Occlusion-crossing devices, atherectomy devices, and imaging

Information

  • Patent Grant
  • 11135019
  • Patent Number
    11,135,019
  • Date Filed
    Monday, May 23, 2016
    8 years ago
  • Date Issued
    Tuesday, October 5, 2021
    3 years ago
Abstract
Described herein are methods for producing and identifying characteristic (“crescent shaped”) regions indicative of an atherectomy plaque within a vessel, and systems and devices adapted to take advantage of this characteristic region.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The devices, methods and systems described herein are related to the treatment, identification, and removal of atheroma. In particular, described herein are systems, methods, devices and techniques for identifying distinguishing morphology in vessel images to direct or orient interventional devices.


BACKGROUND

Coronary artery disease is the leading cause of death within the United States for men and women. It is characterized by a buildup of material (often fatty) in the internal lumen of the coronary arteries. It is also associated with the hardening of the arterial walls. The buildup of material commonly starts on one side of the vessel and grows across the open lumen. As such, the last point of patency often occurs at the boundary between the material deposit (disease) and the healthy vessel.


Atherectomy is the process of removing diseased tissue from a stenosed lumen so as to restore patency and blood flow. There currently exist a number of devices that facilitate atherectomy. However, the operation of such devices has a number of shortcomings. In some instances, the active element of the atherectomy device acts equally in all directions, requiring the device to reside in the center of the diseased portion to maintain optimum efficacy. In other instances, the active element is directional but as such needs some method of visualization to orient the active element with respect to the diseased tissue. In many instances, the method of visualization that is employed is angiography, which is only capable of giving a silhouette of the open lumen.


Further, minimally invasive techniques for treating coronary artery disease, such as atherectomy, typically involve the placement of a guidewire through the occlusion prior to performing the atherectomy. For example, a chronic total occlusion (CTO) device can be used to place a guidewire through the occlusion and ultimately cross through the occlusion. Unfortunately, placement of the guidewire, while critical for effective treatment, may be difficult. In particular, when placing a guidewire across an occlusion, it may be difficult to pass the guidewire through the occlusion while avoiding damage to the artery. For example, it is often difficult to prevent the guidewire from directing out of the lumen into the adventitia and surrounding tissues, potentially damaging the vessel and preventing effective treatment of the occlusion.


Moreover, minimally invasive surgical procedures to treat coronary artery disease depend on the precise positioning and manipulation of interventional devices. Guidance provided by high-resolution imaging can enable the characterization of tissue and lesion properties in vivo prior to treatment. As the majority of atherogenesis occurs in an eccentric fashion within the artery, therapeutic tools that have onboard imaging provide a distinct opportunity to selectively treat the diseased portion of a vessel. Even with on-board imaging techniques, however, it can be difficult to interpret the images so as to properly orient and steer the interventional devices as needed.


Accordingly, there is a need for a consistent and precise mechanism for steering or orienting occlusion-crossing, atherectomy, or other interventional devices. The invention described herein is based on the novel realization that a characteristic morphology (or morphological structure) may be visualized when (or after) passing a structure through the lumen of a vessel containing an atherectomy plaque mass (atheroma).


SUMMARY OF THE DISCLOSURE

The present invention relates to methods of forming and/or identifying characteristic morphologies within a vessel that indicate the presence, orientation and location of plaque masses within the vessel. Also described are devices to image, identify, and use this characteristic morphology (e.g., morphological structure) to orient a device, and/or remove or navigate the plaque in the peripheral or coronary vasculature.


In general, in one embodiment, a method of identifying an atherectomy plaque mass in a vessel includes applying circumferential radial force within the vessel to displace a rigid plaque mass and force the vessel wall to stretch away from the device; imaging the vessel to create an image; and identifying crescent-shaped structures associated with an atherectomy plaque in the image.


This and other embodiments can include one or more of the following features. The method can further include identifying the orientation of a plaque mass based on the directionality of the crescent-shaped structures. The method can further include identifying the position of a plaque mass relative to outer layered structures of a vessel wall based on the crescent-shaped structures. Imaging the vessel can include imaging the vessel with optical coherence tomography. The method can further include inserting a device into the vessel, and the device can apply the circumferential radial force. Imaging the vessel can include imaging with an imaging sensor attached to the device. The method can further include orienting the device within the vessel based on the crescent-shaped structures. Orienting the device can include pointing a directional cutter at a plaque mass identified based upon the crescent-shaped structure. Orienting the device can include directing the device based upon the relationship between markers in the image and the crescent-shaped structures. The method can further include rotating the imaging sensor to obtain the image.


In general, in another embodiment, a method of identifying an atherectomy plaque mass within a vessel includes the steps of: applying circumferential radial force within the vessel to displace a rigid plaque mass and forcing the vessel wall to stretch away from the device; visualizing the vessel wall following the application of circumferential radial force; and identifying crescent-shaped structures. The crescent-shaped structures may be formed by the application of circumferential radial force from within the lumen of the vessel.


This and other embodiments may include one or more of the following features. The method may also include the step of identifying the orientation of a plaque mass based on the directionality of the crescent-shaped structures. In some variations, the method may also include the step of identifying the position of a plaque mass relative to the outer layered structures of a vessel based on the crescent-shaped structures. In some variations, the method may also include the step of orienting a device or therapeutic tool within the vessel based on the crescent-shaped structures.


Any of the methods described herein can be carried out by a controller. Thus, an imaging system can be configured to detect, label, and/or highlight the characteristic morphological structures and/or use them to automatically detect or suggest the location of an atheroma.


In general, in one embodiment, an atherectomy device includes a distal end configured to dissect plaque from within a vessel. The device includes an elongate catheter body, a troweled distal tip extending from the catheter body and a rotatable cutter. The troweled distal tip has a curved outer surface configured to conform to an outer vessel and a scooped inner edge configured to at least partially plane along the plaque. The rotatable cutter is at least partially within the troweled distal tip.


This and other embodiments can include one or more of the following features. The device can further include an OCT sensor near or on the rotatable cylindrical cutter and configured to image radially into the vessel. The device can further include an inner lumen opening through the rotatable cutter into which material cut by the device may be driven. The rotatable cutter can be partially covered by the curved outer surface and can be partially exposed proximate to the scooped inner edge. The device can be configured to self-orient within the vessel.


In general, in another embodiment, an atherectomy device includes a distal end configured to dissect an atherectomy plaque using visual cues generated by a device with on-board optical coherence tomography, the device comprising: an elongate catheter body; a distal tip having a shaped opening (which may be a beveled opening, a trowel-shaped opening, or a tongue-shaped opening); a rotatable cylindrical cutter at least partially within the troweled or tongue-shaped opening; an OCT sensor near or on the rotatable cylindrical cutter and configured to image around the periphery of the catheter and into the vessel; and an inner lumen open through the rotatable cutter into which atherectomy material may be driven.


