The present invention relates to an observation device with which an image displayed on a display surface of a display element such as a liquid crystal display is enlarged for observation.
Ocular optical systems used in many binoculars and the like generally each have an observation angle of view of about 30°. When an ocular optical system is increased in the observation angle of view with the eye relief of an appropriate length maintained, the lens outer diameter becomes large and the lens weight increases.
There has been conventionally known an ocular optical system using a resin material (plastic) with a specific gravity lower than a glass material to achieve weight reduction of the ocular optical system. Japanese Patent Application Laid-Open No. 2008-83096 discloses an achromatic lens system in which the weight of the entire system is reduced by using resin lenses and diffraction optical elements. The optical characteristics of the resin material tend to change when the environment changes. Moreover, when the resin material is used in an optical system of an observation device or the like, the optical system may deteriorate in optical performance due to an optical distortion by molding or the like.
There has been conventionally known a lens system optical device which is less affected by an optical distortion by molding in manufacturing of a lens made of a resin material. Japanese Patent Application Laid-Open No. 2004-219594 discloses a lens system optical device in which the position of a molding gate used in molding a plastic lens is appropriately set to achieve a small optical distortion.
In an ocular optical system used in a head-mounted display type observation device, there is not only a demand for an observation angle of view wider than that of a binocular but also a demand for weight reduction because the burden on an observer wearing the device is large when the device is heavy.
An object of the present invention is to provide an observation device which can provide binocular vision of an image displayed on a display element with a wide angle of view and an excellent optical performance while achieving reduction in size and weight of ocular optical systems by using resin lenses.
An observation device of the present invention is an observation device including: a display element having a rectangular display surface; and a pair of ocular optical systems for use to observe an image displayed on the display surface, each of the paired ocular optical systems includes a resin lens having a shape defined by an arch and a chord on a cross section perpendicular to an optical axis, the resin lens is provided with a molding gate in a portion of an outer periphery of the shape defined by the arc, and the following conditional expressions are satisfied:
0.08<Rc/D<0.30
−35°≤θ≤35°
0°≤|α|<40°,
where Rc is a difference between a radius of the resin lens and a length of a line connecting a midpoint of the chord and a point on the optical axis on the cross section perpendicular to the optical axis, D is a diameter of the resin lens, θ is an angle between a direction connecting a midpoint of a long side of the display surface and the point on the optical axis on the cross section perpendicular to the optical axis and a direction connecting the molding gate and the point on the optical axis on the cross section perpendicular to the optical axis, and α is an acute angle out of angles formed between a direction connecting the point on the optical axis and the molding gate of the resin lens included in one of the paired ocular optical systems and a direction connecting the point on the optical axis and the molding gate of the resin lens included in the other ocular optical system on the cross section perpendicular to the optical axis.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described below in accordance with the accompanying drawings. An observation device in the present invention includes: display elements having rectangular display surfaces; and a pair of ocular optical systems used to observe images displayed on the display surfaces. Each of the paired ocular optical systems includes a resin lens having a shape defined by an arc and a chord on a cross section perpendicular to an optical axis. The resin lens is provided with a molding gate (gate) in a portion of an outer periphery of the shape defined by the arc.
Each of the ocular optical systems 2 includes a positive (positive refractive power) lens (G1), a negative (negative refractive power) lens (G2), and a positive lens (G3), in this order from the eye point 3 side. The material of the positive lens G1 is glass. The negative lens G2 and the positive lens G3 with large outer diameters are resin lenses made of a resin material (plastic material).
An optical glass being a general material has a specific gravity of 2 to 6 g/cm3 while a plastic being one type of resin material has a specific gravity close to 1 g/cm3. Accordingly, an effect of reducing the weight of the ocular optical systems 2 can be expected to be obtained by using the plastic.
In each ocular optical system 2, in order to achieve a wide observation angle of view of about 50° with one eye, the outer diameter of the positive lens (G1) arranged closest to the eye point 3 reaches approximately φ50 mm and the outer diameters of the negative lens G2 and the positive lens G3 arranged on the liquid crystal display element 4 side reach approximately φ70 mm. Since observation positions for binocular vision are set to secure viewing points suiting a general interpupillary distance of a human that is, about 60 mm, such lens sizes may cause interference between the ocular optical systems 2 for the left and right eyes.
