All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The devices, methods and systems described herein are related to the treatment, identification, and removal of atheroma. In particular, described herein are systems, methods, devices and techniques for identifying distinguishing morphology in vessel images to direct or orient interventional devices.
Coronary artery disease is the leading cause of death within the United States for men and women. It is characterized by a buildup of material (often fatty) in the internal lumen of the coronary arteries. It is also associated with the hardening of the arterial walls. The buildup of material commonly starts on one side of the vessel and grows across the open lumen. As such, the last point of patency often occurs at the boundary between the material deposit (disease) and the healthy vessel.
Atherectomy is the process of removing diseased tissue from a stenosed lumen so as to restore patency and blood flow. There currently exist a number of devices that facilitate atherectomy. However, the operation of such devices has a number of shortcomings. In some instances, the active element of the atherectomy device acts equally in all directions, requiring the device to reside in the center of the diseased portion to maintain optimum efficacy. In other instances, the active element is directional but as such needs some method of visualization to orient the active element with respect to the diseased tissue. In many instances, the method of visualization that is employed is angiography, which is only capable of giving a silhouette of the open lumen.
Further, minimally invasive techniques for treating coronary artery disease, such as atherectomy, typically involve the placement of a guidewire through the occlusion prior to performing the atherectomy. For example, a chronic total occlusion (CTO) device can be used to place a guidewire through the occlusion and ultimately cross through the occlusion. Unfortunately, placement of the guidewire, while critical for effective treatment, may be difficult. In particular, when placing a guidewire across an occlusion, it may be difficult to pass the guidewire through the occlusion while avoiding damage to the artery. For example, it is often difficult to prevent the guidewire from directing out of the lumen into the adventitia and surrounding tissues, potentially damaging the vessel and preventing effective treatment of the occlusion.
Moreover, minimally invasive surgical procedures to treat coronary artery disease depend on the precise positioning and manipulation of interventional devices. Guidance provided by high-resolution imaging can enable the characterization of tissue and lesion properties in vivo prior to treatment. As the majority of atherogenesis occurs in an eccentric fashion within the artery, therapeutic tools that have onboard imaging provide a distinct opportunity to selectively treat the diseased portion of a vessel. Even with on-board imaging techniques, however, it can be difficult to interpret the images so as to properly orient and steer the interventional devices as needed.
Accordingly, there is a need for a consistent and precise mechanism for steering or orienting occlusion-crossing, atherectomy, or other interventional devices. The invention described herein is based on the novel realization that a characteristic morphology (or morphological structure) may be visualized when (or after) passing a structure through the lumen of a vessel containing an atherectomy plaque mass (atheroma).
The present invention relates to methods of forming and/or identifying characteristic morphologies within a vessel that indicate the presence, orientation and location of plaque masses within the vessel. Also described are devices to image, identify, and use this characteristic morphology (e.g., morphological structure) to orient a device, and/or remove or navigate the plaque in the peripheral or coronary vasculature.
In general, in one embodiment, a method of identifying an atherectomy plaque mass in a vessel includes applying circumferential radial force within the vessel to displace a rigid plaque mass and force the vessel wall to stretch away from the device; imaging the vessel to create an image; and identifying crescent-shaped structures associated with an atherectomy plaque in the image.
This and other embodiments can include one or more of the following features. The method can further include identifying the orientation of a plaque mass based on the directionality of the crescent-shaped structures. The method can further include identifying the position of a plaque mass relative to outer layered structures of a vessel wall based on the crescent-shaped structures. Imaging the vessel can include imaging the vessel with optical coherence tomography. The method can further include inserting a device into the vessel, and the device can apply the circumferential radial force. Imaging the vessel can include imaging with an imaging sensor attached to the device. The method can further include orienting the device within the vessel based on the crescent-shaped structures. Orienting the device can include pointing a directional cutter at a plaque mass identified based upon the crescent-shaped structure. Orienting the device can include directing the device based upon the relationship between markers in the image and the crescent-shaped structures. The method can further include rotating the imaging sensor to obtain the image.
In general, in another embodiment, a method of identifying an atherectomy plaque mass within a vessel includes the steps of: applying circumferential radial force within the vessel to displace a rigid plaque mass and forcing the vessel wall to stretch away from the device; visualizing the vessel wall following the application of circumferential radial force; and identifying crescent-shaped structures. The crescent-shaped structures may be formed by the application of circumferential radial force from within the lumen of the vessel.
This and other embodiments may include one or more of the following features. The method may also include the step of identifying the orientation of a plaque mass based on the directionality of the crescent-shaped structures. In some variations, the method may also include the step of identifying the position of a plaque mass relative to the outer layered structures of a vessel based on the crescent-shaped structures. In some variations, the method may also include the step of orienting a device or therapeutic tool within the vessel based on the crescent-shaped structures.
Any of the methods described herein can be carried out by a controller. Thus, an imaging system can be configured to detect, label, and/or highlight the characteristic morphological structures and/or use them to automatically detect or suggest the location of an atheroma.
In general, in one embodiment, an atherectomy device includes a distal end configured to dissect plaque from within a vessel. The device includes an elongate catheter body, a troweled distal tip extending from the catheter body and a rotatable cutter. The troweled distal tip has a curved outer surface configured to conform to an outer vessel and a scooped inner edge configured to at least partially plane along the plaque. The rotatable cutter is at least partially within the troweled distal tip.
This and other embodiments can include one or more of the following features. The device can further include an OCT sensor near or on the rotatable cylindrical cutter and configured to image radially into the vessel. The device can further include an inner lumen opening through the rotatable cutter into which material cut by the device may be driven. The rotatable cutter can be partially covered by the curved outer surface and can be partially exposed proximate to the scooped inner edge. The device can be configured to self-orient within the vessel.