This and other embodiments can include one or more of the following features. The device may include a rotatable drive shaft for rotating the cutting element (cylindrical cutter) and/or the OCT sensor. Other elements may also or alternatively be included. In some variations, the distal tip is generally trowel or shovel-shaped in order to match the morphology of the plaque/wall interface revealed by the characteristic crescent shape described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-3 show examples of OCT images from within the lumen of a blood vessel, illustrating the crescent-shaped morphology described herein.



FIG. 4 illustrates one variation of an atherectomy device adapted as described herein.



FIGS. 5 and 6 illustrate an exemplary device with markers configured to display on an OCT image.



FIG. 7 illustrates one method of detecting crescent-shaped structures indicative of the boundaries of an atheroma as described herein.





DETAILED DESCRIPTION

When crossing an occlusion of a blood vessel and imaging the vessel, such as with optical coherence tomography (OCT), an unexpected, yet predictable and characteristic morphology (or geometry) can be identified. The resulting characteristic morphology, described further herein, is formed at the boundary between the layered vessel wall structures and a plaque mass when crossing a chronic total occlusion (CTO) with a catheter or crossing device such as those described in: U.S. patent application Ser. No. 12/689,748, filed Jan. 19, 2010, titled “GUIDEWIRE POSITIONING CATHETER,” now Publication No. US-2010-0274270-A1; U.S. patent application Ser. No. 12/108,433, filed Apr. 23, 2008, titled “CATHETER SYSTEM AND METHOD FOR BORING THROUGH BLOCKED VASCULAR PASSAGES,” now U.S. Pat. No. 8,062,316; U.S. patent application Ser. No. 12/829,277, filed Jul. 1, 2010, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” now Publication No. US-2011-0004107-A1; U.S. patent application Ser. No. 12/829,267, filed Jul. 1, 2010, titled “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” now Publication No. US-2010-0021926-A1; U.S. patent application Ser. No. 12/790,703, filed May 28, 2010, titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” now Publication No. US-2010-0305452-A1; U.S. patent application Ser. No. 13/175,232, filed Jul. 1, 2011, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” now Publication No. US-2012-0046679-A1; U.S. patent application Ser. No. 13/433,049, filed Mar. 28, 2012, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” now Publication No. US-2012-0253186-A1, each of which is herein incorporated by reference in its entirety. The characteristic morphology may formed as a result of a dissection plane that is generated between a plaque mass and the lumen walls while traversing a vascular lesion, e.g., in peripheral and coronary CTO intervention.


As described herein, the resulting morphology is highly characteristic and can be used to obtain information with respect to the position of the disease within and with respect to the vessel. This information can also be utilized in real-time to orient the therapeutic portion of a device (e.g., atherectomy cutter or pre-shaped tip, etc.) toward disease and away from healthy tissue.


Using an imaging modality, such as optical coherence tomography (OCT), it is possible to visualize the shape or geometry that is created when advancing a device through a vascular lesion, such as a CTO. In some instances, the distinguishing shape or morphology that results when passing through a vascular lesion is a crescent-shaped feature (or a pair of such features) which may be formed around the circumference of the device, as shown in FIGS. 1-3.


In FIGS. 1-3, the images are gathered by an occlusion-crossing catheter having a rotatable distal tip which allows the tip to be driven past the occluded region. The images in FIGS. 1-3 are generated by rotating an OCT imaging sensor around the lumen of the vessel. The tip of the catheter may be rotated both (or either) clockwise or counterclockwise. The rate of rotation may be constant or variable, and may be between about 1 and about 5000 rpms. The OCT imaging sensor may be located on the catheter (e.g., at or near the distal end), and the sensor may be rotated to enable circumferential imaging of the lumen (by rotating an end portion of the catheter, for example). The catheter may be held in a relatively fixed position within the lumen of the vessel or it may be moved longitudinally through the lumen while obtaining the images.


For example, FIG. 1 shows an OCT image taken from a catheter equipped to take OCT images from within a lumen of a vessel that is at least partially occluded. In this example, a catheter (which may include the OCT imaging catheter) has been inserted past the occluded region shown. In FIG. 1, the tip of the catheter has already passed through this occluded region of the vessel, and OCT image 100 was taken of the vessel after passage of the tip.


The image 100 shown includes a black circle 110, which is representative of the device itself. Around the black circle 110 extends a dark portion 112. The dark portion 112 forms a semi-circular-like shape (or a “D” shape) with a rounded portion 108 on one side and a substantially linear portion 109 on the other side (note that the substantially linear portion is shorter than the rounded portion 108 and can be slightly bowed in the opposite direction). The rounded portion 108 and the substantially linear portion 109 meet in characteristic crescents or “crescent wings” 101a, 101b (in this image 100 at the 11 and 4 o'clock positions, respectively) to give a “cat ear” shaped profile. The crescent wings 101a, 101b point inwards (towards the substantially linear portion 109) to frame an amorphous structure 111 indicating a plaque mass in the vessel. In contrast, the rounded portion 108 lies against layered structures 113 of different contrast, indicating healthy tissue of the vessel (e.g., intima, adventitia, media).


Although the inventions described herein are not bound by any particular theory, the characteristic morphology of bracketing crescents (“cat ears”) shown and described with respect to FIG. 1 is may be primarily due to the tendency for a device inserted within the vessel to track along the side of a plaque mass (between the plaque mass and the vessel wall) rather than through the plaque mass. As the device tracks along the side of the plaque mass, the wall of the vessel stays intact and stretches, thereby bowing out in a substantially circumferential manner along with the device (forming the rounded portion 108). In contrast, the plaque mass may undergo little, if any, stretching, thereby maintaining a substantially straight profile (forming the substantially linear portion 109). The dark portion 112 may be formed as blood is cleared by flushing through a lumen on the device or peripheral apparatus. The pointed portion of the crescent wings 101a, 101b may form as a result of the healthy tissue stretching around the cylindrically-shaped device, which is positioned between the plaque mass and the vessel outer wall (e.g., adventitia). Further, the black circle 110 is a feature that is added (e.g., by software) into the image to indicate the approximate shape and location of the device relative to the environment; the OCT sensor in this example does not image within the device itself.


Thus, the characteristic morphology described with respect to FIG. 1 may be mainly due to the tendency for a device placed within a clogged vessel to track along the side of a plaque mass. The morphology along this path may promote anisotropic stretching around the device. When circumferential radial forces are applied in this space, the rigid plaque mass is less likely to accommodate the introduced device, forcing the more compliant vessel wall to preferentially stretch away from the device. When visualized with onboard imaging, this morphology appears as crescent-shaped edges, with wings (crescent edges) that occur on each side of a plaque region. These wings (also referred to as crescents or cat ears) are typically bowed in one direction, forming a half-moon shape, as shown in FIG. 1. The directionality of these wings may be indicative of the position of a plaque mass relative to the outer layered structures of a vessel, e.g., the smaller side of the shape may be on the side of the plaque region. This shape is consistent with predications based on the relative compliance of vessel wall structures and disease.