In view of this, in the embodiments, a portion on a circumference of each of the resin lenses with large outer diameters is cut away such that the outer shape of the resin lens is formed in a D-shape as illustrated in
In
0.08<Rc/D<0.30 (1)
−35°≤θ≤35° (2)
0°≤|α|<40° (3)
The conditional expression (1) expresses a ratio of the lens cut amount Rc to the outer diameter D of the resin lens. When the ratio is equal to or falls below the lower limit of the conditional expression (1), the weight reduction effect of the ocular optical systems 2 decreases. On the other hand, when the ratio is equal to or exceeds the upper limit, vignetting of the light flux occurs and the observation angle of view is narrowed. Hence, these cases are not preferable. The numerical value range of the conditional expression (1) is more desirably set as follows, and this setting can achieve ocular optical systems 2 with a higher weight reduction effect.
0.10<Rc/D<0.20 (1a)
In the embodiments, the positive lens (G3) arranged closest to the display element 4 has the largest outer diameter. Accordingly, in the embodiments, at least the outer diameter of the positive lens G3 is reduced.
The conditional expression (2) relates to the position of the molding gate in each resin lens. When θ exceeds the upper limit of the conditional expression (2) or falls below the lower limit thereof, a light flux of the maximum angle of view passes near a position of the molding gate and is greatly affected by an optical distortion, which makes good observation difficult. The numerical value range of the conditional expression (2) is more preferably set as follows.
−30°≤θ≤30° (2a)
The conditional expression (3) specifies the positions of the molding gates of the resin lenses relative to each other. When |α| is equal to or exceeds the upper limit of the conditional expression (3), the effect of the optical distortion near the molding gate varies greatly between the optical systems for the left and right eyes, and the exceeding of the upper limit is thus not preferable. The numerical value range of the conditional expression (3) is more preferably set as follows. This setting can achieve ocular optical systems with a higher weight reduction effect.
0°≤|α|<30° (3a)
In the embodiments, the amount of phase difference between the optical distortion of the resin lens included in one of the paired ocular optical systems 2 and the optical distortion of the resin lens included in the other ocular optical system 2 in the direction of the long sides of the display surfaces 4a is denoted by Δrel. An observation dominant wavelength (wavelength 550 nm) is denoted by A. In this case, the conditional expression of
0.0≤|Δrel/λ|<5.0 (4)
is satisfied.
The conditional expression (4) specifies the relative phase difference, that is the optical distortion amount which is affected when the pupils are oscillated at the paired ocular optical systems 2 for the left and right eyes. When |Δrel/λ| is equal to or exceeds the upper limit of the conditional expression (4), the observation condition varies between the left and right eyes as in the conditional expression (3), and the exceeding of the upper limit is thus not preferable. The numerical value range of the conditional expression (4) is more desirably set as follows. This setting can achieve ocular optical systems 2 with a higher weight reduction effect.
0.0≤|Δrel/λ|<3.0 (4a)
In the embodiments, the maximum value of the optical distortion in each resin lens is denoted by Δ. In this case, the conditional expression of
0.0≤|Δ/λ|<12.0 (5)
is satisfied.
The conditional expression (5) specifies the phase difference, that is the optical distortion amounts in the lenses made of the resin material. When |Δ/λ| is equal to or exceeds the upper limit of the conditional expression (5), the optical performance in monocular observation decreases greatly. The numerical value range of the conditional expression (5) is more desirably set as follows. This setting can achieve ocular optical systems with a higher weight reduction effect.
0.0≤|Δ/λ|≤10.0 (5a)
In the embodiments, the resin lenses are preferably arranged closest to the display elements 4 in the ocular optical systems 2. The resin lenses respectively in the paired ocular optical systems 2 are arranged such that the chords are adjacent to each other on the cross section perpendicular to the optical axis 7. This facilitates size reduction of the observation device. Next, the resin lenses in each of the embodiments are described.
Furthermore,
The gates 5 for molding are arranged at positions on a line (X direction) including the optical axes 7 and the midpoints 6a of the long sides of the display surfaces 4a and the conditional expressions (3) and (4) are satisfied.
In Embodiment 1, as illustrated in
|α|=0°.
In Embodiment 1, the phases, that is strain amounts in the positive lenses G3 for the left and right eyes are symmetric and the phase difference amount is thus
Δrel=0
and
|Δrel/λ|=0.
If the orientation of the gate 5 in the ocular optical system for the right eye is at 90° from, that is, orthogonal to the orientation of the gate 5 in the ocular optical system for the left eye, the phase differences in the ocular optical systems for the left and right eyes, that is, distortion distributions are asymmetrical as illustrated in
Thus, there is a risk that occurrence of optical performance difference between the ocular optical systems for the left and right eyes causes discomfort in binocular vision or affects image fusion. Accordingly, a specification like the conditional expression (4) is necessary.