In general, in another embodiment, an atherectomy device includes a distal end configured to dissect an atherectomy plaque using visual cues generated by a device with on-board optical coherence tomography, the device comprising: an elongate catheter body; a distal tip having a shaped opening (which may be a beveled opening, a trowel-shaped opening, or a tongue-shaped opening); a rotatable cylindrical cutter at least partially within the troweled or tongue-shaped opening; an OCT sensor near or on the rotatable cylindrical cutter and configured to image around the periphery of the catheter and into the vessel; and an inner lumen open through the rotatable cutter into which atherectomy material may be driven.
This and other embodiments can include one or more of the following features. The device may include a rotatable drive shaft for rotating the cutting element (cylindrical cutter) and/or the OCT sensor. Other elements may also or alternatively be included. In some variations, the distal tip is generally trowel or shovel-shaped in order to match the morphology of the plaque/wall interface revealed by the characteristic crescent shape described herein.
When crossing an occlusion of a blood vessel and imaging the vessel, such as with optical coherence tomography (OCT), an unexpected, yet predictable and characteristic morphology (or geometry) can be identified. The resulting characteristic morphology, described further herein, is formed at the boundary between the layered vessel wall structures and a plaque mass when crossing a chronic total occlusion (CTO) with a catheter or crossing device such as those described in: U.S. patent application Ser. No. 12/689,748, filed Jan. 19, 2010, titled “GUIDEWIRE POSITIONING CATHETER,” now Publication No. US-2010-0274270-A1; U.S. patent application Ser. No. 12/108,433, filed Apr. 23, 2008, titled “CATHETER SYSTEM AND METHOD FOR BORING THROUGH BLOCKED VASCULAR PASSAGES,” now U.S. Pat. No. 8,062,316; U.S. patent application Ser. No. 12/829,277, filed Jul. 1, 2010, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” now Publication No. US-2011-0004107-A1; U.S. patent application Ser. No. 12/829,267, filed Jul. 1, 2010, titled “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” now Publication No. US-2010-0021926-A1; U.S. patent application Ser. No. 12/790,703, filed May 28, 2010, titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” now Publication No. US-2010-0305452-A1; U.S. patent application Ser. No. 13/175,232, filed Jul. 1, 2011, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” now Publication No. US-2012-0046679-A1; U.S. patent application Ser. No. 13/433,049, filed Mar. 28, 2012, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” now Publication No. US-2012-0253186-A1, each of which is herein incorporated by reference in its entirety. The characteristic morphology may formed as a result of a dissection plane that is generated between a plaque mass and the lumen walls while traversing a vascular lesion, e.g., in peripheral and coronary CTO intervention.
As described herein, the resulting morphology is highly characteristic and can be used to obtain information with respect to the position of the disease within and with respect to the vessel. This information can also be utilized in real-time to orient the therapeutic portion of a device (e.g., atherectomy cutter or pre-shaped tip, etc.) toward disease and away from healthy tissue.
Using an imaging modality, such as optical coherence tomography (OCT), it is possible to visualize the shape or geometry that is created when advancing a device through a vascular lesion, such as a CTO. In some instances, the distinguishing shape or morphology that results when passing through a vascular lesion is a crescent-shaped feature (or a pair of such features) which may be formed around the circumference of the device, as shown in
In
For example,
The image 100 shown includes a black circle 110, which is representative of the device itself. Around the black circle 110 extends a dark portion 112. The dark portion 112 forms a semi-circular-like shape (or a “D” shape) with a rounded portion 108 on one side and a substantially linear portion 109 on the other side (note that the substantially linear portion is shorter than the rounded portion 108 and can be slightly bowed in the opposite direction). The rounded portion 108 and the substantially linear portion 109 meet in characteristic crescents or “crescent wings” 101a, 101b (in this image 100 at the 11 and 4 o'clock positions, respectively) to give a “cat ear” shaped profile. The crescent wings 101a, 101b point inwards (towards the substantially linear portion 109) to frame an amorphous structure 111 indicating a plaque mass in the vessel. In contrast, the rounded portion 108 lies against layered structures 113 of different contrast, indicating healthy tissue of the vessel (e.g., intima, adventitia, media).
Although the inventions described herein are not bound by any particular theory, the characteristic morphology of bracketing crescents (“cat ears”) shown and described with respect to
Thus, the characteristic morphology described with respect to
Additional representative OCT images 200, 300 are also shown in
The characteristic morphology shown in
Further, the tip of an atherectomy and/or imaging device (including, for example, the cutting element or occlusion-crossing element) can be repositioned toward a plaque mass using the crescent morphology as a guide, enabling a device to track along the true lumen of a CTO and avoid perforation of the vessel. A therapeutic tool may also be positioned using this feature to remove or modify a plaque mass and avoid the outer wall structures of a vessel, preventing vessel perforation.
In one embodiment, marker features (e.g., fiducial markers) on the device can assist in aligning the device in the desired orientation relative to the crescent morphology. The markers can be configured to obstruct imaging from the OCT sensor at least once per rotation of the rotatable tip. For example, the markers on the device can be a radiopaque material (e.g., a metal) that can be seen in high contrast during fluoroscopy or a material that reflects or absorbs optical beams from the OCT system (e.g., metal, dense polymer, carbon powder). As described in more detail below, the imaging system may also be configured to identify, mark, and/or highlight these characteristic crescent morphological shapes and to display them as real-time markers. Other markers may also be shown by the imaging system, including makers displayed on the image that indicate the radial orientation of the device, structures in the tissue, etc. For example, markers may be overlaid on the image to achieve a similar result to physical markers on the catheter (e.g., electrically, magnetically, or in software). In some variations, a marker can be aligned with a distinguishing feature of the inserted device (e.g., catheter), such as a fixed jog or exposed cutter, to aid in steering or cutting with the device.
For example, as shown in
The markers can thus produce corresponding reference regions in the images. Thus, in
During a CTO procedure, one goal may be to steer the catheter towards the plaque or unhealthy tissue. Because the middle spine 419b is aligned opposite to the jog 989 (as shown in
Thus, the system may be configured to allow the orientation of the catheter to be rotated into the correct position using fixed directional markers and the characteristic crescent wing morphology of the OCT images. It is to be understood that, although the images 100, 200, 300 are described as resulting from using a device similar to the occlusion-crossing device 500 that other device designs can be steered using the same morphology (for example, devices having different reference markers).