Additional representative OCT images 200, 300 are also shown in FIGS. 2 and 3. Each image 200, 300 includes the same or similar characteristic morphology as described with respect to FIG. 1. The images 100, 200, and 300 all show the morphology in a slightly different orientation (for example, the crescent wings 101a, 101b are in the 11 o'clock and 4'olock positions in image 100 and the crescent wings 101a, 101b in the 6 o'clock and 10 o'clock positions in the FIG. 300). The second crescent shape in FIG. 2101b is partially hidden behind the reference structure 744a. This difference in orientation between the images is a result of the varying nature of disease within a vessel and is dependent on the path that a CTO-crossing device takes while traversing through a lesion. This orientation may actively change while traversing a device through a diseased segment of a vessel.


The characteristic morphology shown in FIGS. 1-3 can be used as a marker to provide a real-time roadmap during an interventional procedure in diseased vasculature to aid in device placement. That is, the crescent-shaped characteristic features, with a plaque mass on one side and layered wall structures on the other, can be used as a clear guide during interventional procedures in the peripheral or coronary vasculature.


Further, the tip of an atherectomy and/or imaging device (including, for example, the cutting element or occlusion-crossing element) can be repositioned toward a plaque mass using the crescent morphology as a guide, enabling a device to track along the true lumen of a CTO and avoid perforation of the vessel. A therapeutic tool may also be positioned using this feature to remove or modify a plaque mass and avoid the outer wall structures of a vessel, preventing vessel perforation.


In one embodiment, marker features (e.g., fiducial markers) on the device can assist in aligning the device in the desired orientation relative to the crescent morphology. The markers can be configured to obstruct imaging from the OCT sensor at least once per rotation of the rotatable tip. For example, the markers on the device can be a radiopaque material (e.g., a metal) that can be seen in high contrast during fluoroscopy or a material that reflects or absorbs optical beams from the OCT system (e.g., metal, dense polymer, carbon powder). As described in more detail below, the imaging system may also be configured to identify, mark, and/or highlight these characteristic crescent morphological shapes and to display them as real-time markers. Other markers may also be shown by the imaging system, including makers displayed on the image that indicate the radial orientation of the device, structures in the tissue, etc. For example, markers may be overlaid on the image to achieve a similar result to physical markers on the catheter (e.g., electrically, magnetically, or in software). In some variations, a marker can be aligned with a distinguishing feature of the inserted device (e.g., catheter), such as a fixed jog or exposed cutter, to aid in steering or cutting with the device.


For example, as shown in FIG. 5, an occlusion-crossing device 500 can include a chassis 405 having three window regions 346 separated by spines 419 (which may be referred to as posts, struts, dividers, separators, etc.) arranged annularly around the chassis 405. These spines 419 may serve as reference markers as the imaging sensor 286 rotates and views the tissue through the windows 346. For example, spines may produce reference regions 744a, 744b, and 744c such as those shown in FIGS. 1-3. In some embodiments, as shown in FIG. 6, the spines 419 can be aligned relative to a jog 989 in the device (here such that the middle spine 419b is aligned opposite to the jog direction 989). This relative orientation can assist in pointing the jog and thus the end of the device in the desired direction.


The markers can thus produce corresponding reference regions in the images. Thus, in FIGS. 1-3, reference regions 744a, 744b, 744c in the form of striped rays indicate the locations of the markers or spines 419a, 419b, 419c, respectively, on the device 500. The reference regions 744a, 744b, 744c can thus indicate the orientation of the distal end of the catheter within the body.


During a CTO procedure, one goal may be to steer the catheter towards the plaque or unhealthy tissue. Because the middle spine 419b is aligned opposite to the jog 989 (as shown in FIG. 6), the ray 744b corresponding to the middle spine 419b can be oriented opposite to the non-healthy tissue or plaque 111 (indicated by the substantially linear portion 109 between the crescent wings 101a, 101b) to steer the catheter in the correct direction. FIG. 1 shows the catheter deflected toward the layered, healthy tissue. FIG. 2 shows the catheter rotated such that it is deflected toward the unhealthy, non-layered structure.


Thus, the system may be configured to allow the orientation of the catheter to be rotated into the correct position using fixed directional markers and the characteristic crescent wing morphology of the OCT images. It is to be understood that, although the images 100, 200, 300 are described as resulting from using a device similar to the occlusion-crossing device 500 that other device designs can be steered using the same morphology (for example, devices having different reference markers).


The crescent morphology described here can also provide direct, real-time feedback during an interventional procedure for general device repositioning based on the thickness of the layered wall structures, helping prevent perforation of the vessel. For example, the crescent morphology may indicate a plaque, however if the nearby layered wall structures appear to be very thin and perivascular structures can be seen in the OCT images beyond the layered structures, it is possible that the vessel is close to being perforated. In this case, the OCT image may serve as a warning sign, and the physician may pull the device proximal to reposition for a different approach.


An imaging system, and particularly an OCT imaging system as described, may be configured to detect, label, and/or highlight the crescent-shaped morphological structures in an image, and/or use them to automatically detect or suggest the location of an atheroma. For example, an imaging system may include a controller configured to automatically identify the crescent-shaped morphology within the OCT images. In some variations, this analysis is done separately from the imaging system (e.g., either concurrent or in real-time, or later, including as a post-procedure analysis). Likewise, in some embodiments, a controller can be configured to orient or steer a device through the vessel based upon images showing the characteristic crescent-shaped morphology. Standard image-processing algorithms may be used or adapted for use to identify the characteristic pair of crescents, which typically occur from the lumen of the vessel, radiating outward into the vessel wall. An imaging and/or image-processing system may execute (e.g., as executable code, firmware, software, hardware, etc.) image analysis logic that can determine if the crescent-shaped morphological structures are present in an image and/or indicate that they are present on the image. For example, analysis logic may determine if the structures are present in an OCT image, and may also identify them in any appropriate manner, e.g., by marking, etc. Likewise, the imaging and/or image-processing system may execute image analysis logic that can determine the direction in which the crescent-shaped structures point and, thus, the location of an atheroma therebetween.



FIG. 7 shows a schematic of one variation of a method of implementing an automatic detection of the crescent-shaped structures as discussed above. At step 701, an image, such as an OCT image, from within an anatomical lumen is obtained. At step 703, it can be determined whether there is a crescent-shaped structure radiating from the lumen in the image. If so, then it can be determined at step 705 whether there is a second crescent-shaped structure radiating from the lumen in the image. If so, then, at step 707, the first and second crescent-shaped structures can be used to identify anatomical structures within the lumen, such as a plaque mass and/or healthy tissue within the lumen.


