Occlusion device

Information

  • Patent Grant
  • 11648013
  • Patent Number
    11,648,013
  • Date Filed
    Thursday, November 19, 2020
    3 years ago
  • Date Issued
    Tuesday, May 16, 2023
    11 months ago
Abstract
Provided herein is an occlusion device comprising: (a) a substantially solid marker band having an inner and outer diameter, a proximal end, and a distal end; and (b) a resilient mesh body attached within the marker band, wherein the body is a length y, and wherein the body comprises a bolus of additional resilient mesh material of a length x, wherein y is greater than x, and wherein the body extends distally from the marker band having a first delivery shape and a second expandable deployed shape. Also provided herein is a kit comprising the occlusion device disclosed herein and a means for delivery thereof. Methods of manufacture and use of the occlusion device disclosed herein are also disclosed.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of occlusion devices and/or occlusion device systems and/or implantable occlusion devices and the treatment and/or amelioration of Left Atrial Appendage (LAA).


BACKGROUND OF THE DISCLOSURE

Left Atrial Appendage (LAA) or left auricle or auricula or left auricle appendix is a muscular pouch or wind-sock like structure projecting from the left atrium of the heart. During the disease pathology of atrial fibrillation (AF) or mitral valve disease or other heart conditions, blood clots can form in the LAA. For example, 10-20% of patients afflicted with AF will present with blood clot formation in the LAA. It is now known that 90% of the blood clots that form as a result of AF, form in the LAA. Blackshear J L, Odell J A (February 1996) Ann. Thorac. Surg. 61 (2): 755-9. Such blood clots pose the risk of dislodging and becoming embolic material which may pose significant risks relating to stroke or other ischemic damage to the body's organs. As such, LAA occlusion treatment techniques are a viable option to the prevention of stroke in AF or other disorders involving blood clot formation in the LAA.


LAA occlusion is an alternative treatment strategy to blood clotting drugs or anticoagulants such as in the class of coumarin-type drugs, heparin-based drugs, small molecule inhibitor drugs, antithrombin protein-based drugs, and/or the like. Not all patients are suitable candidates for such blood clotting medicines due to underlying issues relating to prior bleeds, non-compliance, and/or pregnancy (17% of patients in one study: Gottlieb L K, Salem-Schatz S (September 1994) Arch. Intern. Med. 154 (17): 1945-53), and are therefore in need of other treatment options such as the use of occlusion device strategies.


Current devices for LAA occlusion generally include an expandable nitinol frame or the like. One such catheter-based device comprises a body designed to occlude an LAA and a retention member secured to the body. However, while the use of such devices results in less hemorrhagic stroke than with anticoagulants alone, there are known disadvantages and limitations such as, without limitation, pericardial effusion, LAA closure, dislodgement of the device, blood clot formation on the device, anatomical incompatibilities and/or a combination thereof. Accordingly, there is a need for improved occlusion devices in the field.


While such occlusion devices may be found, for example in U.S. Pat. Nos. 5,025,060; 5,496,277; 5,928,260; 6,152,144; 6,168,622; 6,221,086; 6,334,048; 6,419,686; 6,506,204; 6,605,102; 6,589,256; 6,663,068; 6,669,721; 6,780,196; 7,044,134; 7,093,527; 7,128,073; 7,128,736; 7,152,605; 7,410,482; 7,722,641; 7,229,461; 7,410,482; 7,597,704; 7,695,488; 8,034,061; 8,080,032; 8,142,456; 8,261,648; 8,262,692; 8,361,138; 8,430,012; 8,454,633; 8,470,013; 8,500,751; 8,523,897; and 8,535,343; and United States Application Numbers 2003/0195553; 2004/0098027; 2006/0167494; 2006/0206199; 2007/0288083; 2008/0147100; 2008/0221600; 2010/0069948; 2011/0046658; 2012/0172973; 2012/0283768; 2012/0330341; 2013/0035712; 2013/0090682; 2013/0197622; 2013/0274868; and 2014/0005714; European Application Number EP 1651117; and International Application Numbers WO13/028579; WO13/109309; WO13/152327; none of these references disclose the embodiments of the occlusion device disclosed herein.


Reference is also made to commonly owned, U.S. patent application Ser. No. 14/699,188; which discloses a device for treating endovascular disease, and which is incorporated herein by reference in its entirety.


Therefore, disclosed herein are innovative improvements and several advantages in the field of occlusion devices because the occlusion device disclosed herein provides LAA treatment and/or amelioration while promoting more effective endothelialization around the device. Accordingly, an improved LAA occlusion device as disclosed herein maximizes shielding of blood flow into the left atrial appendage and traps any clot inside. Additionally, the occlusion device disclosed herein has an open mesh density which permits enhanced tissue integration and stabilization of the device. Other advantages include, without limitation, elimination of the need to place large numbers of coils or framing wires or nitinol cages in the LAA pouch and the cost-effectiveness relating thereto; a higher level of compatibility with challenging anatomies that are incompatible with current devices requiring significant real estate in the left atrium space adjacent to the LAA; and significant time-saving opportunities from the use of a single implant.


All documents and references cited herein and in the referenced patent documents, are hereby incorporated herein by reference.


SUMMARY OF THE INVENTION

The present inventor has designed an occlusion device for providing LAA treatment. As such, an occlusion device of the present invention is for promoting stabilization and more effective endothelialization around the device and is configured for maximizing shielding of blood flow into the LAA and traps any clot inside.


Disclosed herein is an occlusion device comprising: (a) a substantially solid marker band having an inner and outer diameter, a proximal end, and a distal end; and (b) a resilient mesh body attached within the marker band, wherein the body is a length y, and wherein the body comprises a bolus of additional resilient mesh material of a length x, wherein y is greater than x, and wherein the body extends distally from the marker band and the body has a first delivery shape and a second expandable deployed shape.


In one embodiment, the resilient mesh body comprises a dual layer of mesh. In a further embodiment, the dual layer of mesh is a circumferentially folded dual layer of mesh.


