The present invention relates to medical devices. More particularly, the invention relates to occluding devices and methods of occluding fluid flow through a body vessel.
Pushable fibered coils have been used as a primary occluding device for treatment of various arteriovenous malformations (AVM) and varicoceles, as well as for many other arteriovenous abnormalities in the body. Occluding devices are also used to repair abnormal shunts between arteries and veins, prevent or reduce blood flow to tumors, stop hemorrhaging as a result of trauma, and stabilize aneurysms to prevent rupture. Pushable fibered coils may be configured in a variety of sizes with varying diameters and may be made of several different materials including stainless steel and platinum.
Although current pushable fibered coils are adequate, such coils may be improved for more effective occlusion of fluid flow through a lumen of a body vessel. Many medical procedures for occluding blood flow through an artery or vein require a number of coils, since a single coil or two may not be sufficient to effectively occlude blood flow through a lumen of an artery or vein. In many current procedures, many coils may be packed within each other to produce effective cross sectional occlusion of fluid flow through a body vessel. In some instances, these procedures may involve an undesirable amount of additional time and costs.
Many pushable fibered coils are designed with high tension or stiffness, e.g., between about 60 to 100 weight grams, to wedge or attach strands of fiber to the coils. Upon deployment in a body vessel for occlusion, such coils tend to reform or recanalize back to its helical shape because of the high tension. The helical shape of the coils creates an undesirable opening through which fluid may flow, thereby requiring additional coils to be deployed in the body vessel.
For example, prior art
Prior art
Due to the short length of pushable fibered coils, a practitioner may experience difficulty in accurately deploying a coil at a desired location in a body vessel. Pushable fibered coils are short in length, e.g., 2 to 4 centimeters. During deployment, the coil contacts the wall of a body vessel to be occluded. Upon contact with the wall, the coil typically becomes fully deployed from a catheter in the body vessel, thereby preventing the practitioner from adjusting the location of the coil.
Additionally, due to the short length of pushable fibered coils, there is a concern that current coils are difficult to advance through a catheter. A pushable fibered coil has fibers packed along the length of the coil. Due to its short length, the fibers fold or bend over each other when the coil is loaded in a catheter. As a result, the coil has an enlarged diameter to be advanced through the catheter, thereby creating an undesirable resistance to the practitioner.
The present invention provides an improved occluding device and an improved method of occluding fluid flow through a lumen of a body vessel. The occluding device comprises a coil member that is designed with low initial tension. In one embodiment, the coil member is an extension or elongating spring. The low initial tension of the coil facilitates the coil member to be folded across the lumen during deployment from a catheter. In one embodiment, initial tension is defined to be the amount of force required to cause a 4 centimeter length of coil to begin to elongate or the amount of force required to cause a coil to begin elongating at a ratio of between about 1.25 to 15 grams per centimeter. The occluding device is designed to tend to resist reformation back to its original helical shape after deployment. When deployed in a lumen of a body vessel, the occluding device has improved efficiency, thereby minimizing or eliminating the need for a number of coils used during embolotherapy.
Additionally, the occluding device has an extended length, e.g., between about 3 to 20 centimeters (cm), and preferably about 14 (cm), to accommodate a practitioner for improved accuracy when deploying the occluding device. With the extended length of the occluding device, fibers may be attached therealong, avoiding an enlarged diameter of the occluding device when loaded in a catheter. With the extended length of the occluding device, the fibers are able to be spaced apart from each other and are held between loops of the coil member by the initial tension of the coil member. The fibers include strands comprised of a synthetic polymer such as a polyester textile fiber. In one embodiment, the strands are spaced apart from each other by at least one loop along the extended length of the coil member, avoiding an enlarged diameter that otherwise would have been created when folding the strands over each other during loading in a catheter. Thus, undesirable resistance may be avoided when deployed the occluding device from a catheter.
In one embodiment, the occluding device comprises a coil having about 5 to 60 grams of initial tension to facilitate the coil to fold when deployed. The coil also has fibers attached thereto and extending therefrom.
In another embodiment, device comprises a primary coil formed in a secondary coil. The primary coil has a ratio of between about 1.25 to 15 grams per centimeter of initial tension to the secondary coil to facilitate the primary coil to be folded across the lumen of the body vessel when deployed. The device further comprises fibers attached to the primary coil and extending therefrom.