Devices or systems, including atherectomy devices and/or systems, can be designed to take advantage of the morphology resulting from the crossing of the lesion and the previously unsuspected ability to reliably determine atheroma using these newly-recognized morphological markers. For example, a device may include a pre-shaped tip region that slides easily along/between the crescent shaped morphology. Thus, a therapeutic tool may take a shape that fits into the form factor provided by this morphology, facilitating advancement through a lesion, treatment of a plaque mass, and/or delivery of a therapeutic agent (e.g., pharmaceutical).


Thus, a device can utilize the shape that is formed at the boundary between the healthy vessel and the disease when the open lumen is distended by a dissection device. The device can utilize a form factor which matches that of the dissection that is observed at the interface between the disease and the healthy vessel. The profile of the tip of the device is formed into the crescent shape described above.


For example, referring to FIG. 4, in one variation, the distal end of an atherectomy device 400 having a rotating cutter may be adapted to take advantage of the characteristic morphology of the vessel. As shown in FIG. 4, the atherectomy device can include an elongate catheter body 401 and a rotatable cutter 410 near the distal end of the catheter body 401. The elongate body can end in a beveled tip 422 (i.e. with a troweled or tongue-shaped opening) that extends distally past the rotatable cutter 410 on one side of the cutter 410 and proximal of the rotatable cutter 410 on the other side of the cutter 410. The troweled or tongue-shaped tip 422 is thus configured to protect a portion of the rotatable cutter 410 while the exposed portion of the cutter 410 is configured to be placed in the cleft of the crescent. The troweled or tongue-shaped tip 422 has an outer curved surface configured to slide along the healthy tissue of the vessel wall and a scooped inner edge 452 configured to at least partially plane along the lesion. Thus, referring to FIGS. 1-3, the outer curved surface is configured to be placed against the rounded portion 108 and the proximal end of the scooped inner edge 452 is configured to plane between the cat ears 101a, 101b. Such a configuration would thus place the cutter 410 against the substantially linear portion 109.


In one embodiment, the cutter 410 can be actuated by a hollow drive cable which also acts to capture and store the material that is excised from the interior of the vessel. The drive cable can reside in the lumen of the catheter body. Further, in one embodiment, an optical fiber can run through the drive cable. The distal end of the optical fiber can be mounted on the cutter. The optical fiber can thus run from the cutter to the proximal connector of the device. The proximal connector provides a way to both optically and mechanically couple the fiber and drive cable to the system driving the device. The optical fiber can provide a way to generate an image of the cross-section of the vessel via OCT.


The device 400 can be easily redirected based on features apparent in the OCT image, such as this crescent wing morphology, by promoting a blunt dissection along which the tip 422 of the device 400 will track. The orientation of the device can be adjusted via visual cues generated by the OCT, such as the crescent wings. The final orientation of the device can be defined by the conformance of the shape of the tip 422 of the device 400 with the dissection plane, as described above. Advancing the device 400 pushes the cutter 410 into the linear section visible in the OCT image that is indicative of diseased tissue. In doing so, the disease region may be excised and forced into the hollow center of the drive cable. Further advancing of the device 400 pushes more disease into the cutter 410. Continuing the distal movement of the device to the distal point of the stenosis creates a patent lumen facilitating blood flow and the passage of a wire or other adjunct device past the disease. Removal of the drive cable/cutter assembly from the center of the device during the procedure would facilitate using the device sheath as an exchange or delivery catheter.


The device described herein has several advantages. For example, the device facilitates atherectomy in the coronary vasculature via image-guided cutting. Moreover, it offers a safe way to perform the procedure by orienting the device such that the tip 422 protects the healthy vessel wall from damage by the cutter.


In addition to a device having a pre-shaped tip configured to conform to the crescent-shaped tissue morphology described above, in some embodiments a device can be configured to self-orient through the vessel. In other words, the outer curved surface could automatically align with the healthy, stretched outer tissue layers (e.g., adventitia) while the beveled edge and thus the cutter could automatically align with the occlusion. In some embodiments, therefore, the device may not require an imaging sensor.


Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the examples described herein, but only by the plain meaning of the claim terms employed.

Claims
  • 1. A method of identifying an atherectomy plaque mass within a vessel, the method comprising: inserting an atherectomy device into a vessel, the device applying a circumferential radial force within the vessel;flushing the vessel with a fluid to clear blood from the vessel;imaging the cleared vessel with a sensor of the device to create an image;identifying in the image first and second dark crescent-shaped structures created by the fluid, each of the first and second dark crescent-shaped structures extending radially and continuously from a central circumferential dark portion;determining a position of a plaque mass within the vessel relative to the device by identifying a light amorphous structure in the image that is positioned circumferentially between the identified first and second dark crescent-shaped structures;
  • 2. The method of claim 1, wherein imaging the vessel with a sensor of the device comprises imaging the vessel with an optical coherence tomography sensor.
  • 3. The method of claim 1, wherein the sensor is attached to the device.
  • 4. The method of claim 1, wherein determining a position of a plaque mass is further based upon an orientation of the identified crescent-shaped structures.
  • 5. The method of claim 4, wherein determining a position of the plaque mass comprises identifying a location between the first and second dark crescent-shaped structures in which tips of the first and second dark crescent-shaped structures point towards one another.
  • 6. The method of claim 1, further comprising rotating the sensor to obtain the image.
  • 7. A method of identifying an atherectomy plaque mass within a vessel, the method comprising: inserting an atherectomy device into a vessel, the device applying a circumferential radial force within the vessel;flushing the vessel with a fluid to clear blood from the vessel;imaging the vessel with a sensor of the device to create an image;identifying in the image first and second crescent-shaped structures, each of the first and second crescent-shaped structures extending radially and continuously from a central circumferential portion to a pointed tip;determining a position of a plaque mass within the vessel relative to the device by identifying an amorphous structure in the image that is positioned circumferentially between the identified first and second crescent-shaped structures in which the radial outermost tips of the first and second crescent-shaped structures point towards one another;orienting a cutter of the atherectomy catheter towards the determined position of the plaque mass such that the cutter is positioned between the tips of the first and second crescent-shaped structures; andactivating the cutter to remove the plaque mass.
  • 8. The method of claim 7, wherein imaging the vessel with a sensor of the device comprises imaging the vessel with an optical coherence tomography sensor.
  • 9. The method of claim 7, wherein the sensor is attached to the device.
  • 10. The method of claim 7, further comprising rotating the sensor to obtain the image.
  • 11. A method of identifying an atherectomy plaque mass within a vessel, the method comprising: inserting an atherectomy device into a vessel, the device applying a circumferential radial force within the vessel;flushing the vessel with a fluid to clear blood from the vessel;imaging the vessel with a sensor of the device to create an image;identifying in the image first and second crescent-shaped structures created by the fluid, each of the first and second crescent-shaped structures extending radially and continuously from a central circumferential portion;determining a position of a plaque mass within the vessel relative to the device by identifying an amorphous structure in the image that is positioned circumferentially between the identified first and second crescent-shaped structures;orienting a cutter of the atherectomy catheter towards the determined position of the plaque mass such that the cutter is positioned between tips of the first and second crescent-shaped structures; and
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/675,867, filed Nov. 13, 2012, titled “OCCLUSION-CROSSING DEVICES, ATHERECTOMY DEVICES, AND IMAGING,” now U.S. Pat. No. 9,345,406, which claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/559,013, filed Nov. 11, 2011, titled “ATHERECTOMY METHODS AND DEVICES.” U.S. patent application Ser. No. 13/675,867 also a continuation-in-part of U.S. patent application Ser. No. 13/433,049, filed Mar. 28, 2012, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” now U.S. Pat. No. 8,644,913. Each of which is herein incorporated by reference in its entirety.