In one embodiment, the resilient mesh body has an open mesh density for enhanced tissue integration and/or stabilization of the occlusion device.


In another embodiment, the resilient mesh body and the bolus of additional resilient mesh material are dissimilar metals.


In another embodiment, the resilient mesh body is constructed from a super elastic material. In a further embodiment, the resilient mesh body is constructed from nitinol. In yet another embodiment, the resilient mesh body is constructed from DFT platinum core nitinol.


In another embodiment, the bolus of additional resilient mesh is constructed from a super elastic material. In a further embodiment, the bolus of additional resilient mesh is constructed from nitinol. In yet another embodiment, the bolus of additional resilient mesh is constructed from DFT platinum core nitinol.


In another embodiment, the marker band comprises a rigid member.


In another embodiment, the marker band comprises a rigid member selected from the group consisting of a ring, collar, and suture.


In another embodiment, the marker band is reinforced.


In another embodiment, the occlusion device is a Left Atrial Appendage (LAA) occlusion device.


Also disclosed herein is a kit comprising the occlusion device disclosed herein and a delivery means for deploying the occlusion device.


Additionally disclosed herein are methods for manufacture and/or delivery and/or deployment of the occlusion device disclosed herein.


In other embodiments, the occlusion device in the preceding paragraphs may incorporate any of the preceding or subsequently disclosed embodiments.


The Summary of the Invention is not intended to define the claims nor is it intended to limit the scope of the invention in any manner.


Other features and advantages of the invention will be apparent from the following Drawings, Detailed Description, and the Claims.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a cross section of an embodiment of the occlusion device disclosed herein for LAA treatment.



FIG. 2 illustrates an embodiment of the occlusion device disclosed herein deployed in a LAA pouch or cavity.





DETAILED DESCRIPTION

The present invention is illustrated in the drawings and description in which like elements are assigned the same reference numerals. However, while particular embodiments are illustrated in the drawings, there is no intention to limit the present invention to the specific embodiment or embodiments disclosed. Rather, the present invention is intended to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention. As such, the drawings are intended to be illustrative and not restrictive.


Unless otherwise defined, all technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this technology belongs.


Example implementations of the LAA occlusion device disclosed herein provide treatment and/or amelioration of LAA. Such an occlusion device is delivered intravascularly to the LAA site (pouch and/or cavity) via a catheter or other modes of delivery such that the deployed shape of the occlusion device forms a liner that at least seals the opening and/or inside of the LAA pouch, the substantially solid marker band traverses the opening of the LAA pouch or cavity while promoting more effective endothelialization around the device.


In an exemplary method of delivery of an occlusion device disclosed herein, a catheter is introduced into the left atrial space having a left atrial appendage (LAA), wherein there is formation of a blood clot or clots. The LAA generally includes the opening (or neck) of the LAA and the muscular pouch or cavity of the LAA. The catheter tip is positioned adjacent the opening of the LAA such that the occlusion device can be deployed. The occlusion device disclosed herein is configured of resilient mesh capable of expansion in a low profile manner, in the manner of an inverted mushroom, to effectively line the inside of the LAA pouch thereby occluding the LAA through promoting endothelialization around the device.


For the purposes of the disclosure herein, the terminology “low profile” means that the resilient mesh body of the device, in free air, has a height that is about 10-20% of its width, and therefore in its deployed shape the resilient mesh body, even though expanded, lay flush, in a flattened manner as in an inverted mushroom, up against the tissue walls of the LAA cavity such that it is positioned to cover at least partially, the interior surface of the LAA cavity. As such the opening and/or inside of the LAA pouch or cavity is sealed thereby occluding the LAA.


For the purposes of the disclosure herein, the terminology “corresponds to” means there is a functional and/or mechanical relationship between objects which correspond to each other. For example, an occlusion device delivery system corresponds to (or is compatible with) an occlusion device for deployment thereof.


For the purposes of the disclosure herein, the terminology “occlusion device” means and/or may be interchangeable with terminology such as, without limitation, “device” or “occlusion device system” or “occlusion system” or “system” or “occlusion device implant” or “implant” and the like.


Occlusion device delivery systems are well known and readily available in the art. For example, such delivery technologies may be found, without limitation, in U.S. Pat. Nos. 4,991,602; 5,067,489; 6,833,003; 2006/0167494; and 2007/0288083; each of the teachings of which are incorporated herein. For the purposes of the present invention, any type of occlusion device delivery means and/or delivery system and/or delivery technology and/or delivery mechanism and/or detachment (and/or attachment) means and/or detachment system and/or detachment technology and/or detachment mechanism may be utilized and/or modified in such a manner as to make it compatible (so as to correspond) with the occlusion device disclosed herein. Exemplary occlusion device delivery mechanisms and/or systems include, without limitation, guide wires, pusher wires, catheters, micro-catheters, and the like. Exemplary occlusion device detachment mechanisms include, without limitation, fluid pressure, electrolytic mechanisms, hydraulic mechanisms, interlocking mechanisms, and the like. In one embodiment, the occlusion device disclosed herein is used in a method of electrolytic detachment. Electrolytic detachment is well known in the art and can be found, for example, in U.S. Pat. Nos. 5,122,136; 5,423,829; 5,624,449; 5,891,128; 6,123,714; 6,589,230; and 6,620,152.


Exemplary embodiments of the occlusion device disclosed herein are depicted in FIGS. 1-2.