In the embodiment, the gate 5 in each lens made of the resin material is arranged in consideration of a direction in which there is a clearance the effective region, that is in consideration of the display surface of the display element 4 and the effective light flux range 6, in order to avoid the risks described above, and the effect of the optical distortion is thereby reduced. Moreover, the conditional expression (5) is satisfied, where the maximum value of the optical distortion (phase difference) generated by each lens made of the resin material is Δ and the dominant wavelength (wavelength 550 nm) in observation is λ.
In Embodiment 1, the maximum optical distortion Δ is 10λ and the maximum phase difference is
|Δ/λ|=10
near the gate 5. Moreover, by arranging the resin lenses subjected to the lens cut closest to the display element 4, the weight reduction effect can be expected to be obtained in the lenses which are heavier and which have larger diameters. Furthermore, the lens cut may be performed on all lenses included in the ocular optical systems 2.
An observation device in Embodiment 2 is described. In Embodiment 2, the positive lenses G3 arranged closest to the display elements 4 have large outer diameters.
Moreover,
Also in Embodiment 2, there are used the display elements 4 having the display surfaces 4a elongating in the vertical direction (Y direction) (illustrated). Thus, the effective regions 6 through which the light fluxes from the display elements 4 pass correspond to the regions surrounded by the one-dot chain lines.
|α|=30°.
Moreover, from
Δrel=5λ (5λ−0=5λ),
and the relative phase is
|Δrel/λ|=0.5.
How to view the optical characteristics in
|Δ/λ|=5
near the gate 5. Furthermore, by arranging the resin lenses subjected to the lens cut closest to the display element 4, the weight reduction effect can be expected to be obtained in the lenses which are heavier and which have larger diameters. Other points are the same as those in Embodiment 1.
An observation device in Embodiment 3 is described. In Embodiment 3, the positive lenses G3 arranged closest to the display elements 4 have large outer diameters.
Moreover,
In Embodiment 3, there are used the display elements 4 having the display surfaces 4a elongating in the horizontal direction (X direction) (illustrated). Thus, the effective regions 6 through which the light fluxes from the display elements 4 pass correspond to the regions surrounded by the one-dot chain lines.
From the aforementioned description, the angle between the lines (directions) connecting the optical axes 7 and the gates 5 respectively in the positive lenses G3 for the left and right eyes is
|α|=30°.
Moreover, from
Δrel=2.2λ (4.5λ−2.3λ=2.2λ),
and, the relative phase is
|Δrel/λ|=2.2.
How to view the optical characteristics in
|Δ/λ|=7.5
near the gate 5. Furthermore, by arranging the resin lenses subjected to the lens cut closest to the display element 4, the weight reduction effect can be expected to be obtained in the lenses which are heavier and which have larger diameters. Other points are the same as those in Embodiment 1.
The relationships among the embodiments and the conditional expressions (1) to (5) are depicted in Table 1. While the present invention has been described above with reference to preferred embodiments, the invention is not limited to these embodiments and the various modifications and changes can be made within the gist of the present invention.
Next, numerical data in Embodiment 1 is described below. In the description, i denotes an order number of a surface from the eye point 3, ri denotes the curvature radius of a lens surface, di denotes a lens thickness or an air space between the i-th surface and the i+1 surface, and ni and vi denote the refractive power and the Abbe number of the material between the i-th surface and the i+1 surface regarding the d line. The surface number 8 corresponds to the display surface 4a. Moreover, k, A4, A6, A8, A10, and the like stated for aspherical surfaces are aspherical coefficients. An aspherical shape is defined by the following expression, where the displacement in the optical axis direction at height h from the optical axis is denoted by x based on the surface vertex.
x=(h2/R)/[1+{1−(1+k)(h/R)2}1/2]+A4h4+A6h6+A8h8+A10h10
Note that R in the expression is the curvature radius. Moreover, e-x means ×10−X. In the data, the symbol * is attached to the left of the surface number of a lens surface having an aspherical surface.
[Numerical Data 1]
0.0
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2016-136677, filed Jul. 11, 2016, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-13667 | Jul 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20100290129 | Nishio | Nov 2010 | A1 |
20160062091 | Wada | Mar 2016 | A1 |
20170108702 | Rabner | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2004-219594 | Aug 2004 | JP |
2008-083096 | Apr 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20180011307 A1 | Jan 2018 | US |