1. Field of the Invention
The present invention relates to a refrigerator, and more particularly, to an obturator for a refrigerator for excluding heat or cool air that transfers to and from a refrigerator.
2. Description of the Related Art
Generally, a refrigerator discharges cool air generated by a freezing cycle comprising a compressor, a condenser, an expansion value, an evaporator, thereby lowering temperature for freezing or chilling foods. A refrigerator is equipped with a door gasket at a door liner, i.e., an inner edge of a refrigerator door for excluding heat flow into a refrigerator from outside as well as preventing cool air discharged to a refrigerator from leaking out to the outside.
When the refrigerator door 10 is closed onto a front surface of the refrigerator's main body 60, attractive force is exerted between the magnet 51 installed within the sticking part 52 and the outer case 70, so that the refrigerator door 10 get stuck on the main body 60, whereby an interior of the refrigerator is isolated from the outside.
In the meantime, when a user draws back the refrigerator door for separating the door 10 from the main body 60, drawing back force is exerted on the combining part 54 by the door liner 30 combined with the refrigerator door 10. Here, the tensile force transferred to the combining part 54 is, in sequence, directly delivered to the air bag 53 formed as one body with the combing part and then to the sticking part 52 formed as one body with the air bag. Accordingly, the sticking part 52 stuck on the refrigerator's main body 60 is separated from the outer case 70 of the main body, whereby a gap between the main body and the door of the refrigerator begins to open.
Lots of requirements are needed for the door gasket with consideration of refrigerator's characteristics. Particularly, among those requirements, insulation property which prevents cool air from leaking out to the outside and excludes heat flow from the outside by sealing the refrigerator door and main body closed, is strongly needed.
In the meantime, a lateral face of the refrigerator main body 60 is comprised of the outer case 70 constituting an outer wall of the refrigerator; an inner case 80 constituting an inner wall of the refrigerator; a hot-line 90 which is installed at the rear side of the outer case 70 for preventing dewdrop formation on the refrigerator's wall that would be generated by temperature difference between the inside and the outside of the refrigerator. Here, heat generated from the hot-line 90 may be transferred to the outer case 70 and, at the same time, this heat may flow into the interior of the refrigerator main body through an inner path A of the refrigerator, that is, through a gap between the inner case 80 and the door liner 30 of the refrigerator door.
Such heat transfer lowers cooling performance of the refrigerator itself much more, causing a problem that power dissipation increases accordingly. Also, a conventional door gasket 50 as shown in
As is mentioned above, a problem is generated that the cooling performance of the refrigerator is lowered considerably in case that cool air leaks out or outside heat flows into the inside of the refrigerator due to incomplete closing between the refrigerator door and main body.
An object of the invention is to solve at least the above problems and/or disadvantages, and to provide at least the advantages described hereinafter.
Accordingly, one object of the invention is to provide an obturator for the refrigerator with improved insulation performance.
It is another object of the present invention to provide an obturator for the refrigerator for excluding heat penetration into the interior of the refrigerator by transforming an air bag structure in a door gasket.
It is still another object of the present invention to provide an obturator for the refrigerator for minimizing heat penetration into the interior of the refrigerator by forming projecting portion on at least one of door liner in the refrigerator door or an inner case of a refrigerator main body.
These and other objects and advantages of the invention are achieved by providing an obturator for the refrigerator comprising a door gasketinstalled on one side of a refrigerator door, having an air bag which could be transformed and rotated freely so that a gap between an inner case and a door liner is closed; a projecting portion formed on at least one of the inner case or the door liner so that the air bag blocks up the gap easily, is provided.
Preferably, an upper part of the air bag is thick in its thickness compared with its bottom. Also, preferably, a propping wall for maintaining a shape of the air bag, is provided on an inner face of the air bag and a first concave portion is formed on the one side of the bottom for free transformation and rotation of the air bag, and a second concave portion is formed on one side of an upper part of the air bag for separating the air bag from the sticking part.
The projecting portion may be formed on either a bottom of the inner case or the door liner. Also, the projecting portions may be formed on both the inner case and the door liner with the projecting portions faced opposite each other, and the projecting portions may be formed on above both parts with the projecting portions crossed each other.
According to another aspect of the invention, a door gasket for the refrigerator is provided, mounted on one side of the refrigerator door, and in which the air bag, transformed and rotated freely, is extended long from the lateral portion of the sticking part to the inner face of the refrigerator door, forming one body together with the sticking part. The air bag, preferably, sticks on closely between the inner case and the door liner when the refrigerator is closed.
According to further another aspect of the invention, an obturator for the refrigerator is provided, comprising a projecting portion formed on, at least one of the inner case or the door liner.
According to still another aspect of the invention, a door gasket for the refrigerator is provided, comprising the combining part that is fixed into the combining groove of the door liner; a first air bag that is formed as one body together with the combining part for alleviating impulse exerted upon contact of the refrigerator door and the refrigerator main body; a sticking part that is formed on the first air bag as one body for being stuck on the refrigerator main body by means of the magnet installed within it; a second air bag that is extended long from the lateral portion of the sticking part to the inner face of the refrigerator door, forming one body together with the sticking part, for being transformed and rotated freely.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.
The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
The following detailed description will present a preferred embodiment of the invention in reference to the accompanying drawings.
First Embodiment
The first embodiment of the present invention relates to transformation of the air bag of the door gasket mounted and fixed on the refrigerator door, thereby closing the gap between the inside and outside of the refrigerator.