The present invention further provides a method of occluding fluid flow through a lumen of a body vessel. The method includes deploying a first portion of an occluding device at a desired point of occlusion in the body vessel and ascertaining the position of the first portion relative to the desired point of occlusion in the body. The method further includes folding a remaining portion of the occluding device with the first portion to pack the loops together to occlude the lumen, if the first portion is at the desired point of occlusion in the body.
The present invention further provides another method of occluding fluid flow through a lumen of a body vessel. In one embodiment, the method includes deploying a first portion of the occluding device at a desired point of occlusion in the body vessel and ascertaining the position of the first portion at the desired point of occlusion in the body. The method further includes deploying the remaining portion of the occluding device to pack loops of the occluding device together to occlude a cross-sectional lumen of the coil, if the first portion is at the desired point of occlusion in the body vessel.
The present invention also includes an embolization kit for occluding fluid flow through a body vessel. The kit comprises a guide catheter and a microcatheter having proximal and distal ends. The microcatheter is configured to be passed through the guide catheter to position the microcatheter in the body vessel. The microcatheter has a hub adjacent the proximal end. The kit further includes an occluding device. The occluding device comprises a coil having about 5 to 60 grams of initial tension to facilitate the coil to fold when deployed. The occluding device further comprises fibers attached to the coil and extending therefrom.
The present invention provides another embodiment of a body vessel embolization kit for occluding fluid flow through a lumen of a body vessel. In this embodiment, the kit comprises a microcatheter having proximal and distal ends and defining a lumen. The kit further comprises an occluding device including a coil and fibers attached to the coil. The coil has about 5 to 60 grams of initial tension to facilitate the coil to fold when deployed. The fibers extend from the coil.
Further objects, features and advantages of the invention will become apparent from consideration of the following description and the appended claims when taken in connection with the accompanying drawings.
The following provides a detailed description of currently preferred embodiments of the present invention. The description is not intended to limit the invention in any manner, but rather serves to enable those skilled in the art to make and use the invention.
The present invention generally provides an occluding device used for transcatheter embolization. The occluding device is preferably used to occlude fluid flow through a lumen of a body vessel such as for an occlusion of an arteriovenous malformation (AVM). The occluding device comprises a primary coil having a relatively low initial tension. The primary coil is formed in a helical shape to define a secondary coil. The occluding device may be made of any suitable material, and is preferably made of platinum for its radiopacity.
The initial tension of the primary coil provides an ability for the occluding device to fold when deployed from a catheter. The occluding device preferably includes fibers wedged or attached between loops of the primary coil and extending therefrom. When the occluding device is deployed in a lumen of a body vessel, the fibers help to occlude fluid flow through the lumen of the body vessel.
The occluding device also may be used for treatment of renal AVM, pulmonary AVM, vascular tumors, low-flow fistulas, trauma related hemorrhages, and visceral vasculature defects including varicoceles, aneurysms, and selected telangiectasias. For example, treatment of visceral vasculature defects may include but are not limited to embolotherapy on gastroduodenal hemorrhages, hepatic aneurysms, celiac aneurysms, internal iliac aneurysms, and internal spermatic varicoceles.
Preferably, the primary coil 11 comprises platinum or any other suitable metal, composition, or alloy having between about 50,000 and 350,000 pounds per square inch tensile strength. It has been determined that the tensile strength range described above provides the coil with the capability of being flexible, malleable, and folded.
The coil 11 has an initial tension of between about 5 to 60 grams of weight, and preferably between about 10 to 30 grams of weight. Initial tension may be defined to be the amount of force required to cause a 4 centimeter length of coil to begin to elongate. The initial tension may also be defined by the amount of force required to cause a coil to begin elongating at a ratio of between about 1.25 to 15 grams per centimeter, and preferably between about 2.5 to 7.5 grams per centimeter. Without limiting the invention, it is believed that the initial tension of the coil provide the occluding device the capability of being folded across the diameter of a lumen of a body vessel after deployment from a catheter.
The coil 11 may be made by any apparatus known in the art. For example, the coil may be made by any commercial coil winding machine such as a roller deflecting apparatus, a mandrel apparatus, or any other suitable means.
In this embodiment, the coil 11 may have a length of between about 3 to 20 centimeters. As shown in
As shown in
Preferably, the strands 28 have a length extending from the coil 11 of between about 3 to 8 millimeters. In an application the strands may have between about 5 to 6 millimeters as desired. In this embodiment, the fibers 24 are spaced apart from each other by about 1 to 3 millimeters. Preferably, the strands 28 have an outer diameter of about 0.00050 to 0.00100 inch.