The crescent morphology described here can also provide direct, real-time feedback during an interventional procedure for general device repositioning based on the thickness of the layered wall structures, helping prevent perforation of the vessel. For example, the crescent morphology may indicate a plaque, however if the nearby layered wall structures appear to be very thin and perivascular structures can be seen in the OCT images beyond the layered structures, it is possible that the vessel is close to being perforated. In this case, the OCT image may serve as a warning sign, and the physician may pull the device proximal to reposition for a different approach.
An imaging system, and particularly an OCT imaging system as described, may be configured to detect, label, and/or highlight the crescent-shaped morphological structures in an image, and/or use them to automatically detect or suggest the location of an atheroma. For example, an imaging system may include a controller configured to automatically identify the crescent-shaped morphology within the OCT images. In some variations, this analysis is done separately from the imaging system (e.g., either concurrent or in real-time, or later, including as a post-procedure analysis). Likewise, in some embodiments, a controller can be configured to orient or steer a device through the vessel based upon images showing the characteristic crescent-shaped morphology. Standard image-processing algorithms may be used or adapted for use to identify the characteristic pair of crescents, which typically occur from the lumen of the vessel, radiating outward into the vessel wall. An imaging and/or image-processing system may execute (e.g., as executable code, firmware, software, hardware, etc.) image analysis logic that can determine if the crescent-shaped morphological structures are present in an image and/or indicate that they are present on the image. For example, analysis logic may determine if the structures are present in an OCT image, and may also identify them in any appropriate manner, e.g., by marking, etc. Likewise, the imaging and/or image-processing system may execute image analysis logic that can determine the direction in which the crescent-shaped structures point and, thus, the location of an atheroma therebetween.
Devices or systems, including atherectomy devices and/or systems, can be designed to take advantage of the morphology resulting from the crossing of the lesion and the previously unsuspected ability to reliably determine atheroma using these newly-recognized morphological markers. For example, a device may include a pre-shaped tip region that slides easily along/between the crescent shaped morphology. Thus, a therapeutic tool may take a shape that fits into the form factor provided by this morphology, facilitating advancement through a lesion, treatment of a plaque mass, and/or delivery of a therapeutic agent (e.g., pharmaceutical).
Thus, a device can utilize the shape that is formed at the boundary between the healthy vessel and the disease when the open lumen is distended by a dissection device. The device can utilize a form factor which matches that of the dissection that is observed at the interface between the disease and the healthy vessel. The profile of the tip of the device is formed into the crescent shape described above.
For example, referring to
In one embodiment, the cutter 410 can be actuated by a hollow drive cable which also acts to capture and store the material that is excised from the interior of the vessel. The drive cable can reside in the lumen of the catheter body. Further, in one embodiment, an optical fiber can run through the drive cable. The distal end of the optical fiber can be mounted on the cutter. The optical fiber can thus run from the cutter to the proximal connector of the device. The proximal connector provides a way to both optically and mechanically couple the fiber and drive cable to the system driving the device. The optical fiber can provide a way to generate an image of the cross-section of the vessel via OCT.
The device 400 can be easily redirected based on features apparent in the OCT image, such as this crescent wing morphology, by promoting a blunt dissection along which the tip 422 of the device 400 will track. The orientation of the device can be adjusted via visual cues generated by the OCT, such as the crescent wings. The final orientation of the device can be defined by the conformance of the shape of the tip 422 of the device 400 with the dissection plane, as described above. Advancing the device 400 pushes the cutter 410 into the linear section visible in the OCT image that is indicative of diseased tissue. In doing so, the disease region may be excised and forced into the hollow center of the drive cable. Further advancing of the device 400 pushes more disease into the cutter 410. Continuing the distal movement of the device to the distal point of the stenosis creates a patent lumen facilitating blood flow and the passage of a wire or other adjunct device past the disease. Removal of the drive cable/cutter assembly from the center of the device during the procedure would facilitate using the device sheath as an exchange or delivery catheter.
The device described herein has several advantages. For example, the device facilitates atherectomy in the coronary vasculature via image-guided cutting. Moreover, it offers a safe way to perform the procedure by orienting the device such that the tip 422 protects the healthy vessel wall from damage by the cutter.
In addition to a device having a pre-shaped tip configured to conform to the crescent-shaped tissue morphology described above, in some embodiments a device can be configured to self-orient through the vessel. In other words, the outer curved surface could automatically align with the healthy, stretched outer tissue layers (e.g., adventitia) while the beveled edge and thus the cutter could automatically align with the occlusion. In some embodiments, therefore, the device may not require an imaging sensor.
Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the examples described herein, but only by the plain meaning of the claim terms employed.