FIG. 1 shows an exemplary embodiment of an occlusion device as disclosed herein for promoting more effective endothelialization around the device. The occlusion device disclosed herein is configured of resilient mesh capable of expansion to effectively line (or coat) the inside of the LAA pouch thereby occluding the LAA through promoting endothelialization around the device. The occlusion device herein comprises a resilient mesh 20 body comprised of a circumferentially folded over single layer of mesh to create a dual layer of mesh. Such a 20 body extends distally from the 40 marker band and has a lengthy. The ends of the dual layer of mesh are attached within the 40 marker band. In one embodiment, the ends of the mesh are attached at the 90 proximal end of the 40 marker band and the 20 body extends distally. In another embodiment, the ends of the mesh are attached at the 100 distal end and the 20 body extends distally. The 20 body comprises within it a 30 bolus (additional mesh mass) of resilient mesh material of length x. In such an exemplary configuration of the occlusion device disclosed and illustrated herein, y is greater than x. Even in the expanded or deployed shape of the device, the 20 body maintains a low profile shape with respect to the LAA 50 pouch and inside which the 20 body of the device resides (and lines the LAA tissue 70 walls) upon deployment. As is accepted in the art, the x and y measurements in length of such an occlusion device are measured in free air. An exemplary range of the length (y) of the occlusion device 20 body is approximately 20-50 millimeters (mm) and an exemplary length (x) of the 30 bolus comprised within the 20 body is less than the value of length y. In one embodiment, the resilient mesh 20 body is attached inside/within the substantially solid 40 marker band and the 20 body extend distally from the 40 marker band. Such a configuration of the 40 marker band with respect to the 20 body confers the capability of the device to seal the 80 opening of the LAA and as such effectively occlude the LAA.



FIG. 2 shows an exemplary embodiment of an occlusion device as disclosed herein for treating and/or ameliorating LAA as deployed in the LAA 50 pouch. Such a configuration as illustrated in both FIG. 1 and FIG. 2 confers the capability of the device to seal the 80 opening of the LAA pouch and effectively occlude the LAA. In this embodiment, the mesh 20 body of the device lines, as in a low profile manner (lays flat against in the manner of an inverted mushroom), the LAA 70 walls. Accordingly, even in the deployed shape of the device disclosed herein and as also shown in FIG. 2, distance y is greater than distance x. In one embodiment, a size 12F catheter or smaller is used for deployment of the device disclosed herein. In another embodiment, electrolytic delivery and/or deployment and/or detachment via an electrolytic wire through the left atrial space adjacent to the LAA is used for the device disclosed herein. Electrolytic detachment means and methods such as those disclosed in U.S. Pat. No. 5,122,136 are well known in the art.


The low profile deployed shape of the 20 body of the device provides an anchor for the occlusion device without adversely interfering with fluid flow through left atrial space. This mechanism of action allows for the mesh 20 body's dual layer, expandable in it's deployed form in the manner of an inverted mushroom, to line the inner 70 walls of the LAA 50 pouch and facilitate endothelial growth through the open mesh density created by the mesh 20 body and its 30 bolus of additional mesh within the mesh body. Endothelialization around the device and/or endothelial growth around the 20 body of the device is triggered because such a configuration maximizes shielding of blood flow into the LAA and traps any 60 clot inside. The combination of the 30 bolus of mesh within the 20/30 dual mesh layer of the body causes the device to function in the LAA as an effective shield, i.e., as an enhanced area of coverage at the cap of the implant which further reduces blood flow. Such a device also functions as a stabilizer and prevents transfer of movement or forces through the mesh during expansion. This has several advantages including, without limitation, anchoring the device, providing undisturbed fluid flow, and/or facilitating neointimal development across the 80 opening of LAA, all without requiring any additional material (mesh or otherwise) in the left atrial space. As such, there is no additional mesh material component, other than the mesh 20 body comprising the 30 bolus of additional mesh within the 20 body and extending from the 40 marker band necessary for the device to anchor or stabilize within the LAA.


Such a configuration facilitates sealing of the 80 opening of the LAA and therefore 60 clot formation and/or healing and/or shrinkage of the LAA 50 pouch which is particularly advantageous if the size or mass of the 60 clot is causing pain or other side effects within the patient. Such a configuration is also advantageous because it requires a minimum amount of resilient mesh material thereby eliminating the need to fill or substantially fill, in a spherical, radially expanded manner, the space in the LAA 50 pouch. Such an occlusion device is also well suited for conformability across a broad range of LAA morphologies, particularly since it is well known and generally accepted that LAAs vary considerably in size and are not perfectly round in shape. Advantageously, because an occlusion device as disclosed herein, has a minimum of or less material than the current standard devices, this minimizes the need for anti-coagulation therapy and/or lessens the risk of clot emboli formation.


In another embodiment of an occlusion device disclosed herein, the resilient mesh 20 body of resilient mesh comprises a relatively uniform distribution of wire mesh strands or braids such as, without limitation, a 72 nitinol (NiTi) wire mesh strand braided configuration. In other embodiments, the occlusion device comprises wire mesh strands or braids that range from 36 to 144 NiTi strand braided configuration.


In another embodiment of an occlusion device disclosed herein, the 30 bolus of additional resilient mesh housed within the 20 body, comprises a relatively uniform distribution of wire mesh strands or braids such as, without limitation, a 72 nitinol (NiTi) wire mesh strand braided configuration. In other embodiments, the 30 bolus of the occlusion device comprises wire mesh strands or braids that range from 36 to 144 NiTi strand braided configuration. In one embodiment, the resilient mesh of the 20 body of the device is comprised of dissimilar metal(s) compared to the metal(s) within the additional resilient mesh of the 30 bolus within the 20 body.


In another embodiment, the mesh density of the inner 30 bolus is a double layer of mesh and is greater (or higher) than the mesh density of its 20 body's outer double layer of mesh.


An occlusion device disclosed herein is configured with resilient mesh material of a mesh density sufficient for functioning in such a manner as an endothelial cell scaffold within a vessel or across the 80 opening of the LAA and thereby reducing blood flow by about 60% to trigger clot formation and/or healing of the LAA. For the purposes of the present invention, the terminology “mesh density” means the level of porosity or the ratio of metal to open area of the mesh device. Mesh density relates to the number and size of the openings or pores of the mesh and by the extent that the pores are open or closed in situations where opening or pore openness varies between delivery and deployment. Generally, a high mesh density region of a resilient mesh material has approximately about 70% or more metal area and about 60% or less open area.