During deployment of the occluding device 10, the low initial tension of the coil 11 is capable of being folded across the lumen of a body vessel to be occluded.
When the device 10 is deployed from a catheter, the low initial tension of the primary coil provides the primary coil the capability of being folded across the lumen of a body vessel for cross-sectional occlusion. In this embodiment, when the primary coil is folded with the strands 28, the occluding device 10 is in a “packed” or “nested” state a length of about 5% or more of the original length of the primary coil 11. When packed, the occluding device 10 provides a relatively tightly nested, dense mass that effectively occludes fluid flow though a lumen of a body vessel.
In this embodiment, the kit 110 further includes a polytetrafluoroethylene (PTFE) guide catheter or sheath 118 for percutaneously introducing the microcatheter 114 in a body vessel. Of course, any other suitable material may be used without falling beyond the scope or spirit of the present invention. The guide catheter 118 may have a size of about 4-French to 8-French and allows the microcatheter 114 to be inserted therethrough to a desired location in the body vessel. The guide catheter 118 receives the microcatheter 114 and provides stability of the microcatheter 114 at a desired location of the body vessel. For example, the guide catheter 118 may stay stationary within a common visceral artery, e.g., a common hepatic artery, and add stability to the microcatheter 114 as the microcatheter is advanced through the guide catheter to a point of occlusion in a connecting artery, e.g., the left or right hepatic artery.
When the distal end 124 of the microcatheter 114 is at the point of occlusion in the body vessel, the occluding device is loaded at the proximal end 122 of the microcatheter 114 and is advanced through the microcatheter for deployment through the distal end 124. In this embodiment, a push wire 126 is used to mechanically advance or push the occluding device through the microcatheter 114. The size of the push wire used depends on the diameters of the microcatheter.
It is to be understood that the body vessel embolization kit 110 described above is merely one example of a kit that may be used to deploy the occluding device in a body vessel. Of course, other kits, assemblies, and systems may be used to deploy any embodiment of the occluding device without falling beyond the scope or spirit of the present invention.
The occluding device may be deployed in a body vessel by a push embolization method or a squirt embolization method in accordance with the present invention.
The occluding device, which is elongated to its full length within a cartridge, is loaded in the hub at the proximal end of the microcatheter. In step 412, the device is advanced by the pusher wire in accordance with this method of deploying the occluding device.
In step 414, a first portion of the occluding device, e.g., a first loop of the secondary coil, is deployed at the desired point of occlusion in the body vessel as a remaining portion of the occluding device is held in the microcatheter. The first portion of the coil may be between about 5% to 15% of the length of the coil. In step 416, the location of the first portion in the body vessel is ascertained by any suitable means, such as by fluoroscopy, relative to the body vessel. If the first portion is at the desired point of occlusion in the body vessel, then the first portion is folded across the lumen of the body vessel and the remaining portion of the coil is folded together with the first portion to pack the coil and occlude the body vessel in step 418.
Preferably, the first portion is folded by moving the distal end of the microcatheter against the first portion to fold the first portion across the lumen of the body vessel. The remaining portion is folded onto the first portion by moving the catheter reciprocally back and forth relative to the body vessel as the remaining portion is deployed from the microcatheter. As a length of the remaining portion is being deployed, the distal end of the microcatheter is moved back. The microcatheter is then moved forward against the length of the remaining portion, thereby folding the length of the remaining portion at the desired point of occlusion. The microcatheter is moved back and forth until the remaining portion is folded with the first portion and the occluding device is in a packed state.
However, if it is ascertained in step 416 that the first portion of the occluding device is not at the desired point of occlusion, then the position of the microcatheter is moved fore or aft relative to the body vessel such that the first portion is placed at the desired point of occlusion.
In step 516, the location of the first portion in the body vessel is ascertained by any suitable means, such as by fluoroscopy, relative to the body vessel. If the first portion of the coil is at the desired point of occlusion in the body vessel, then the remaining portion is folded together with the first portion with the saline solution. Thus, the occluding device is packed across the lumen of the body vessel to occlude the body vessel.
Preferably, the first portion and the remaining portion are folded by moving the distal end of the microcatheter reciprocally back and forth relative to the body vessel as described above.
However, if it is ascertained in step 516 that the first portion is not at the desired point of occlusion, then the position of the microcatheter is moved fore or aft relative to the body vessel such that the first loop is placed at the desired point of occlusion.