This application is a continuation of U.S. patent application Ser. No. 13/675,867, filed Nov. 13, 2012, titled “OCCLUSION-CROSSING DEVICES, ATHERECTOMY DEVICES, AND IMAGING,” now U.S. Pat. No. 9,345,406, which claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/559,013, filed Nov. 11, 2011, titled “ATHERECTOMY METHODS AND DEVICES.” U.S. patent application Ser. No. 13/675,867 also a continuation-in-part of U.S. patent application Ser. No. 13/433,049, filed Mar. 28, 2012, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” now U.S. Pat. No. 8,644,913. Each of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3367727 | Ward et al. | Feb 1968 | A |
3908637 | Doroshow | Sep 1975 | A |
4178935 | Gekhaman et al. | Dec 1979 | A |
4487206 | Aagard | Dec 1984 | A |
4527553 | Upsher | Jul 1985 | A |
4552554 | Gould et al. | Nov 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4611600 | Cohen | Sep 1986 | A |
4621353 | Hazel et al. | Nov 1986 | A |
4639091 | Huignard et al. | Jan 1987 | A |
4651753 | Lifton | Mar 1987 | A |
4654024 | Crittenden et al. | Mar 1987 | A |
4681106 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4691708 | Kane | Sep 1987 | A |
4729763 | Henrie | Mar 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4920961 | Grossi et al. | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
5000185 | Yock | Mar 1991 | A |
5018529 | Tenerz et al. | May 1991 | A |
5041082 | Shiber | Aug 1991 | A |
5047040 | Simpson et al. | Sep 1991 | A |
5085662 | Willard | Feb 1992 | A |
5099850 | Matsui et al. | Mar 1992 | A |
5178153 | Einzig | Jan 1993 | A |
5182291 | Gubin et al. | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5192291 | Pannek, Jr. | Mar 1993 | A |
5312415 | Palermo | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5333142 | Scheps | Jul 1994 | A |
5358472 | Vance et al. | Oct 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5372601 | Lary | Dec 1994 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383467 | Auer et al. | Jan 1995 | A |
5425273 | Chevalier | Jun 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5437284 | Trimble | Aug 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5507760 | Wynne et al. | Apr 1996 | A |
5507795 | Chiang et al. | Apr 1996 | A |
5517998 | Madison | May 1996 | A |
5556405 | Lary | Sep 1996 | A |
5607394 | Andersen et al. | Mar 1997 | A |
5620426 | Braithwaite | Apr 1997 | A |
5632754 | Farley et al. | May 1997 | A |
5632755 | Nordgren et al. | May 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5681336 | Clement et al. | Oct 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5722403 | McGee et al. | Mar 1998 | A |
5749846 | Edwards et al. | May 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5807339 | Bostrom et al. | Sep 1998 | A |
5830145 | Tenhoff | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5868778 | Gershony et al. | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5907425 | Dickensheets et al. | May 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5951583 | Jensen et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5957952 | Gershony et al. | Sep 1999 | A |
5987995 | Sawatari et al. | Nov 1999 | A |
5997558 | Nash | Dec 1999 | A |
6001112 | Taylor | Dec 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017359 | Gershony et al. | Jan 2000 | A |
6027514 | Stine et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6110164 | Vidlund | Aug 2000 | A |
6120515 | Rogers et al. | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134002 | Stimson et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6152938 | Curry | Nov 2000 | A |
6152951 | Hashimoto et al. | Nov 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6175669 | Colston et al. | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6183432 | Milo | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6206898 | Honeycutt et al. | Mar 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6241744 | Imran et al. | Jun 2001 | B1 |
6283957 | Hashimoto et al. | Sep 2001 | B1 |
6285903 | Rosenthal et al. | Sep 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6294775 | Seibel et al. | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6307985 | Murakami et al. | Oct 2001 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6402719 | Ponzi et al. | Jun 2002 | B1 |
6416527 | Berg et al. | Jul 2002 | B1 |
6445939 | Swanson et al. | Sep 2002 | B1 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6451036 | Heitzmann et al. | Sep 2002 | B1 |
6454717 | Pantages et al. | Sep 2002 | B1 |
6454779 | Taylor | Sep 2002 | B1 |
6482216 | Hiblar et al. | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6497649 | Parker et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6503261 | Bruneau et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6542665 | Reed et al. | Apr 2003 | B2 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6563105 | Seibel et al. | May 2003 | B2 |
6564087 | Pitris et al. | May 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6572563 | Ouchi et al. | Jun 2003 | B2 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6575995 | Huter et al. | Jun 2003 | B1 |
6579298 | Bruneau et al. | Jun 2003 | B1 |
6599296 | Gillick et al. | Jul 2003 | B1 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6638233 | Corvi et al. | Oct 2003 | B2 |
6645217 | MacKinnon et al. | Nov 2003 | B1 |