US Referenced Citations (504)
Number Name Date Kind
3367727 Ward et al. Feb 1968 A
3908637 Doroshow Sep 1975 A
4178935 Gekhaman et al. Dec 1979 A
4487206 Aagard Dec 1984 A
4527553 Upsher Jul 1985 A
4552554 Gould et al. Nov 1985 A
4578061 Lemelson Mar 1986 A
4611600 Cohen Sep 1986 A
4621353 Hazel et al. Nov 1986 A
4639091 Huignard et al. Jan 1987 A
4651753 Lifton Mar 1987 A
4654024 Crittenden et al. Mar 1987 A
4681106 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4691708 Kane Sep 1987 A
4729763 Henrie Mar 1988 A
4771774 Simpson et al. Sep 1988 A
4841977 Griffith et al. Jun 1989 A
4857046 Stevens et al. Aug 1989 A
4920961 Grossi et al. May 1990 A
4926858 Gifford, III et al. May 1990 A
5000185 Yock Mar 1991 A
5018529 Tenerz et al. May 1991 A
5041082 Shiber Aug 1991 A
5047040 Simpson et al. Sep 1991 A
5085662 Willard Feb 1992 A
5099850 Matsui et al. Mar 1992 A
5178153 Einzig Jan 1993 A
5182291 Gubin et al. Jan 1993 A
5190050 Nitzsche Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5312415 Palermo May 1994 A
5312425 Evans et al. May 1994 A
5321501 Swanson et al. Jun 1994 A
5333142 Scheps Jul 1994 A
5358472 Vance et al. Oct 1994 A
5366464 Belknap Nov 1994 A
5372601 Lary Dec 1994 A
5383460 Jang et al. Jan 1995 A
5383467 Auer et al. Jan 1995 A
5425273 Chevalier Jun 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers et al. Jul 1995 A
5437284 Trimble Aug 1995 A
5459570 Swanson et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5507760 Wynne et al. Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5517998 Madison May 1996 A
5556405 Lary Sep 1996 A
5607394 Andersen et al. Mar 1997 A
5620426 Braithwaite Apr 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5674232 Halliburton Oct 1997 A
5681336 Clement et al. Oct 1997 A
5690634 Muller et al. Nov 1997 A
5722403 McGee et al. Mar 1998 A
5749846 Edwards et al. May 1998 A
5795295 Hellmuth et al. Aug 1998 A
5807339 Bostrom et al. Sep 1998 A
5830145 Tenhoff Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5868778 Gershony et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5904651 Swanson et al. May 1999 A
5907425 Dickensheets et al. May 1999 A
5935075 Casscells et al. Aug 1999 A
5938602 Lloyd Aug 1999 A
5951482 Winston et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5951583 Jensen et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5957952 Gershony et al. Sep 1999 A
5987995 Sawatari et al. Nov 1999 A
5997558 Nash Dec 1999 A
6001112 Taylor Dec 1999 A
6007530 Dornhofer et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017359 Gershony et al. Jan 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6080170 Nash et al. Jun 2000 A
6106515 Winston et al. Aug 2000 A
6110164 Vidlund Aug 2000 A
6120515 Rogers et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134002 Stimson et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152938 Curry Nov 2000 A
6152951 Hashimoto et al. Nov 2000 A
6160826 Swanson et al. Dec 2000 A
6175669 Colston et al. Jan 2001 B1
6176871 Pathak et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6228076 Winston et al. May 2001 B1
6241744 Imran et al. Jun 2001 B1
6283957 Hashimoto et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6290668 Gregory et al. Sep 2001 B1
6294775 Seibel et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6307985 Murakami et al. Oct 2001 B1
6375615 Flaherty et al. Apr 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6416527 Berg et al. Jul 2002 B1
6445939 Swanson et al. Sep 2002 B1
6445944 Ostrovsky Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6451036 Heitzmann et al. Sep 2002 B1
6454717 Pantages et al. Sep 2002 B1
6454779 Taylor Sep 2002 B1
6482216 Hiblar et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6497649 Parker et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6503261 Bruneau et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6517528 Pantages et al. Feb 2003 B1
6542665 Reed et al. Apr 2003 B2
6544230 Flaherty et al. Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6563105 Seibel et al. May 2003 B2
6564087 Pitris et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6572563 Ouchi et al. Jun 2003 B2
6572643 Gharibadeh Jun 2003 B1
6575995 Huter et al. Jun 2003 B1
6579298 Bruneau et al. Jun 2003 B1
6599296 Gillick et al. Jul 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6638233 Corvi et al. Oct 2003 B2
6645217 MacKinnon et al. Nov 2003 B1
6657727 Izatt et al. Dec 2003 B1
6666874 Heitzmann et al. Dec 2003 B2
6687010 Horii Feb 2004 B1
6728571 Barbato Apr 2004 B1
D489973 Root et al. May 2004 S
6730063 Delaney et al. May 2004 B2
6758854 Butler et al. Jul 2004 B1
6760112 Reed et al. Jul 2004 B2
6800085 Selmon et al. Oct 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6824550 Noriega et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6845190 Smithwick et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6853457 Bjarklev et al. Feb 2005 B2
6856712 Fauver et al. Feb 2005 B2
6867753 Chinthammit et al. Mar 2005 B2
6879851 McNamara et al. Apr 2005 B2
6947787 Webler Sep 2005 B2
6961123 Wang et al. Nov 2005 B1
6970732 Winston et al. Nov 2005 B2
6975898 Seibel Dec 2005 B2
7068878 Crossman-Bosworth et al. Jun 2006 B2
7074231 Jang Jul 2006 B2
7126693 Everett et al. Oct 2006 B2
7172610 Heitzmann et al. Feb 2007 B2
7242480 Alphonse Jul 2007 B2
7261687 Yang Aug 2007 B2
7288087 Winston et al. Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7311723 Seibel et al. Dec 2007 B2
7344546 Wulfman et al. Mar 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7426036 Feldchtein et al. Sep 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7428053 Feldchtein et al. Sep 2008 B2
7455649 Root et al. Nov 2008 B2
7474407 Gutin Jan 2009 B2
7485127 Nistal Feb 2009 B2
7488340 Kauphusman et al. Feb 2009 B2
7530948 Seibel et al. May 2009 B2