In one embodiment, the resilient mesh 20 body has an “open mesh density” for enhanced tissue integration and/or stabilization of the occlusion device. Open mesh density is greater than about 40% open area in the mesh. Open mesh density is known to have a low number, usually between about 40 and 80, picks per inch (PPI) to represent the porosity of the mesh layers. PPI is the number of repeat cross overs of braiding material in a linear inch. A high number of repeats (or PPI), usually between about 100 and 180, is an indicator that the mesh is dense. A lower number of repeats (or PPI) is an indicator that the mesh is porous (open). In an additional embodiment, the resilient mesh 20 body is constructed from a super elastic material, such as, without limitation, nitinol. In yet another embodiment, the resilient mesh 20 body is constructed from DFT platinum core nitinol. In other embodiments, when the 20 body mesh is constructed of nitinol, the 30 bolus within that 20 body mesh is constructed of DFT platinum core nitinol. In yet other embodiments, when the 20 body is constructed of DFT platinum core nitinol, the 30 bolus within that 20 body mesh is constructed of nitinol. DFT platinum core nitinol is used for enhancing visualization of the device during deployment and implantation.



FIGS. 1 and 2 also show the position of the 40 marker band, having a 90 proximal end and a 100 distal end, on an occlusion device of the present invention. The 40 marker is attached to the 20 body of the occlusion device and the body extends from the 100 distal end of the 40 marker band. In FIG. 2, the 90 proximal end of the 20 marker band is shown resting across, in the manner of a bridge, the 80 opening of the LAA to be treated, which, when combined with the properties of the low profile 14 resilient mesh 20 body comprising a 30 bolus of additional mesh, creates an open mesh density effect thereby promoting more effective endothelialization around the device. Other advantages include eliminating the need for incorporating additional mesh material extending proximally from the marker band in order to seal the 80 opening of the LAA or to anchor the device in the left atrial space. In addition, positioning the 90 proximal end of the 40 marker band to rest across the 80 opening of the LAA advantageously provides for full retrievability of the device.


In one embodiment of the device disclosed herein, a coil-wound core wire (or guide wire) of the catheter (or micro-catheter) is attached inside the 40 marker band at its 90 distal end to the ends of the 20 body of a dual layer of mesh. The coil wind maintains a constant diameter (ϕ) so as not to impact upon flexibility or stiffness of the delivery catheter or micro-catheter or guide wire. In certain embodiments, FEP (Fluorinated Ethylene Propylene) heat shrink tubing encases the coil-wound portion of the core wire. Numerous readily available and well known attachment techniques in the medical device arts can be used to attach the distal end of the core wire inside the 40 marker band and/or to the occlusion device or implant. Such known techniques are also used to attach the ends of the resilient mesh 20 body to and/or inside/within the 40 marker band. Such attachment techniques include, without limitation, adhesives, laser melting, laser tack, spot, and/or continuous welding. In one embodiment, an adhesive is used to attach the distal end of the core wire inside the 40 marker band. In another embodiment, an adhesive is used to attach the ends of the resilient mesh 20 body to and/or inside/within the 40 marker band. In a further embodiment, the adhesive is an epoxy material which is cured or hardened through the application of heat or UV (ultra-violet) radiation. In an even further embodiment, the epoxy is a thermal cured, two-part epoxy such as EPO-TEK® 353ND-4 available from Epoxy Technology, Inc., 14 Fortune Drive, Billerica, Mass. In an additional embodiment, such an adhesive or epoxy material encapsulates the junction of the core wire inside the 40 marker band and increases its mechanical stability.


In another embodiment, during and/or after deployment of the device, the coil-wound core wire detaches the device disclosed herein at an electrolytic detachment site (or zone) on the core wire itself in such a manner so that the core wire is severed and/or dissolved through electrolytic action at the base of the 40 marker band. Such action then releases and/or places the occlusion device into an LAA to be treated.


In one embodiment, the 40 marker band of the occlusion device disclosed herein is a substantially solid collar or rigid member such as, without limitation a solid ring comprised of materials such as, without limitation, gold, platinum, stainless steel, and/or combinations thereof. In another embodiment, radiopaque materials such as, without limitation, gold, platinum, platinum/iridium alloy, and/or combinations thereof, can be used. Such a 40 marker provides visualization of the device during delivery and placement. The solidness of the 40 marker helps confer stability of the device within the LAA and prevents movement or the transfer of forces through the resilient mesh of the device thereby preventing misplacement or accidental movement of the device. The 40 marker is also configured with a junction (the core wire attachment inside the 40 marker band) to cooperate and release from/attach to a corresponding delivery means such as, without limitation, a delivery catheter or guide wire and/or pusher wire technologies. It also advantageously provides for full retrievability of the device disclosed herein.


In another embodiment, the substantially solid 40 marker band comprises a radiopaque material (such as for example, without limitation, platinum, gold, platinum/iridium alloy, and/or combinations thereof) to facilitate visualization of the occlusion device under fluoroscopy during delivery, placement and/or deployment. The 40 marker comprises a 90 proximal end and a 100 distal end. Each 20 arm of resilient mesh is attached to the 40 marker band and extends from the 100 distal end of the 40 marker band. In one embodiment, the 40 marker band may be configured to influence shape, diameter, and/or curvature of the resilient mesh 20 body upon expansion of the occlusion device. The 40 marker may be designed in various shapes to influence the overall profile of the occlusion device to ensure a proper fit of the expanded/deployed occlusion device within the LAA 50 pouch.