In this embodiment, the primary coil 611 has an initial tension of between about 10 and 30 grams of weight. Coil 611 further includes a length of about 3 to 7 centimeters and an outer diameter of between about 0.010 and 0.020 inch. In this embodiment the microcatheter inner diameter through which the occlusion device may be advanced ranges between about 0.014 to 0.020 inch.
While the present invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made to those skilled in the art, particularly in light of the foregoing teachings.
This application is a Continuation of U.S. patent application Ser. No. 15/054,682, filed Feb. 26, 2016 which is a Divisional of U.S. patent application Ser. No. 10/884,728, filed Jul. 2, 2004 which is related to and claims the benefit of priority to U.S. Provisional Application No. 60/485,306 filed Jul. 3, 2003, entitled “Occluding Device and Method of Occluding Fluid Flow Through A Body Vessel,” the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4561439 | Bishop et al. | Dec 1985 | A |
4957501 | Lahille et al. | Sep 1990 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5167624 | Butler et al. | Dec 1992 | A |
5217484 | Marks | Jun 1993 | A |
5226911 | Chee | Jul 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5382260 | Dormandy, Jr. | Jan 1995 | A |
5413586 | Dibie et al. | May 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5423829 | Pham et al. | Jun 1995 | A |
5476472 | Dormandy, Jr. et al. | Dec 1995 | A |
5527338 | Purdy | Jun 1996 | A |
5531788 | Dibie et al. | Jul 1996 | A |
5562698 | Parker | Oct 1996 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5669931 | Kupiecki | Sep 1997 | A |
5690667 | Gia | Nov 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5695518 | Laerum | Dec 1997 | A |
5707053 | Plunkett et al. | Jan 1998 | A |
5725534 | Rasmussen | Mar 1998 | A |
5749894 | Engelson | May 1998 | A |
5766160 | Samson et al. | Jun 1998 | A |
5792154 | Doan | Aug 1998 | A |
5797953 | Tekulve | Aug 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5843167 | Dwyer | Dec 1998 | A |
5855578 | Guglielmi et al. | Jan 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5935145 | Villar et al. | Aug 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
6015424 | Rosenbluth et al. | Jan 2000 | A |
6024765 | Wallace et al. | Feb 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6117157 | Tekulve | Sep 2000 | A |
6126672 | Berryman et al. | Oct 2000 | A |
6136015 | Kurz et al. | Oct 2000 | A |
6143007 | Mariant et al. | Nov 2000 | A |
6156061 | Wallace et al. | Dec 2000 | A |
6165198 | McGurk et al. | Dec 2000 | A |
6187024 | Boock et al. | Feb 2001 | B1 |
6254592 | Samson et al. | Jul 2001 | B1 |
6277125 | Barry et al. | Aug 2001 | B1 |
6277126 | Barry et al. | Aug 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6340364 | Kanesaka | Jan 2002 | B2 |
6358228 | Tubman et al. | Mar 2002 | B1 |
6361547 | Hieshima | Mar 2002 | B1 |
6379374 | Hieshima et al. | Apr 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6428557 | Hilaire | Aug 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436112 | Wensel et al. | Aug 2002 | B2 |
6458137 | Klint | Oct 2002 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6537293 | Berryman et al. | Mar 2003 | B1 |
6544275 | Teoh | Apr 2003 | B1 |
6551340 | Kónya et al. | Apr 2003 | B1 |
6554849 | Jones et al. | Apr 2003 | B1 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6656201 | Ferrera et al. | Dec 2003 | B2 |
6776788 | Klint et al. | Aug 2004 | B1 |
10213209 | White, Jr. | Feb 2019 | B2 |
20010007947 | Kanesaka | Jul 2001 | A1 |
20010020175 | Yassour et al. | Sep 2001 | A1 |
20010031980 | Wensel et al. | Oct 2001 | A1 |
20020016609 | Wensel et al. | Feb 2002 | A1 |
20020072764 | Sepetka et al. | Jun 2002 | A1 |
20020138096 | Hieshima | Sep 2002 | A1 |
20030004542 | Wensel et al. | Jan 2003 | A1 |
20030009191 | Wensel et al. | Jan 2003 | A1 |
20030014072 | Wensel et al. | Jan 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030097094 | Ouriel et al. | May 2003 | A1 |
20030120302 | Minck, Jr. et al. | Jun 2003 | A1 |
20030212427 | Truckai et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0739608 | Oct 1996 | EP |
WO 199809570 | Mar 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20190142429 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
60485306 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10884728 | Jul 2004 | US |
Child | 15054682 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15054682 | Feb 2016 | US |
Child | 16249207 | US |