7530976 MacMahon et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7538886 Feldchtein May 2009 B2
7539362 Teramura May 2009 B2
7542145 Toida et al. Jun 2009 B2
7544162 Ohkubo Jun 2009 B2
7545504 Buckland et al. Jun 2009 B2
7555333 Wang et al. Jun 2009 B2
7577471 Camus et al. Aug 2009 B2
7583872 Seibel et al. Sep 2009 B2
7616986 Seibel et al. Nov 2009 B2
7674253 Fisher et al. Mar 2010 B2
7682319 Martin et al. Mar 2010 B2
7706863 Imanishi et al. Apr 2010 B2
7728985 Feldchtein et al. Jun 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7738945 Fauver et al. Jun 2010 B2
7753852 Maschke Jul 2010 B2
7771425 Dycus et al. Aug 2010 B2
7785286 Magnin et al. Aug 2010 B2
7813609 Petersen et al. Oct 2010 B2
7821643 Amazeen et al. Oct 2010 B2
7824089 Charles Nov 2010 B2
7840283 Bush et al. Nov 2010 B1
7944568 Teramura et al. May 2011 B2
7952718 Li et al. May 2011 B2
7972299 Carter et al. Jul 2011 B2
8059274 Splinter Nov 2011 B2
8062316 Patel et al. Nov 2011 B2
8068921 Prakash et al. Nov 2011 B2
8313493 Fisher Nov 2012 B2
8361097 Patel et al. Jan 2013 B2
8548571 He et al. Oct 2013 B2
8548603 Swoyer et al. Oct 2013 B2
8632557 Thatcher et al. Jan 2014 B2
8644913 Simpson et al. Feb 2014 B2
8647335 Markus Feb 2014 B2
8696695 Patel et al. Apr 2014 B2
8911459 Simpson et al. Dec 2014 B2
9119662 Moberg Sep 2015 B2
9125562 Spencer et al. Sep 2015 B2
9333007 Escudero et al. May 2016 B2
9345398 Tachibana et al. May 2016 B2
9345406 Spencer et al. May 2016 B2
9345510 Patel et al. May 2016 B2
9345511 Smith et al. May 2016 B2
9351757 Kusleika May 2016 B2
20010005788 McGuckin, Jr. Jun 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020072706 Hiblar et al. Jun 2002 A1
20020082585 Carroll et al. Jun 2002 A1
20020082626 Donohoe et al. Jun 2002 A1
20020111548 Swanson et al. Aug 2002 A1
20020115931 Strauss et al. Aug 2002 A1
20020147459 Bashiri et al. Oct 2002 A1
20020158547 Wood Oct 2002 A1
20030002038 Mawatari Jan 2003 A1
20030028100 Tearney et al. Feb 2003 A1
20030032880 Moore Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030095248 Frot May 2003 A1
20030097044 Rovegno May 2003 A1
20030120150 Govari Jun 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125756 Shturman et al. Jul 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030125758 Simpson et al. Jul 2003 A1
20030139751 Evans et al. Jul 2003 A1
20030181855 Simpson et al. Sep 2003 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040039371 Tockman et al. Feb 2004 A1
20040057667 Yamada et al. Mar 2004 A1
20040059257 Gaber Mar 2004 A1
20040082850 Bonner et al. Apr 2004 A1
20040092915 Levatter May 2004 A1
20040093001 Hamada May 2004 A1
20040147934 Kiester Jul 2004 A1
20040167553 Simpson et al. Aug 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040181249 Torrance et al. Sep 2004 A1
20040186368 Ramzipoor et al. Sep 2004 A1
20040193140 Griffin et al. Sep 2004 A1
20040202418 Ghiron et al. Oct 2004 A1
20040220519 Wulfman et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040236312 Nistal et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20040254599 Lipoma et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050020925 Kleen et al. Jan 2005 A1
20050027199 Clarke Feb 2005 A1
20050043614 Huizenga et al. Feb 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050075660 Chu et al. Apr 2005 A1
20050085708 Fauver et al. Apr 2005 A1
20050085721 Fauver et al. Apr 2005 A1
20050105097 Fang-Yen et al. May 2005 A1
20050141843 Warden et al. Jun 2005 A1
20050154407 Simpson Jul 2005 A1
20050159712 Andersen Jul 2005 A1
20050159731 Lee Jul 2005 A1
20050171478 Selmon et al. Aug 2005 A1
20050177068 Simpson Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050187571 Maschke Aug 2005 A1
20050192496 Maschke Sep 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050201662 Petersen et al. Sep 2005 A1
20050203553 Maschke Sep 2005 A1
20050222519 Simpson Oct 2005 A1
20050222594 Maschke Oct 2005 A1
20050222663 Simpson et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20060011820 Chow-Shing et al. Jan 2006 A1
20060032508 Simpson Feb 2006 A1
20060046235 Alexander Mar 2006 A1
20060049587 Cornwell Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060084911 Belef et al. Apr 2006 A1
20060109478 Tearney et al. May 2006 A1
20060135870 Webler Jun 2006 A1
20060173475 Lafontaine et al. Aug 2006 A1
20060229646 Sparks Oct 2006 A1
20060229659 Gifford et al. Oct 2006 A1
20060235262 Arnal et al. Oct 2006 A1
20060235366 Simpson Oct 2006 A1
20060236019 Soito et al. Oct 2006 A1
20060239982 Simpson Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060264741 Prince Nov 2006 A1
20060264743 Kleen Nov 2006 A1
20060264907 Eskridge et al. Nov 2006 A1
20070010840 Rosenthal et al. Jan 2007 A1
20070015969 Feldman et al. Jan 2007 A1
20070015979 Redel Jan 2007 A1
20070035855 Dickensheets Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038125 Kleen Feb 2007 A1
20070038173 Simpson Feb 2007 A1
20070078469 Soito et al. Apr 2007 A1
20070078500 Ryan et al. Apr 2007 A1
20070081166 Brown et al. Apr 2007 A1
20070088230 Terashi et al. Apr 2007 A1
20070106155 Goodnow et al. May 2007 A1
20070135712 Maschke Jun 2007 A1
20070167710 Unal et al. Jul 2007 A1
20070196926 Soito et al. Aug 2007 A1
20070213618 Li et al. Sep 2007 A1
20070219484 Straub Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070255252 Mehta Nov 2007 A1
20070270647 Nahen et al. Nov 2007 A1
20070276419 Rosenthal Nov 2007 A1
20070288036 Seshadri Dec 2007 A1
20070299309 Seibel et al. Dec 2007 A1
20080004643 To et al. Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080015491 Bei et al. Jan 2008 A1
20080027334 Langston Jan 2008 A1
20080033396 Danek et al. Feb 2008 A1
20080045986 To et al. Feb 2008 A1
20080049234 Seitz Feb 2008 A1
20080058629 Seibel et al. Mar 2008 A1
20080065124 Olson Mar 2008 A1