In some embodiments of the occlusion device disclosed herein, the 40 marker band is a rigid member such as a ring, collar (such as, e.g., a crushed or flattened collar), band, or suture (such as e.g., a polymeric suture). Such a “substantially solid” or “rigid member” functions as a pinch point for gathering the ends of the 20 body of the device. In a further embodiment, the 40 marker band is reinforced and therefore mesh of the device traverses the 40 marker band to provide a continuous profile on the inner surface from the LAA 80 opening to the LAA 50 pouch. Such a reinforced 40 marker band comprises materials including, without limitation, plastically deformable and shape-memory resilient mesh material, wire braided mesh material (including various mesh braiding configurations such as, without limitation, 2 strands over—1 strand under, 1 strand under—1 strand over, 1 strand over—2 strands under, etc.), laser cut mesh material, and/or a combination thereof.


The substantially solid 40 marker band facilities delivery and positioning of the occlusion device adjacent the 80 opening of LAA by providing a rigid member to maneuver into the neck. Additionally, in some embodiments, the substantially solid 40 marker band provides visibility under fluoroscopy, thereby allowing more accurate visualization and exacting placement of the device.


In certain embodiments, the resilient mesh of the occlusion device disclosed herein can be filled with an embolic material such as, without limitation, liquid agents and/or particulates to promote clotting and closure of the LAA. Examples of liquid agents and particulates include, without limitation, gelatin foam, polyvinyl alcohol particles, tris-acryl gelatin microspheres, N-butyl-2-cynoacrylate, ethylene vinyl alcohol copolymer, calcium alginate gel, absolute alcohol, and the like.


In other embodiments, the occlusion device disclosed herein may further incorporate and/or be used with adjunctive elements and/or members well known in the art such as coiling techniques, framing coils, embolic agents, additional markers, polymers, resorbent polymers and/or a combination thereof.


Resilient mesh materials for design and/or manufacture of occlusion devices are readily available and well known by those skilled in the relevant art. As such, resilient mesh materials range from a wide variety of available materials such as, without limitation, nickel titanium (nitinol or otherwise known as NiTi), stainless steel, polymers, and/or combinations thereof. Exemplary known biomedical polymeric families include, without limitation, polymers such as polyphosphazenes, polyanhydrides, polyacetals, poly(ortho esters), polyphosphoesters, polycaprolactones, polyurethanes, polylactides, polycarbonates, polyamides, and/or a combination thereof. (See, e.g., J Polym Sci B Polym Phys. Author manuscript; available in PMC 2012 June 15.)


In one exemplary embodiment, the resilient mesh material is formed of woven strands of polymer material, such as, without limitation, nylon, polypropylene or polyester. The polymer strands can be filled with a radiopaque material which allows the physician treating the aneurysm to fluoroscopically visualize the location of the device within the vasculature. Radiopaque filler materials preferably include bismuth trioxide, tungsten, titanium dioxide or barium sulfate, or radiopaque dyes such as iodine. The resilient mesh material can be formed by strands of radiopaque material. The radiopaque strands allow the physician and/or radiologist to fluoroscopically visualize the location of the mesh, without the use of filled polymer materials. Such radiopaque strands may be formed with materials such as, without limitation, gold, platinum, a platinum/iridium alloy, and/or a combination thereof. In one embodiment, the resilient mesh material is constructed of 10%-20% platinum core NiTi. In another embodiment, the resilient mesh material is constructed of 10% platinum core NiTi, 15% platinum core NiTi, or 20% platinum core NiTi. 10% platinum core NiTi construction is sufficient to provide a ghost image of the occlusion device under x-ray.


Such constructed combination wires or composite wires having a radiopaque core and non-radiopaque outer layer or casing are readily available and well known in the medical device and metallic arts as DFT® (drawn-filled-tube) wires, cables or ribbons. DFT® wire is a metal-to-metal composite constructed to combine the desired physical and mechanical attributes of two or more materials into a single wire. By placing the more radiopaque, but more ductile material in the core of the wire, the NiTi outer layer is able to provide the resulting composite wire with similar mechanical properties of a 100% NiTi wire. DFT® wires are available from Fort Wayne Metals Corp., Fort Wayne, Ind., U.S.A. See also, for example, the journal article entitled Biocompatible Wire by Schaffer in Advanced Materials & Processes, October 2002, pages 51-54, incorporated herein by reference.


Where the resilient mesh material is formed of radiopaque metal strands, the strands may be covered with a polymer coating or extrusion. The coating or extrusion over the radiopaque wire strands provides fluoroscopic visualization but also increases the resistance of the strands to bending fatigue and may also increase lubricity of the strands. The polymer coating or extrusion, in one embodiment, is coated or treated with an agent which tends to resist clotting, such as heparin. Such clot resistant coatings are generally known. The polymer coating or extrusion can be any suitable extrudable polymer, or any polymer that can be applied in a thin coating, such as Teflon® or polyurethane.


In yet another embodiment, the strands of the resilient mesh material are formed using both metal and polymer braided strands. Combining the metal strands with the polymer strands into a braid changes the flexibility characteristics of mesh. The force required to deploy and/or collapse such a mesh portion is significantly reduced over that required for a mesh portion that includes only metal mesh strands. However, the radiopaque characteristics of the mesh for fluoroscopic visualization are retained. Metal strands forming such a device includes, without limitation, stainless steel, gold, platinum, platinum/iridium, nitinol, and/or combinations thereof. Polymer strands forming the device can include nylon, polypropylene, polyester, Teflon®, and/or combinations thereof. Further, polymer strands of the mesh material can be chemically modified to make them radiopaque with known techniques such as, without limitation, by using gold deposition onto the polymer strands, or by using ion beam plasma deposition of suitable metal ions onto the polymer strands.


The resilient mesh material can also be formed with filaments or strands of varying diameter and/or varying flexibility. By varying the size or flexibility of the polymer strands, the flexibility characteristics of the mesh, upon deployment, can also be varied. By varying the flexibility characteristics, both the deployed and collapsed configuration of the resilient mesh 20 body can be varied or changed to substantially any desired shape.