6657727 | Izatt et al. | Dec 2003 | B1 |
6666874 | Heitzmann et al. | Dec 2003 | B2 |
6687010 | Horii | Feb 2004 | B1 |
6728571 | Barbato | Apr 2004 | B1 |
D489973 | Root et al. | May 2004 | S |
6730063 | Delaney et al. | May 2004 | B2 |
6758854 | Butler et al. | Jul 2004 | B1 |
6760112 | Reed et al. | Jul 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6845190 | Smithwick et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6853457 | Bjarklev et al. | Feb 2005 | B2 |
6856712 | Fauver et al. | Feb 2005 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6970732 | Winston et al. | Nov 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
7068878 | Crossman-Bosworth et al. | Jun 2006 | B2 |
7074231 | Jang | Jul 2006 | B2 |
7126693 | Everett et al. | Oct 2006 | B2 |
7172610 | Heitzmann et al. | Feb 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7261687 | Yang | Aug 2007 | B2 |
7288087 | Winston et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7297131 | Nita | Nov 2007 | B2 |
7311723 | Seibel et al. | Dec 2007 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7426036 | Feldchtein et al. | Sep 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7428053 | Feldchtein et al. | Sep 2008 | B2 |
7455649 | Root et al. | Nov 2008 | B2 |
7474407 | Gutin | Jan 2009 | B2 |
7485127 | Nistal | Feb 2009 | B2 |
7488340 | Kauphusman et al. | Feb 2009 | B2 |
7530948 | Seibel et al. | May 2009 | B2 |
7530976 | MacMahon et al. | May 2009 | B2 |
7538859 | Tearney et al. | May 2009 | B2 |
7538886 | Feldchtein | May 2009 | B2 |
7539362 | Teramura | May 2009 | B2 |
7542145 | Toida et al. | Jun 2009 | B2 |
7544162 | Ohkubo | Jun 2009 | B2 |
7545504 | Buckland et al. | Jun 2009 | B2 |
7555333 | Wang et al. | Jun 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583872 | Seibel et al. | Sep 2009 | B2 |
7616986 | Seibel et al. | Nov 2009 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7706863 | Imanishi et al. | Apr 2010 | B2 |
7728985 | Feldchtein et al. | Jun 2010 | B2 |
7729745 | Maschke | Jun 2010 | B2 |
7734332 | Sher | Jun 2010 | B2 |
7738945 | Fauver et al. | Jun 2010 | B2 |
7753852 | Maschke | Jul 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7785286 | Magnin et al. | Aug 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7821643 | Amazeen et al. | Oct 2010 | B2 |
7824089 | Charles | Nov 2010 | B2 |
7840283 | Bush et al. | Nov 2010 | B1 |
7944568 | Teramura et al. | May 2011 | B2 |
7952718 | Li et al. | May 2011 | B2 |
7972299 | Carter et al. | Jul 2011 | B2 |
8059274 | Splinter | Nov 2011 | B2 |
8062316 | Patel et al. | Nov 2011 | B2 |
8068921 | Prakash et al. | Nov 2011 | B2 |
8313493 | Fisher | Nov 2012 | B2 |
8361097 | Patel et al. | Jan 2013 | B2 |
8548571 | He et al. | Oct 2013 | B2 |
8548603 | Swoyer et al. | Oct 2013 | B2 |
8632557 | Thatcher et al. | Jan 2014 | B2 |
8644913 | Simpson et al. | Feb 2014 | B2 |
8647335 | Markus | Feb 2014 | B2 |
8696695 | Patel et al. | Apr 2014 | B2 |
8911459 | Simpson et al. | Dec 2014 | B2 |
9119662 | Moberg | Sep 2015 | B2 |
9125562 | Spencer et al. | Sep 2015 | B2 |
9333007 | Escudero et al. | May 2016 | B2 |
9345398 | Tachibana et al. | May 2016 | B2 |
9345406 | Spencer et al. | May 2016 | B2 |
9345510 | Patel et al. | May 2016 | B2 |
9345511 | Smith et al. | May 2016 | B2 |
9351757 | Kusleika | May 2016 | B2 |
20010005788 | McGuckin, Jr. | Jun 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020072706 | Hiblar et al. | Jun 2002 | A1 |
20020082585 | Carroll et al. | Jun 2002 | A1 |
20020082626 | Donohoe et al. | Jun 2002 | A1 |
20020111548 | Swanson et al. | Aug 2002 | A1 |
20020115931 | Strauss et al. | Aug 2002 | A1 |
20020147459 | Bashiri et al. | Oct 2002 | A1 |
20020158547 | Wood | Oct 2002 | A1 |
20030002038 | Mawatari | Jan 2003 | A1 |
20030028100 | Tearney et al. | Feb 2003 | A1 |
20030032880 | Moore | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030095248 | Frot | May 2003 | A1 |
20030097044 | Rovegno | May 2003 | A1 |
20030120150 | Govari | Jun 2003 | A1 |
20030120295 | Simpson et al. | Jun 2003 | A1 |
20030125756 | Shturman et al. | Jul 2003 | A1 |
20030125757 | Patel et al. | Jul 2003 | A1 |
20030125758 | Simpson et al. | Jul 2003 | A1 |
20030139751 | Evans et al. | Jul 2003 | A1 |
20030181855 | Simpson et al. | Sep 2003 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040057667 | Yamada et al. | Mar 2004 | A1 |
20040059257 | Gaber | Mar 2004 | A1 |
20040082850 | Bonner et al. | Apr 2004 | A1 |
20040092915 | Levatter | May 2004 | A1 |
20040093001 | Hamada | May 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040167553 | Simpson et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040181249 | Torrance et al. | Sep 2004 | A1 |
20040186368 | Ramzipoor et al. | Sep 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040202418 | Ghiron et al. | Oct 2004 | A1 |
20040220519 | Wulfman et al. | Nov 2004 | A1 |
20040230212 | Wulfman | Nov 2004 | A1 |
20040230213 | Wulfman et al. | Nov 2004 | A1 |
20040236312 | Nistal et al. | Nov 2004 | A1 |
20040243162 | Wulfman et al. | Dec 2004 | A1 |
20040254599 | Lipoma et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050020925 | Kleen et al. | Jan 2005 | A1 |
20050027199 | Clarke | Feb 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050054947 | Goldenberg | Mar 2005 | A1 |
20050075660 | Chu et al. | Apr 2005 | A1 |
20050085708 | Fauver et al. | Apr 2005 | A1 |
