The invention relates in general to tube-launched projectiles and in particular to obturators for tube-launched projectiles.
An obturator may be used with a tube-launched projectile to seal propellant gas behind the obturator. In rifled launch tubes, the obturator may also function as a torque or spin regulating device to regulate the amount of spin transferred from the obturator to the projectile.
U.S. Pat. No. 6,085,660 issued on Jul. 11, 2000 to Campoli et al. discloses a low spin sabot having a slip obturator with ports to help reduce the spin rate of tank ammunition. U.S. Pat. No. 4,109,582 issued to Haep et al. on Aug. 29, 1978 discloses twist-reducing rings for stabilized projectiles. U.S. Pat. No. 5,164,540 issued to Chiarelli et al. on Nov. 17, 1992 discloses a slipping driving band for projectiles of any caliber. A slip obturator made of composite material has been used with the M712 Copperhead projectile. A discarding slip obturator made of polyetheretherketone (PEEK) has been used with the M982 Excalibur projectile.
Some projectiles (e.g., 155 mm artillery projectiles) are “hard” loaded from the breech end of a launching tube by ramming the projectile into the forcing cone area of the tube. When the projectile is rammed into the forcing cone area, the obturator on the projectile is deformed by mechanical interference with the forcing cone surface. The propellant is placed behind the projectile and the breech is closed. Other projectiles (e.g., 105 mm projectiles) may use a different, so-called “soft” loading procedure.
The soft loading procedure uses semi-fixed ammunition. Semi-fixed ammunition is manually prepared by placing propellant in a cartridge case and then placing a projectile on the cartridge case. The gunner than manually chambers the projectile and cartridge case in the breech of the launch tube by pushing on the base of the cartridge case with his/her fist, thereby sliding the projectile into the forcing cone area. Manually sliding the projectile into the forcing cone area produces little or no mechanical interference between the projectile's obturator and the forcing cone surface. Then, the slightly tapered breech closure slides upward and locks into place, thereby setting the cartridge case and projectile. In some cases, it may be difficult to close the breech because the projectile will not move forward sufficiently into the forcing cone area.
Among other factors, the amount of mechanical interference between the obturator and the forcing cone surface determines the amount of initial propellant gas blow-by past the obturator. The initial gas blow-by for a soft loaded projectile is greater than for a hard loaded projectile and is difficult to control. The greater blow-by causes, among other things, loss of propellant gas pressure and excessive heat and pressure applied to areas of the round forward of the obturator.
The amount of mechanical interference between the obturator and the projectile is also important. When the projectile is fired and moves forward through the forcing cone area, mechanical interference between the obturator and the forcing cone surface tends to swage the inner surface of the obturator onto the outer surface of the projectile. The swaging of the obturator to the projectile imparts torque and spin to the projectile. However, for precision guided munitions that are fin-stabilized, high spin rates may be undesirable.
A need exists for an efficient obturator for a soft loaded 105 mm projectile that enables ease of loading of the projectile in the gun, reduces initial blow-by and imparts reduced torque to the projectile.
One aspect of the invention is an obturator for a 105 mm tube-launched projectile having a central longitudinal axis and a circumferential obturator slot. The obturator includes a generally annular ring having a central longitudinal axis and an outer circumferential surface. The outer circumferential surface includes first and second portions. The first portion begins at an aft face of the ring and extends forward parallel to the central longitudinal axis. The second portion is adjacent to the first portion and extends forward and radially inward at an angle of about six degrees with the central longitudinal axis.
The inner circumferential surface of the obturator includes at least one groove formed therein. The groove extends around the inner circumferential surface of the ring. In one embodiment, the at least one groove includes a plurality of discrete, parallel, spaced-apart grooves extending circumferentially around the inner circumferential surface of the ring. In another embodiment, the at least one groove is a continuous helical groove.
The invention will be better understood, and further objects, features and advantages of the invention will become more apparent from the following description, taken in conjunction with the accompanying drawings.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
A novel obturator for a 105 mm projectile has a leading geometry tailored for the forcing cone of a 105 mm cannon in which the 105 mm rounds are manually soft loaded. Such geometry ensures mechanical interference with the forcing cone for shot start sealing while also ensuring the ability to close a sliding breech.
Obturator 22 includes a generally annular ring 24 having a central longitudinal axis B coincident with axis A of projectile 10. Ring 24 may be made of an engineered thermoplastic material having a low coefficient of friction, low creep, low water absorption and a chemical resistance to grease. Examples of suitable materials are polyetheretherketone (PEEK) and Amodel®.
Ring 24 has an outer circumferential surface 26. Surface 26 (
An inner circumferential surface 34 includes at least one groove 36 formed therein. In the embodiment of
The axial length L of the ring 24 may be less than one inch. The axial length of the first portion 28 of the outer circumferential surface 26 may be about seventy-seven percent of the axial length L. Optionally, the outer circumferential surface 26 includes a beveled surface 38 at the front face 40. The beveled surface 38 may be angled at 45 degrees with respect to axis B. Also, and optionally, the inner circumferential surface 34 may include a beveled surface 42 at the all face 30. Beveled surface 42 may be angled at 45 degrees with respect to axis B.
Compared to an obturator with no grooves, the grooves 36, 48 of obturators 22, 44 reduce the amount of contact area capable of transmitting torque between the obturator and the projectile 10. The grooves 36, 48 provide space for the obturator to deform, reduce friction between the obturator and the projectile 10, and provide space for grease and debris to collect. If there were no space in which to collect debris, the debris may increase friction between the obturator and the projectile 10. Increased friction may undesirably increase the spin rate of the projectile 10. Grease may be applied in the grooves. The helical groove 48 is advantageous because a new layer of lubricant may be applied on each revolution of the obturator and the bearing surface cleaned on each revolution of the obturator. The grooves can also choke gas flow which attempts to pass under the obturator, thereby increasing the sealing capability of the obturator compared to an obturator with no grooves.
Preliminary test results of the grooved obturators 22, 44 show a desired decoupling of the torque, resulting in a reduced spin rate of the projectiles (on the order of 10-30 Hz). In addition, the muzzle velocities measured when using the grooved obturators 22, 44 show an increase, which indicates decreased blow-by gas. High speed video of test shots also show a decrease in muzzle flash prior to the projectile exiting the tube. The decreased muzzle flash is an indication of decreased blow-by and increased efficiency of the obturator.
While the invention has been described with reference to certain embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
The inventions described herein may be manufactured, used and licensed by or for the United States Government.
Number | Name | Date | Kind |
---|---|---|---|
1446764 | Nichols | Feb 1923 | A |
1757675 | Methlin | May 1930 | A |
2487053 | Hickman | Nov 1949 | A |
2514297 | Smith, Jr. | Jul 1950 | A |
2595757 | Brandt | May 1952 | A |
2773448 | Jasse | Dec 1956 | A |
3685392 | Platt | Aug 1972 | A |
3695181 | Bull | Oct 1972 | A |
3769912 | Friend | Nov 1973 | A |
3786760 | Feldmann | Jan 1974 | A |
3862603 | Kornblith | Jan 1975 | A |
3905291 | Corbin, Jr. | Sep 1975 | A |
3994227 | Harvey | Nov 1976 | A |
4040359 | Blajda | Aug 1977 | A |
4123975 | Mohaupt | Nov 1978 | A |
4296687 | Garrett | Oct 1981 | A |
4301736 | Flatau | Nov 1981 | A |
4307666 | Baran | Dec 1981 | A |
4384529 | Burns | May 1983 | A |