Not only can the mesh be formed of both polymer strands or filaments and metal strands or filaments, but it can also be formed using filaments of different polymer materials. For example, different polymer materials having different flexibility characteristics can be used in forming the mesh. This alters the flexibility characteristics of the device to change the resultant configuration of the mesh 20 body in both the deployed and the collapsed positions. Such biomedical polymers are readily known and available in the art and can be derived from polymeric families such as, without limitation, polyphosphazenes, polyanhydrides, polyacetals, poly (ortho esters), polyphosphoesters, polycaprolactones, polyurethanes, polylactides, polycarbonates, polyamides, and/or a combination thereof.


Resilient mesh materials suitable for use within the device may take the form of a flat woven sheet, knitted sheet, or a laser cut wire mesh. In general, the material should include two or more sets of substantially parallel strands, with one set of parallel strands being at a pitch of between 45 degrees and 135 degrees with respect to the other set of parallel strands. In some embodiments, the two sets of parallel strands forming the mesh material are substantially perpendicular to each other. The pitch and general construction of the mesh material may be optimized to meet the performance needs of the occlusion device.


The wire strands of the metal fabric used in the present invention should be formed of a material which is both resilient and can be heat-treated to substantially set a desired shape. Materials which are believed to be suitable for this purpose include a cobalt-based low thermal expansion alloy referred to in the field of occlusion devices as Elgiloy® (available from Eligiloy Specialty Metals, Elgin, Ill.), nickel-based high-temperature high-strength “superalloys” commercially available from Haynes International under the trade name Hastelloy®, nickel-based heat treatable alloys sold under the name Incoloy® by International Nickel, and a number of different grades of stainless steel. The important factor in choosing a suitable material for the wires is that the wires retain a suitable amount of the deformation induced by the molding surface (or shape memory, as described below) when subjected to a predetermined heat treatment.


One class of materials which meet these qualifications are so-called shape memory alloys. Such alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration which can be fixed by heating the material above a certain transition temperature to induce a change in the phase of the material. When the alloy is cooled, the alloy will “remember” the shape it was in during the heat treatment and will tend to assume that same and/or similar configuration unless constrained from doing so.


One particular shape memory alloy for use in the present invention is nitinol, an approximately stoichiometric alloy of nickel and titanium, which may also include other minor amounts of other metals to achieve desired properties. NiTi alloys such as nitinol, including appropriate compositions and handling requirements, are well known in the art and such alloys need not be discussed in detail here. For example, U.S. Pat. Nos. 5,067,489 and 4,991,602, the teachings of which are incorporated herein by reference, discuss the use of shape memory NiTi alloys in guide wire-based technologies. Such NiTi alloys are preferred, at least in part, because they are commercially available and more is known about handling such alloys than other known shape memory alloys. NiTi alloys are also very elastic. Indeed, they are said to be known as “superelastic” or “pseudoelastic.” This elasticity will help an occlusion device as disclosed herein to return to prior expanded configuration for deployment thereof.


The wire strands can comprise a standard monofilament of the selected material, i.e., a standard wire stock may be used. In some embodiments, 72 wire strands and/or 72 strand braid configuration may be used. In other embodiments, the occlusion device comprises wire mesh strands or braids that range from 36 to 144 NiTi strand braided configurations. If so desired, though, the individual wire strands may be formed from “cables” made up of a plurality of individual wires. For example, cables formed of metal wires where several wires are helically wrapped about a central wire are commercially available and NiTi cables having an outer diameter of 0.003 inches or less can be purchased. One advantage of certain cables is that they tend to be “softer” than the monofilament wires having the same diameter and formed of same material. Additionally, the use of a cable can increase the effective surface area of the wire strand, which will tend to promote thrombosis.


In some embodiments, the resilient mesh may be formed uniformly of the same material; however such material may have different knitted, stitched, braided, and/or cut construction.


In other embodiments, the occlusion device disclosed herein can be used, when scaled accordingly, in endovascular techniques such as for the treatment and/or ameliorization of aneurysms, particularly large and irregular sized aneurysms, and to promote more effective endothelialization around the device. In this regard, reference is made to commonly owned, U.S. patent application Ser. No. 14/699,188; which is incorporated herein by reference. Additionally, the occlusion device disclosed herein can be used, when scaled accordingly, in the process of peripheral vascular embolization (a process well known in the art and known to involve the shutdown of blood flow distal to a specified vascular point), for example, in the treatment and/or amelioration of peripheral arterial or venous pathologies and/or any related pathologies requiring vessel occlusion for the treatment thereof.


The occlusion device of the present invention may incorporate reasonable design parameters, features, modifications, advantages, and variations that are readily apparent to those skilled in the art in the field of occlusion devices.