20050085721 | Fauver et al. | Apr 2005 | A1 |
20050105097 | Fang-Yen et al. | May 2005 | A1 |
20050141843 | Warden et al. | Jun 2005 | A1 |
20050154407 | Simpson | Jul 2005 | A1 |
20050159712 | Andersen | Jul 2005 | A1 |
20050159731 | Lee | Jul 2005 | A1 |
20050171478 | Selmon et al. | Aug 2005 | A1 |
20050177068 | Simpson | Aug 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050187571 | Maschke | Aug 2005 | A1 |
20050192496 | Maschke | Sep 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050201662 | Petersen et al. | Sep 2005 | A1 |
20050203553 | Maschke | Sep 2005 | A1 |
20050222519 | Simpson | Oct 2005 | A1 |
20050222594 | Maschke | Oct 2005 | A1 |
20050222663 | Simpson et al. | Oct 2005 | A1 |
20050251116 | Steinke et al. | Nov 2005 | A1 |
20060011820 | Chow-Shing et al. | Jan 2006 | A1 |
20060032508 | Simpson | Feb 2006 | A1 |
20060046235 | Alexander | Mar 2006 | A1 |
20060049587 | Cornwell | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060084911 | Belef et al. | Apr 2006 | A1 |
20060109478 | Tearney et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060173475 | Lafontaine et al. | Aug 2006 | A1 |
20060229646 | Sparks | Oct 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060235262 | Arnal et al. | Oct 2006 | A1 |
20060235366 | Simpson | Oct 2006 | A1 |
20060236019 | Soito et al. | Oct 2006 | A1 |
20060239982 | Simpson | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060264741 | Prince | Nov 2006 | A1 |
20060264743 | Kleen | Nov 2006 | A1 |
20060264907 | Eskridge et al. | Nov 2006 | A1 |
20070010840 | Rosenthal et al. | Jan 2007 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070015979 | Redel | Jan 2007 | A1 |
20070035855 | Dickensheets | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038125 | Kleen | Feb 2007 | A1 |
20070038173 | Simpson | Feb 2007 | A1 |
20070078469 | Soito et al. | Apr 2007 | A1 |
20070078500 | Ryan et al. | Apr 2007 | A1 |
20070081166 | Brown et al. | Apr 2007 | A1 |
20070088230 | Terashi et al. | Apr 2007 | A1 |
20070106155 | Goodnow et al. | May 2007 | A1 |
20070135712 | Maschke | Jun 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070196926 | Soito et al. | Aug 2007 | A1 |
20070213618 | Li et al. | Sep 2007 | A1 |
20070219484 | Straub | Sep 2007 | A1 |
20070250080 | Jones et al. | Oct 2007 | A1 |
20070255252 | Mehta | Nov 2007 | A1 |
20070270647 | Nahen et al. | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20070288036 | Seshadri | Dec 2007 | A1 |
20070299309 | Seibel et al. | Dec 2007 | A1 |
20080004643 | To et al. | Jan 2008 | A1 |
20080004644 | To et al. | Jan 2008 | A1 |
20080004645 | To et al. | Jan 2008 | A1 |
20080004646 | To et al. | Jan 2008 | A1 |
20080015491 | Bei et al. | Jan 2008 | A1 |
20080027334 | Langston | Jan 2008 | A1 |
20080033396 | Danek et al. | Feb 2008 | A1 |
20080045986 | To et al. | Feb 2008 | A1 |
20080049234 | Seitz | Feb 2008 | A1 |
20080058629 | Seibel et al. | Mar 2008 | A1 |
20080065124 | Olson | Mar 2008 | A1 |
20080065125 | Olson | Mar 2008 | A1 |
20080065205 | Nguyen et al. | Mar 2008 | A1 |
20080095421 | Sun et al. | Apr 2008 | A1 |
20080103439 | Torrance et al. | May 2008 | A1 |
20080103446 | Torrance et al. | May 2008 | A1 |
20080103516 | Wulfman et al. | May 2008 | A1 |
20080132929 | O'Sullivan et al. | Jun 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080146942 | Dala-Krishna | Jun 2008 | A1 |
20080147000 | Seibel et al. | Jun 2008 | A1 |
20080154293 | Taylor et al. | Jun 2008 | A1 |
20080154296 | Taylor et al. | Jun 2008 | A1 |
20080177138 | Courtney et al. | Jul 2008 | A1 |
20080186501 | Xie | Aug 2008 | A1 |
20080207996 | Tsai | Aug 2008 | A1 |
20080221388 | Seibel et al. | Sep 2008 | A1 |
20080228033 | Tumlinson et al. | Sep 2008 | A1 |
20080243030 | Seibel et al. | Oct 2008 | A1 |
20080243031 | Seibel et al. | Oct 2008 | A1 |
20080262312 | Carroll et al. | Oct 2008 | A1 |
20080275485 | Bonnette et al. | Nov 2008 | A1 |
20090018565 | To et al. | Jan 2009 | A1 |
20090018566 | Escudero et al. | Jan 2009 | A1 |
20090018567 | Escudero et al. | Jan 2009 | A1 |
20090024084 | Khosla et al. | Jan 2009 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090024191 | Seibel et al. | Jan 2009 | A1 |
20090028407 | Seibel et al. | Jan 2009 | A1 |
20090028507 | Jones et al. | Jan 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090073444 | Wang | Mar 2009 | A1 |
20090076447 | Casas et al. | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090099641 | Wu et al. | Apr 2009 | A1 |
20090125019 | Douglass et al. | May 2009 | A1 |
20090135280 | Johnston et al. | May 2009 | A1 |
20090137893 | Seibel et al. | May 2009 | A1 |
20090152664 | Tian et al. | Jun 2009 | A1 |
20090185135 | Volk | Jul 2009 | A1 |
20090196554 | Irisawa | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090208143 | Yoon et al. | Aug 2009 | A1 |
20090216180 | Lee et al. | Aug 2009 | A1 |
20090221904 | Shealy et al. | Sep 2009 | A1 |
20090221920 | Boppart et al. | Sep 2009 | A1 |
20090235396 | Wang et al. | Sep 2009 | A1 |
20090244485 | Walsh et al. | Oct 2009 | A1 |
20090244547 | Ozawa | Oct 2009 | A1 |
20090264826 | Thompson | Oct 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090292199 | Bielewicz et al. | Nov 2009 | A1 |
20090306520 | Schmitt et al. | Dec 2009 | A1 |
20090316116 | Melville et al. | Dec 2009 | A1 |
20090318862 | Ali et al. | Dec 2009 | A1 |
20100004544 | Toida | Jan 2010 | A1 |