20080065125 Olson Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080095421 Sun et al. Apr 2008 A1
20080103439 Torrance et al. May 2008 A1
20080103446 Torrance et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080132929 O'Sullivan et al. Jun 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080147000 Seibel et al. Jun 2008 A1
20080154293 Taylor et al. Jun 2008 A1
20080154296 Taylor et al. Jun 2008 A1
20080177138 Courtney et al. Jul 2008 A1
20080186501 Xie Aug 2008 A1
20080207996 Tsai Aug 2008 A1
20080221388 Seibel et al. Sep 2008 A1
20080228033 Tumlinson et al. Sep 2008 A1
20080243030 Seibel et al. Oct 2008 A1
20080243031 Seibel et al. Oct 2008 A1
20080262312 Carroll et al. Oct 2008 A1
20080275485 Bonnette et al. Nov 2008 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090018567 Escudero et al. Jan 2009 A1
20090024084 Khosla et al. Jan 2009 A1
20090024085 To et al. Jan 2009 A1
20090024191 Seibel et al. Jan 2009 A1
20090028407 Seibel et al. Jan 2009 A1
20090028507 Jones et al. Jan 2009 A1
20090043191 Castella et al. Feb 2009 A1
20090073444 Wang Mar 2009 A1
20090076447 Casas et al. Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090099641 Wu et al. Apr 2009 A1
20090125019 Douglass et al. May 2009 A1
20090135280 Johnston et al. May 2009 A1
20090137893 Seibel et al. May 2009 A1
20090152664 Tian et al. Jun 2009 A1
20090185135 Volk Jul 2009 A1
20090196554 Irisawa Aug 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090208143 Yoon et al. Aug 2009 A1
20090216180 Lee et al. Aug 2009 A1
20090221904 Shealy et al. Sep 2009 A1
20090221920 Boppart et al. Sep 2009 A1
20090235396 Wang et al. Sep 2009 A1
20090244485 Walsh et al. Oct 2009 A1
20090244547 Ozawa Oct 2009 A1
20090264826 Thompson Oct 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090292199 Bielewicz et al. Nov 2009 A1
20090306520 Schmitt et al. Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090318862 Ali et al. Dec 2009 A1
20100004544 Toida Jan 2010 A1
20100021926 Noordin Jan 2010 A1
20100049225 To et al. Feb 2010 A1
20100080016 Fukui et al. Apr 2010 A1
20100082000 Honeck et al. Apr 2010 A1
20100125253 Olson May 2010 A1
20100130996 Doud et al. May 2010 A1
20100217245 Prescott Aug 2010 A1
20100241147 Maschke Sep 2010 A1
20100253949 Adler et al. Oct 2010 A1
20100292539 Lankenau et al. Nov 2010 A1
20100292721 Moberg Nov 2010 A1
20100305452 Black et al. Dec 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20100317973 Nita Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110004107 Rosenthal et al. Jan 2011 A1
20110023617 Miao et al. Feb 2011 A1
20110028977 Rauscher et al. Feb 2011 A1
20110040238 Wulfman et al. Feb 2011 A1
20110058250 Liu et al. Mar 2011 A1
20110060186 Tilson et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110092955 Purdy et al. Apr 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110118660 Torrance et al. May 2011 A1
20110130777 Zhang et al. Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
20110201924 Tearney et al. Aug 2011 A1
20110208222 Ljahnicky et al. Aug 2011 A1
20110257478 Kleiner et al. Oct 2011 A1
20110264125 Wilson et al. Oct 2011 A1
20110270187 Nelson Nov 2011 A1
20110295148 Destoumieux et al. Dec 2011 A1
20110301625 Mauch et al. Dec 2011 A1
20110319905 Palme et al. Dec 2011 A1
20120002928 Irisawa Jan 2012 A1
20120004506 Tearney et al. Jan 2012 A1
20120123352 Fruland et al. May 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20120259337 del Rio et al. Oct 2012 A1
20120277730 Salahieh et al. Nov 2012 A1
20120289971 Segermark et al. Nov 2012 A1
20130035692 Sorensen et al. Feb 2013 A1
20130072787 Wallace et al. Mar 2013 A1
20130096589 Spencer et al. Apr 2013 A1
20130138128 Patel et al. May 2013 A1
20130211221 Sunnarborg et al. Aug 2013 A1
20130223798 Jenner et al. Aug 2013 A1
20130223801 Bhagavatula et al. Aug 2013 A1
20130255069 Higashi et al. Oct 2013 A1
20130266259 Bhagavatula et al. Oct 2013 A1
20130287282 Yokota et al. Oct 2013 A1
20130289392 Patel et al. Oct 2013 A1
20130296695 Spencer et al. Nov 2013 A1
20130317519 Romo et al. Nov 2013 A1
20130325003 Kapur et al. Dec 2013 A1
20140005534 He et al. Jan 2014 A1
20140046250 Jain et al. Feb 2014 A1
20140128893 Guggenheimer et al. May 2014 A1
20140213893 Simpson et al. Jul 2014 A1
20140222042 Kessler et al. Aug 2014 A1
20140371718 Alvarez et al. Dec 2014 A1
20150025310 Everingham et al. Jan 2015 A1
20150099984 Kankaria Apr 2015 A1
20150141816 Gupta et al. May 2015 A1
20150208922 Simpson et al. Jul 2015 A1
20150272615 Simpson et al. Oct 2015 A1
20150320975 Simpson et al. Nov 2015 A1
20160008025 Gupta et al. Jan 2016 A1
20160029902 Smith et al. Feb 2016 A1
20160038030 Smith et al. Feb 2016 A1
20160135832 Simpson et al. May 2016 A1
20160144155 Simpson et al. May 2016 A1
20170065293 Rosenthal et al. Mar 2017 A1
20170065295 Patel et al. Mar 2017 A1
20170238803 Kankaria Aug 2017 A1
20170238808 Simpson et al. Aug 2017 A1
20170273711 Simpson et al. Sep 2017 A1
20180049700 Black et al. Feb 2018 A1
20180192880 Patel et al. Jul 2018 A1
20180207417 Zung et al. Jul 2018 A1
20180256039 Smith et al. Sep 2018 A1
20180256187 Patel et al. Sep 2018 A1
20190029714 Patel et al. Jan 2019 A1
20190110809 Rosenthal et al. Apr 2019 A1
20190159796 Simpson et al. May 2019 A1
20190209206 Patel et al. Jul 2019 A1
20200060718 Patel et al. Feb 2020 A1
20200069253 Black et al. Mar 2020 A1
20200069327 Patel et al. Mar 2020 A1
20200315654 Patel et al. Oct 2020 A1
20210059713 Patel et al. Mar 2021 A1
Foreign Referenced Citations (86)
Number Date Country
1875242 Dec 2006 CN
1947652 Apr 2007 CN
101601581 Dec 2009 CN
103027727 Apr 2013 CN
202006018883.5 Feb 2007 DE
0347098 Dec 1989 EP
0808638 Nov 1997 EP
1859732 Nov 2007 EP
2090245 Aug 2009 EP
2353526 Sep 2013 EP
S62275425 Nov 1987 JP
03502060 Feb 1990 JP
05103763 Apr 1993 JP