Claims
  • 1. An occlusion device comprising: (a) a marker band having an inner diameter and an outer diameter, a proximal end, and a distal end; and(b) a resilient mesh body attached within the marker band, the body having a bolus of resilient mesh material and being longer than the bolus, the body further comprising a single layer of resilient mesh circumferentially folded over onto itself to create a dual layer of mesh and having folded over ends of the resilient mesh, all the folded over ends of the dual layer of mesh are attached within the marker, and(c) the body having a first delivery shape and a second expandable deployed inverted mushroom shape extending distally from the marker band.
  • 2. The occlusion device of claim 1, wherein the mesh has a density sufficient to function as an endothelial scaffold within a human vessel.
  • 3. The occlusion device of claim 2, wherein a high mesh density region of the resilient mesh has about 70% or more metal area.
  • 4. The occlusion device of claim 1, wherein a coil-wound core wire or guide wire of a catheter or micro-catheter is attached inside and at the distal end of the marker band.
  • 5. The occlusion device of claim 1, wherein the body has an open mesh density for enhanced tissue integration and/or stabilization of the occlusion device.
  • 6. The occlusion device of claim 1, wherein resilient mesh body and the bolus of additional resilient mesh material are dissimilar metals.
  • 7. The occlusion device of claim 1, wherein the resilient mesh body is constructed from a super elastic material.
  • 8. The occlusion device of claim 5, wherein the resilient mesh body is constructed from nitinol.
  • 9. The occlusion device of claim 5, wherein the resilient mesh body is constructed from DFT platinum core nitinol.
  • 10. The occlusion device of claim 1, wherein the bolus of resilient mesh material is constructed from a super elastic material.
  • 11. The occlusion device of claim 1, wherein the marker band is a rigid member.
  • 12. The occlusion device of claim 8, wherein the bolus is constructed from nitinol.
  • 13. The occlusion device of claim 8, wherein the bolus is constructed from DFT platinum core nitinol.
  • 14. The occlusion device of claim 1, wherein the marker band comprises at least one material selected from the group consisting of plastically deformable and shape-memory resilient mesh material, wire braided mesh material, wire braided mesh material, laser cut mesh material.
  • 15. The occlusion device of claim 11, wherein the rigid member is a ring, or a collar.
  • 16. The occlusion device of claim 1, wherein the marker band is radiopaque.
  • 17. The occlusion device of claim 1, comprising a Left Atrial Appendage (LAA) occlusion device.
  • 18. A method for treating or ameliorating Left Atrial Appendage (LAA) in a patient, the method comprising: i.) delivering to an LAA the occlusion device of claim 1 andii.) deploying the occlusion device in the LAA, thereby treating or ameliorating LAA in the patient.
  • 19. The method of claim 18, which comprises deploying the device through the left atrial space adjacent to the LAA using an electrolytic wire.
  • 20. The method of claim 19, which comprises deploying the device with a catheter.
US Referenced Citations (466)
Number Name Date Kind
2849002 Oddo Aug 1958 A
3480017 Shute Nov 1969 A
4364392 Strother et al. Dec 1982 A
4395806 Wonder et al. Aug 1983 A
4545367 Tucci Oct 1985 A
4836204 Landymore et al. Jun 1989 A
4991602 Amplatz et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5025060 Yabuta et al. Jun 1991 A
5065772 Cox, Jr. Nov 1991 A
5067489 Lind Nov 1991 A
5122136 Guglielmi et al. Jun 1992 A
5192301 Kamiya et al. Mar 1993 A
5423829 Pham et al. Jun 1995 A
5496277 Termin et al. Mar 1996 A
5624449 Pham et al. Apr 1997 A
5733294 Forber et al. Mar 1998 A
5891128 Gia et al. Apr 1999 A
5928260 Chin et al. Jul 1999 A
6007573 Wallace et al. Dec 1999 A
6024756 Pham Feb 2000 A
6080191 Thaler Jun 2000 A
6096021 Helm et al. Aug 2000 A
6113609 Adams Sep 2000 A
6123714 Gia et al. Sep 2000 A
6152144 Lesh et al. Nov 2000 A
6168579 Tsugita Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6221086 Forber Apr 2001 B1
6270515 Linden et al. Aug 2001 B1
6315787 Tsugita et al. Nov 2001 B1
6334048 Edvardsson et al. Dec 2001 B1
6419686 McLeod et al. Jul 2002 B1
6454780 Wallace Sep 2002 B1
6463317 Kucharczyk et al. Oct 2002 B1
6506204 Mazzocchi Jan 2003 B2
6527919 Roth Mar 2003 B1
6547804 Porter et al. Apr 2003 B2
6551303 Tassel et al. Apr 2003 B1
6569190 Whalen, II et al. May 2003 B2
6589230 Gia et al. Jul 2003 B2
6589256 Forber Jul 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6620152 Guglielmi Sep 2003 B2
6663068 Huang Dec 2003 B2
6669719 Wallace et al. Dec 2003 B2
6669721 Bose et al. Dec 2003 B1
6689159 Lau et al. Feb 2004 B2
6780196 Chin et al. Aug 2004 B2
6811560 Jones Nov 2004 B2
6833003 Jones et al. Dec 2004 B2
6855154 Abdel-Gawwad Feb 2005 B2
6949116 Solymar et al. Sep 2005 B2
6953472 Palmer Oct 2005 B2
7044134 Khairkhahan et al. May 2006 B2
7093527 Rapaport et al. Aug 2006 B2