The combining part 111 is of anchor shape for easy insertion and the combining part is firmly inserted and fixed in the combining groove 31 of the door liner so that detachment of the combining part 111 is difficult. The first air bag 113 is for alleviating impulse exerted when the refrigerator door is closed on the refrigerator main body 60 and for preventing the refrigerator door from recoiling to an opposite direction due to the impulse, whereby the sticking part 119 within which the magnet 117 is installed, is stuck on the outer case 70 of the refrigerator main body 60.
The second air bag 115, which is a core part of the present invention, is extended long to the door liner 30 sides in the refrigerator door 10. Here, the second air bag 115 has, preferably, the upper part 127 whose thickness T is thin in its thickness compared with a thickness T of the bottom part 121 of the second air bag. By making the upper part of the second air bag thin in its thickness, the second air bag may be pushed easily by the refrigerator main body 60 upon contact with the main body. Also, by making the bottom of the second air bag thick in its thickness, the second air bag may not be pushed more than a predetermined extent upon contact with the refrigerator main body, maintaining its shape.
On one side in the bottom of the second air bag, the first concave portion 123 for free transformation and rotation of the second air bag 115 is formed. Accordingly, the second air bag may be transformed or rotated freely upon contact with the refrigerator main body 60 thanks to the first concave portion 123. Namely, the second air bag 115 may be bent easily by means of the first concave portion 123.
On the second air bag, a propping wall 125 for preventing the second air bag from hanging down at ordinary times and maintaining its shape more firmly, may be provided to its inner face.
As the magnet is installed within the sticking part 119, the refrigerator door 10 is stuck on the refrigerator main body 60. In case of applying the second air bag 115 of the door gasket 110 described above, there may be generated a problem that when the door is closed, the second air bag is pushed by the inner case, with the sticking part 119 opened accordingly, whereby closing on the main body is not performed well. In order to resolve this problem, the second air bag of the door gasket 110 may be transformed in its structure as shown in
Application of the door gasket of the refrigerator mentioned above to the refrigerator door will be described herein below with reference to
Second Embodiment
The second embodiment of the present invention relates to minimization of the gap between the inner case of the refrigerator main body and the door liner of the refrigerator door and to lengthening of a heat transfer path that passes through a inner case ABS resin and a door liner wall, thereby restraining cool air or heat transfer moving to and from the refrigerator.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In
The projecting portions 131 and 133 formed in
Third Embodiment
A third embodiment of the present invention relates to more definite obturation of the inside and outside of the refrigerator by applying the first embodiment and the second embodiment. Namely, the third embodiment blocks up the internal path A using the second air bag of the door gasket, making the internal path narrow using the projecting portion, thereby cutting off heat or cool air completely, improving cooling performance to the maximum extent.
As illustrated in
Here, in order that the second air bag 115 blocks up the internal path, the projecting portions 131and 133 are preferably formed on the bottom of the inner case 80 or the door liner 30, more exactly, on a portion, predetermined part of which is overlapped by the second air bag 115 when the door 10 is closed.
In the foregoing, though the third embodiment is described with a limited application of the door gasket to the mullion part, it is needless to say that the third embodiment can be applied to the case-flange part, i.e., a lateral part consisting of the freezer and the cool chamber.
As is apparent from the above descriptions, according to the obturator for the refrigerator of the present invention, the internal path is blocked up by transformation of the air bag in the door gasket, whereby inflow of heat from the outside or from the hot-line into the inside of the refrigerator and leakage of the inside cool air of the refrigerator out to the outside, are cut off and cooling performance is improved accordingly.
Furthermore, according to the obturator for the refrigerator of the present invention, projecting portion is formed on either the inner case or door liner for narrowing the internal path, whereby the heat transfer resistance regarding the inside cool air or the outside heat of the refrigerator is increased to the maximum extent and cooling performance is improved accordingly.
Also, according to the obturator for the refrigerator of the present invention, though the sticking part of the door gasket get old and worn out, the air bag blocks up the internal path of the refrigerator secondly, thereby cutting off the heat transfer generated from the hot-line as well as cutting off completely the heat transfer or cool air transfer to and from the refrigerator, improving insulation performance remarkably and lowering power dissipation of the refrigerator very much accordingly.
Therefore, according to the obturator for the refrigerator of the present invention, as transformations of the air bag in the door gasket and of projecting portion for narrowing the internal path are made simultaneously, completed obturation is achieved, whereby it is expected that cooling performance is improved to the maximum extent while power dissipation is lowered considerably.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
2002-31355 | Jun 2002 | KR | national |
2002-31356 | Jun 2002 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3078134 | Haynes, Jr. | Feb 1963 | A |
4617759 | Pasqualini et al. | Oct 1986 | A |
4644698 | Gerdes et al. | Feb 1987 | A |
5289657 | Kiel | Mar 1994 | A |
5476318 | Yingst et al. | Dec 1995 | A |
5533311 | Tirrell et al. | Jul 1996 | A |
5551192 | Avendano et al. | Sep 1996 | A |
5916076 | Cittadini et al. | Jun 1999 | A |
6227634 | Cittadini et al. | May 2001 | B1 |
6526698 | Park et al. | Mar 2003 | B1 |
6804915 | Holmqvist | Oct 2004 | B1 |
Number | Date | Country |
---|---|---|
86203232 | Apr 1987 | CN |
2418233 | Feb 2001 | CN |
Number | Date | Country | |
---|---|---|---|
20030222553 A1 | Dec 2003 | US |