20100021926 | Noordin | Jan 2010 | A1 |
20100049225 | To et al. | Feb 2010 | A1 |
20100080016 | Fukui et al. | Apr 2010 | A1 |
20100082000 | Honeck et al. | Apr 2010 | A1 |
20100125253 | Olson | May 2010 | A1 |
20100130996 | Doud et al. | May 2010 | A1 |
20100217245 | Prescott | Aug 2010 | A1 |
20100241147 | Maschke | Sep 2010 | A1 |
20100253949 | Adler et al. | Oct 2010 | A1 |
20100292539 | Lankenau et al. | Nov 2010 | A1 |
20100292721 | Moberg | Nov 2010 | A1 |
20100305452 | Black et al. | Dec 2010 | A1 |
20100312263 | Moberg et al. | Dec 2010 | A1 |
20100317973 | Nita | Dec 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110004107 | Rosenthal et al. | Jan 2011 | A1 |
20110023617 | Miao et al. | Feb 2011 | A1 |
20110028977 | Rauscher et al. | Feb 2011 | A1 |
20110040238 | Wulfman et al. | Feb 2011 | A1 |
20110058250 | Liu et al. | Mar 2011 | A1 |
20110060186 | Tilson et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110092955 | Purdy et al. | Apr 2011 | A1 |
20110106004 | Eubanks et al. | May 2011 | A1 |
20110118660 | Torrance et al. | May 2011 | A1 |
20110130777 | Zhang et al. | Jun 2011 | A1 |
20110144673 | Zhang et al. | Jun 2011 | A1 |
20110201924 | Tearney et al. | Aug 2011 | A1 |
20110208222 | Ljahnicky et al. | Aug 2011 | A1 |
20110257478 | Kleiner et al. | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110270187 | Nelson | Nov 2011 | A1 |
20110295148 | Destoumieux et al. | Dec 2011 | A1 |
20110301625 | Mauch et al. | Dec 2011 | A1 |
20110319905 | Palme et al. | Dec 2011 | A1 |
20120002928 | Irisawa | Jan 2012 | A1 |
20120004506 | Tearney et al. | Jan 2012 | A1 |
20120123352 | Fruland et al. | May 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120259337 | del Rio et al. | Oct 2012 | A1 |
20120277730 | Salahieh et al. | Nov 2012 | A1 |
20120289971 | Segermark et al. | Nov 2012 | A1 |
20130035692 | Sorensen et al. | Feb 2013 | A1 |
20130072787 | Wallace et al. | Mar 2013 | A1 |
20130096589 | Spencer et al. | Apr 2013 | A1 |
20130138128 | Patel et al. | May 2013 | A1 |
20130211221 | Sunnarborg et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130223801 | Bhagavatula et al. | Aug 2013 | A1 |
20130255069 | Higashi et al. | Oct 2013 | A1 |
20130266259 | Bhagavatula et al. | Oct 2013 | A1 |
20130287282 | Yokota et al. | Oct 2013 | A1 |
20130289392 | Patel et al. | Oct 2013 | A1 |
20130296695 | Spencer et al. | Nov 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130325003 | Kapur et al. | Dec 2013 | A1 |
20140005534 | He et al. | Jan 2014 | A1 |
20140046250 | Jain et al. | Feb 2014 | A1 |
20140128893 | Guggenheimer et al. | May 2014 | A1 |
20140213893 | Simpson et al. | Jul 2014 | A1 |
20140222042 | Kessler et al. | Aug 2014 | A1 |
20140371718 | Alvarez et al. | Dec 2014 | A1 |
20150025310 | Everingham et al. | Jan 2015 | A1 |
20150099984 | Kankaria | Apr 2015 | A1 |
20150141816 | Gupta et al. | May 2015 | A1 |
20150208922 | Simpson et al. | Jul 2015 | A1 |
20150272615 | Simpson et al. | Oct 2015 | A1 |
20150320975 | Simpson et al. | Nov 2015 | A1 |
20160008025 | Gupta et al. | Jan 2016 | A1 |
20160029902 | Smith et al. | Feb 2016 | A1 |
20160038030 | Smith et al. | Feb 2016 | A1 |
20160135832 | Simpson et al. | May 2016 | A1 |
20160144155 | Simpson et al. | May 2016 | A1 |
20170065293 | Rosenthal et al. | Mar 2017 | A1 |
20170065295 | Patel et al. | Mar 2017 | A1 |
20170238803 | Kankaria | Aug 2017 | A1 |
20170238808 | Simpson et al. | Aug 2017 | A1 |
20170273711 | Simpson et al. | Sep 2017 | A1 |
20180049700 | Black et al. | Feb 2018 | A1 |
20180192880 | Patel et al. | Jul 2018 | A1 |
20180207417 | Zung et al. | Jul 2018 | A1 |
20180256039 | Smith et al. | Sep 2018 | A1 |
20180256187 | Patel et al. | Sep 2018 | A1 |
20190029714 | Patel et al. | Jan 2019 | A1 |
20190110809 | Rosenthal et al. | Apr 2019 | A1 |
20190159796 | Simpson et al. | May 2019 | A1 |
20190209206 | Patel et al. | Jul 2019 | A1 |
20200060718 | Patel et al. | Feb 2020 | A1 |
20200069253 | Black et al. | Mar 2020 | A1 |
20200069327 | Patel et al. | Mar 2020 | A1 |
20200315654 | Patel et al. | Oct 2020 | A1 |
20210059713 | Patel et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
1875242 | Dec 2006 | CN |
1947652 | Apr 2007 | CN |
101601581 | Dec 2009 | CN |
103027727 | Apr 2013 | CN |
202006018883.5 | Feb 2007 | DE |
0347098 | Dec 1989 | EP |
0808638 | Nov 1997 | EP |
1859732 | Nov 2007 | EP |
2090245 | Aug 2009 | EP |
2353526 | Sep 2013 | EP |
S62275425 | Nov 1987 | JP |
03502060 | Feb 1990 | JP |
05103763 | Apr 1993 | JP |
H06-027343 | Feb 1994 | JP |
H07184888 | Jul 1995 | JP |
H07-308393 | Nov 1995 | JP |
2002-214127 | Jul 2002 | JP |
2004-509695 | Apr 2004 | JP |
2004-516073 | Jun 2004 | JP |
2005-114473 | Apr 2005 | JP |
2005-249704 | Sep 2005 | JP |
2005230550 | Sep 2005 | JP |
2005-533533 | Nov 2005 | JP |
2008-175698 | Jul 2006 | JP |
2006-288775 | Oct 2006 | JP |
2006-313158 | Nov 2006 | JP |
2006-526790 | Nov 2006 | JP |
2006-326157 | Dec 2006 | JP |
2007-83053 | Apr 2007 | JP |
2007-83057 | Apr 2007 | JP |
2007-225349 | Sep 2007 | JP |
2007533361 | Nov 2007 | JP |
2008-023627 | Feb 2008 | JP |
2008-128708 | Jun 2008 | JP |
2008-145376 | Jun 2008 | JP |
2008-183208 | Aug 2008 | JP |
2008-253492 | Oct 2008 | JP |
2009-14751 | Jan 2009 | JP |
2009-509690 | Mar 2009 | JP |
2009-66252 | Apr 2009 | JP |
2009-78150 | Apr 2009 | JP |
2009201969 | Sep 2009 | JP |
2010042182 | Feb 2010 | JP |