H06-027343 Feb 1994 JP
H07184888 Jul 1995 JP
H07-308393 Nov 1995 JP
2002-214127 Jul 2002 JP
2004-509695 Apr 2004 JP
2004-516073 Jun 2004 JP
2005-114473 Apr 2005 JP
2005-249704 Sep 2005 JP
2005230550 Sep 2005 JP
2005-533533 Nov 2005 JP
2008-175698 Jul 2006 JP
2006-288775 Oct 2006 JP
2006-313158 Nov 2006 JP
2006-526790 Nov 2006 JP
2006-326157 Dec 2006 JP
2007-83053 Apr 2007 JP
2007-83057 Apr 2007 JP
2007-225349 Sep 2007 JP
2007533361 Nov 2007 JP
2008-023627 Feb 2008 JP
2008-128708 Jun 2008 JP
2008-145376 Jun 2008 JP
2008-183208 Aug 2008 JP
2008-253492 Oct 2008 JP
2009-14751 Jan 2009 JP
2009-509690 Mar 2009 JP
2009-66252 Apr 2009 JP
2009-78150 Apr 2009 JP
2009201969 Sep 2009 JP
2010042182 Feb 2010 JP
2010518900 Jun 2010 JP
2011521747 Jul 2011 JP
2012143558 Aug 2012 JP
2012229976 Nov 2012 JP
2012533353 Dec 2012 JP
2013512736 Apr 2013 JP
2013524930 Jun 2013 JP
2015533584 Nov 2015 JP
20070047221 May 2007 KR
2185859 Jul 2002 RU
2218191 Dec 2003 RU
WO 9117698 Nov 1991 WO
WO 9923958 May 1999 WO
WO 0054659 Sep 2000 WO
WO0115609 Mar 2001 WO
WO 0176680 Oct 2001 WO
WO 2006133030 Dec 2006 WO
WO2008005888 Jan 2008 WO
WO 2008029506 Mar 2008 WO
WO 2008042987 Apr 2008 WO
WO2008051951 May 2008 WO
WO2008065600 Jun 2008 WO
WO 2008086613 Jul 2008 WO
WO 2008087613 Jul 2008 WO
WO2009005779 Jan 2009 WO
WO2009006335 Jan 2009 WO
WO 2009009799 Jan 2009 WO
WO2009009802 Jan 2009 WO
WO 2009023635 Feb 2009 WO
WO2009024344 Feb 2009 WO
WO 2009094341 Jul 2009 WO
WO 2009140617 Nov 2009 WO
WO2009148317 Dec 2009 WO
WO2010039464 Apr 2010 WO
WO2010056771 May 2010 WO
WO2011044387 Apr 2011 WO
WO2011062087 May 2011 WO
WO2012057940 May 2012 WO
WO 2012061935 May 2012 WO
WO2012123737 Sep 2012 WO
WO2012166332 Dec 2012 WO
WO2013033490 Mar 2013 WO
WO2013056262 Apr 2013 WO
Non-Patent Literature Citations (37)
Entry
Shinke et al., Evaluation of Stent Placement and Outcomes with Optical Coherence Tomography, Interv Cardiol. 2010;2(4):535-543.
“Plaque Characterization With Optical Coherence Tomography” by D. Stamper et al. J American College of Cardiology. vol. 47, No. 8, pp. 69-79. 2006 (Year: 2006).
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005.
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987.
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009.
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990.
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages.
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994.
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages.
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages.
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp.(011104-1)-(011104-8); Jan.-Feb. 2010.
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010.
Simpson et al.; U.S. Appl. No. 15/072,272 entitled “Atherectomy catheters devices having multi-channel bushings,” filed Mar. 16, 2016.
Patel et al.; U.S. Appl. No. 15/076,568 entitled “Atherectomy catheters and occlusion crossing devices,” filed Mar. 21, 2016.
Patel et al.; U.S. Appl. No. 15/162,330 entitled “Atherectomy catheters with longitudinally displaceable drive shafts,” filed May 23, 2016.
Tachibana et al.; U.S. Appl. No. 15/162,391 entitled “Atherectomy catheter drive assemblies,” filed May 23, 2016.
Patel et al.; U.S. Appl. No. 15/324,325 entitled “High speed chronic total occulusion crossing devices,” filed Jan. 6, 2017.
Patel et al.; U.S. Appl. No. 15/480,238 entitled “Guidewire positioning catheter,” filed Apr. 5, 2017.
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003.
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003.
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003.
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999.
Fernandez et al., U.S. Appl. No. 16/305,136 entitled “Catheter device with detachable distal end,” filed Nov. 28, 2018.
Tachibana et al.; U.S. Appl. No. 16/372,112 entitled “Atherectomy catheter drive assemblies,” filed Apr. 1, 2019.
Radjabi et al.; U.S. Appl. No. 16/347,840 entitled “Methods, systems and apparatuses for displaying real-time catheter position,” filed May 7, 2019.
Newhauser et al.; U.S. Appl. No. 15/954,407 entitled “Occlusion-crossing devices,” filed Apr. 16, 2018.
Christensen; U.S. Appl. No. 16/069,545 entitled “OCT imaging catheter with lag correction,” filed Jul. 12, 2018.
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733lf_/http://fab.cba.mit.edu:80/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf) on Sep. 26, 2018.
Patel et al.; U.S. Appl. No. 16/801,047 entitled “Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters,” filed Feb. 25, 2020.
Smith et al.; U.S. Appl. No. 16/941,310 entitled “Chronic total occlusion crossing devices with imaging,” filed Jul. 28, 2020.
Spencer et al., U.S. Appl. No. 16/943,446 entitled “Catheter-based off-axis optical coherence tomography imaging system,” filed Jul. 30, 2020.
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical esperiences; Cardiovascular and Interventional Radiology; Sprinver-Verlag; 22(6); pp. 504-509; Nov. 1, 1999.
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; vol. 78; 113102; 5 pages; Nov. 6, 2007.
Simpson et al.; U.S. Appl. No. 17/075,548 entitled “Identification of elastic lamina to guide interventional therapy,” filed Oct. 20, 2020.
Smith et al.; U.S. Appl. No. 17/189,123 entitled “Optical pressure sensor assembly,” filed Mar. 1, 2021.
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021.
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021.
Related Publications (1)
Number Date Country
20160262839 A1 Sep 2016 US
Provisional Applications (1)
Number Date Country
61559013 Nov 2011 US
Continuations (1)
Number Date Country
Parent 13675867 Nov 2012 US
Child 15162353 US
Continuation in Parts (1)
Number Date Country
Parent 13433049 Mar 2012 US
Child 13675867 US