 78 in the proximal position such that shorter latch head extension 82 has bypassed the standard 26 and frame corner portion 42 and such that the inner face of latch head extension 80 extends over the front faces of the standard 26 and frame corner portion 42, the lever 16 is closed. As lever 16 is closed, the first pegs 208 travel in an arc about pivot pin 76 as first pegs 208 engage oblique channels 224, 226, thereby drawing the latch 14 distally and sliding the shorter latch head extension 82 over the rear faces of the standard 26 and frame corner portion 42 so as to lock the gate 22 to the frame 20. As the latch 14 is drawn distally, the second pegs 210 travel in an arc about pivot pin 76 and stabilize the latch head 78 and latch 14 as a whole.
As shown in
Thus since the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalents of the claims are intended to be embraced therein.
This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 62/768,904 filed Nov. 17, 2018, which is hereby incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
5442881 | Asbach | Aug 1995 | A |
5782039 | Scherer | Jul 1998 | A |
5924242 | Macari | Jul 1999 | A |
6425609 | Cheng | Jul 2002 | B2 |
7627985 | Marsden | Dec 2009 | B2 |
7975431 | Flannery | Jul 2011 | B2 |
8196348 | Flannery | Jun 2012 | B2 |
8205388 | Yates | Jun 2012 | B2 |
8448381 | Flannery | May 2013 | B2 |
8713851 | Flannery et al. | May 2014 | B2 |
9388603 | Flannery et al. | Jul 2016 | B2 |
9410348 | Flannery et al. | Aug 2016 | B1 |
9458668 | Flannery | Oct 2016 | B1 |
9464467 | Flannery et al. | Oct 2016 | B1 |
9689197 | Flannery et al. | Jun 2017 | B1 |
9874055 | Flannery et al. | Jan 2018 | B1 |
10091970 | Flannery et al. | Oct 2018 | B1 |
10113335 | Flannery et al. | Oct 2018 | B1 |
10287819 | Flannery | May 2019 | B1 |
10533370 | Flannery et al. | Jan 2020 | B1 |
20060175028 | Askinasi | Aug 2006 | A1 |
20070074453 | Flannery | Apr 2007 | A1 |
20080284180 | Newcombe | Nov 2008 | A1 |
20110308160 | Boucquey | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
20314871 | Jan 2004 | DE |
102008062774 | Jul 2010 | DE |
2310447 | Aug 1997 | GB |
2003293643 | Oct 2003 | JP |
3183004 | Apr 2013 | JP |
101745271 | Sep 2017 | KR |
WO-9829627 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
62768904 | Nov 2018 | US |