2010518900 | Jun 2010 | JP |
2011521747 | Jul 2011 | JP |
2012143558 | Aug 2012 | JP |
2012229976 | Nov 2012 | JP |
2012533353 | Dec 2012 | JP |
2013512736 | Apr 2013 | JP |
2013524930 | Jun 2013 | JP |
2015533584 | Nov 2015 | JP |
20070047221 | May 2007 | KR |
2185859 | Jul 2002 | RU |
2218191 | Dec 2003 | RU |
WO 9117698 | Nov 1991 | WO |
WO 9923958 | May 1999 | WO |
WO 0054659 | Sep 2000 | WO |
WO0115609 | Mar 2001 | WO |
WO 0176680 | Oct 2001 | WO |
WO 2006133030 | Dec 2006 | WO |
WO2008005888 | Jan 2008 | WO |
WO 2008029506 | Mar 2008 | WO |
WO 2008042987 | Apr 2008 | WO |
WO2008051951 | May 2008 | WO |
WO2008065600 | Jun 2008 | WO |
WO 2008086613 | Jul 2008 | WO |
WO 2008087613 | Jul 2008 | WO |
WO2009005779 | Jan 2009 | WO |
WO2009006335 | Jan 2009 | WO |
WO 2009009799 | Jan 2009 | WO |
WO2009009802 | Jan 2009 | WO |
WO 2009023635 | Feb 2009 | WO |
WO2009024344 | Feb 2009 | WO |
WO 2009094341 | Jul 2009 | WO |
WO 2009140617 | Nov 2009 | WO |
WO2009148317 | Dec 2009 | WO |
WO2010039464 | Apr 2010 | WO |
WO2010056771 | May 2010 | WO |
WO2011044387 | Apr 2011 | WO |
WO2011062087 | May 2011 | WO |
WO2012057940 | May 2012 | WO |
WO 2012061935 | May 2012 | WO |
WO2012123737 | Sep 2012 | WO |
WO2012166332 | Dec 2012 | WO |
WO2013033490 | Mar 2013 | WO |
WO2013056262 | Apr 2013 | WO |
Entry |
---|
Shinke et al., Evaluation of Stent Placement and Outcomes with Optical Coherence Tomography, Interv Cardiol. 2010;2(4):535-543. |
“Plaque Characterization With Optical Coherence Tomography” by D. Stamper et al. J American College of Cardiology. vol. 47, No. 8, pp. 69-79. 2006 (Year: 2006). |
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005. |
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987. |
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009. |
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990. |
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages. |
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994. |
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages. |
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages. |
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp.(011104-1)-(011104-8); Jan.-Feb. 2010. |
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010. |
Simpson et al.; U.S. Appl. No. 15/072,272 entitled “Atherectomy catheters devices having multi-channel bushings,” filed Mar. 16, 2016. |
Patel et al.; U.S. Appl. No. 15/076,568 entitled “Atherectomy catheters and occlusion crossing devices,” filed Mar. 21, 2016. |
Patel et al.; U.S. Appl. No. 15/162,330 entitled “Atherectomy catheters with longitudinally displaceable drive shafts,” filed May 23, 2016. |
Tachibana et al.; U.S. Appl. No. 15/162,391 entitled “Atherectomy catheter drive assemblies,” filed May 23, 2016. |
Patel et al.; U.S. Appl. No. 15/324,325 entitled “High speed chronic total occulusion crossing devices,” filed Jan. 6, 2017. |
Patel et al.; U.S. Appl. No. 15/480,238 entitled “Guidewire positioning catheter,” filed Apr. 5, 2017. |
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003. |
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003. |
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003. |
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999. |
Fernandez et al., U.S. Appl. No. 16/305,136 entitled “Catheter device with detachable distal end,” filed Nov. 28, 2018. |
Tachibana et al.; U.S. Appl. No. 16/372,112 entitled “Atherectomy catheter drive assemblies,” filed Apr. 1, 2019. |
Radjabi et al.; U.S. Appl. No. 16/347,840 entitled “Methods, systems and apparatuses for displaying real-time catheter position,” filed May 7, 2019. |
Newhauser et al.; U.S. Appl. No. 15/954,407 entitled “Occlusion-crossing devices,” filed Apr. 16, 2018. |
Christensen; U.S. Appl. No. 16/069,545 entitled “OCT imaging catheter with lag correction,” filed Jul. 12, 2018. |
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733lf_/http://fab.cba.mit.edu:80/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf) on Sep. 26, 2018. |
Patel et al.; U.S. Appl. No. 16/801,047 entitled “Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters,” filed Feb. 25, 2020. |
Smith et al.; U.S. Appl. No. 16/941,310 entitled “Chronic total occlusion crossing devices with imaging,” filed Jul. 28, 2020. |
Spencer et al., U.S. Appl. No. 16/943,446 entitled “Catheter-based off-axis optical coherence tomography imaging system,” filed Jul. 30, 2020. |
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical esperiences; Cardiovascular and Interventional Radiology; Sprinver-Verlag; 22(6); pp. 504-509; Nov. 1, 1999. |
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; vol. 78; 113102; 5 pages; Nov. 6, 2007. |
Simpson et al.; U.S. Appl. No. 17/075,548 entitled “Identification of elastic lamina to guide interventional therapy,” filed Oct. 20, 2020. |
Smith et al.; U.S. Appl. No. 17/189,123 entitled “Optical pressure sensor assembly,” filed Mar. 1, 2021. |
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021. |
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021. |
Number | Date | Country | |
---|---|---|---|
20160262839 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61559013 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13675867 | Nov 2012 | US |
Child | 15162353 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13433049 | Mar 2012 | US |
Child | 13675867 | US |