7128073 Burg et al. Oct 2006 B1
7128736 Abrams et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7195636 Avellanet et al. Mar 2007 B2
7229454 Tran et al. Jun 2007 B2
7229461 Chin et al. Jun 2007 B2
7232461 Ramer Jun 2007 B2
7306622 Jones Dec 2007 B2
7371249 Douk et al. May 2008 B2
7410482 Murphey et al. Aug 2008 B2
7572288 Cox Aug 2009 B2
7597704 Frazier et al. Oct 2009 B2
7695488 Berenstein et al. Apr 2010 B2
7713264 Murphy May 2010 B2
7722641 Burg et al. May 2010 B2
7744652 Morsi Jun 2010 B2
7828818 Zang et al. Nov 2010 B2
7892254 Klint Feb 2011 B2
8034061 Amplatz et al. Oct 2011 B2
8066757 Ferrera Nov 2011 B2
8075585 Lee et al. Dec 2011 B2
8080032 Burg et al. Dec 2011 B2
8088140 Ferrera Jan 2012 B2
8142456 Rosqueta et al. Mar 2012 B2
8221483 Ford et al. Jul 2012 B2
8252040 Cox Aug 2012 B2
8261648 Marchand et al. Sep 2012 B1
8262692 Rudakov Sep 2012 B2
8267923 Murphy Sep 2012 B2
8361106 Solar et al. Jan 2013 B2
8361138 Adams Jan 2013 B2
8372114 Hines Feb 2013 B2
8398671 Chen et al. Mar 2013 B2
8430012 Marchand et al. Apr 2013 B1
8454633 Amplatz et al. Jun 2013 B2
8470013 Duggal et al. Jun 2013 B2
8500751 Rudakov et al. Aug 2013 B2
8523897 Burg et al. Sep 2013 B2
8535343 Burg et al. Sep 2013 B2
8545514 Ferrera Oct 2013 B2
8562667 Cox Oct 2013 B2
8574262 Ferrera Nov 2013 B2
8585713 Ferrera Nov 2013 B2
8597320 Sepetka Dec 2013 B2
8663273 Khairkhahan Mar 2014 B2
8696701 Becking Apr 2014 B2
8715312 Burke May 2014 B2
8715316 Janardhan et al. May 2014 B1
8747453 Amplatz Jun 2014 B2
8771294 Sepetka Jul 2014 B2
8834519 Van Der Burg Sep 2014 B2
8926680 Ferrera Jan 2015 B2
8945172 Ferrera Feb 2015 B2
9034054 Gerberding May 2015 B2
9039724 Amplatz et al. May 2015 B2
9060077 Sayama Jun 2015 B2
9060777 Wallace Jun 2015 B1
9078658 Hewitt Jul 2015 B2
9107670 Hannes Aug 2015 B2
9138213 Amin Sep 2015 B2
9161758 Figulla Oct 2015 B2
9168043 Van Der Burg Oct 2015 B2
9179918 Levy Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198668 Theobald Dec 2015 B2
9198670 Hewitt Dec 2015 B2
9198687 Fulkerson Dec 2015 B2
9220522 Fulkerson Dec 2015 B2
9259337 Cox Feb 2016 B2
9271736 Heipl Mar 2016 B2
9295473 Hewitt Mar 2016 B2
9307998 Chin Apr 2016 B2
9314326 Wallace Apr 2016 B2
9387098 Ferrera Jul 2016 B2
9474517 Amin Oct 2016 B2
9492174 Hewitt Nov 2016 B2
9498604 Dubrul Nov 2016 B2
9532772 Moszner Jan 2017 B2
9539122 Burke Jan 2017 B2
9545300 Cully Jan 2017 B2
9572698 Franano Feb 2017 B2
9597087 Marchand Mar 2017 B2
9622770 Trapp Apr 2017 B2
9629635 Hewitt Apr 2017 B2
9795400 Davidson Oct 2017 B2
9826980 Figulla Nov 2017 B2
9839430 Willems Dec 2017 B2
9861467 Cully Jan 2018 B2
9877726 Liu Jan 2018 B2
9918720 Marchand Mar 2018 B2
9943299 Khairkhahan Apr 2018 B2
9955976 Hewitt May 2018 B2
9962146 Hebert May 2018 B2
9980733 Badruddin May 2018 B2
10028745 Morsi Jul 2018 B2
10028747 Connor Jul 2018 B2
10076399 Davidson Sep 2018 B2
10123803 Ferrera et al. Nov 2018 B2
10130372 Griffin Nov 2018 B2
10136896 Hewitt et al. Nov 2018 B2
10159490 Wallace et al. Dec 2018 B2
10231722 Hebert et al. Mar 2019 B2
10238393 Marchand et al. Mar 2019 B2
10265075 Porter et al. Apr 2019 B2
10278705 Amin et al. May 2019 B2
10285678 Hebert et al. May 2019 B2
10285679 Hebert et al. May 2019 B2
10285711 Griffin May 2019 B2
10299775 Hebert et al. May 2019 B2
10342546 Sepetka et al. Jul 2019 B2
10383635 Wallace et al. Aug 2019 B2
10398441 Warner et al. Sep 2019 B2
10398444 Morsi Sep 2019 B2
10433851 Adams et al. Oct 2019 B2
10478194 Rhee et al. Nov 2019 B2
10499939 Davidson Dec 2019 B2
10537451 Franano et al. Jan 2020 B2
10543015 Walzman Jan 2020 B2
10543115 Franano et al. Jan 2020 B2
10548607 Walzman Feb 2020 B2
10561411 Cole et al. Feb 2020 B1
10561441 Walzman Feb 2020 B2
10603070 Walzman Mar 2020 B2
10610231 Marchand et al. Apr 2020 B2
10617428 Walzman Apr 2020 B2
10653403 Hebert et al. May 2020 B2
10716549 Keillor Jul 2020 B2
10716573 Connor Jul 2020 B2
10716574 Lorenzo et al. Jul 2020 B2
10729447 Shimizu et al. Aug 2020 B2
10743852 Moszner et al. Aug 2020 B2
10743884 Lorenzo Aug 2020 B2
10751065 Soto Del Valle et al. Aug 2020 B2
10751066 Lorenzo Aug 2020 B2
10772747 Fischer et al. Sep 2020 B2
10808341 Koppe Oct 2020 B2
10813645 Hewitt et al. Oct 2020 B2
10835257 Ferrera et al. Nov 2020 B2
10856879 Badruddin et al. Dec 2020 B2
10856880 Badruddin et al. Dec 2020 B1
10869672 Griffin Dec 2020 B2
10881413 Merritt et al. Jan 2021 B2
10888333 Kealey et al. Jan 2021 B2
10905430 Lorenzo et al. Feb 2021 B2
10925612 Wallace et al. Feb 2021 B2
10939914 Hewitt et al. Mar 2021 B2
10939915 Gorochow et al. Mar 2021 B2
10952739 Plaza et al. Mar 2021 B2
10959735 Morsi Mar 2021 B2
10980545 Bowman et al. Apr 2021 B2
11006940 Herbert et al. May 2021 B2
11033277 Wolfe et al. Jun 2021 B2
11045177 Walzman Jun 2021 B2
11045203 Sepetka et al. Jun 2021 B2
11058430 Gorochow et al. Jul 2021 B2
11058431 Pereira et al. Jul 2021 B2
11076860 Lorenzo Aug 2021 B2
11076861 Gorochow et al. Aug 2021 B2
11090078 Walzman Aug 2021 B2
11090176 Franano et al. Aug 2021 B2
11123077 Lorenzo et al. Sep 2021 B2
11134933 Amplatz et al. Oct 2021 B2
11154302 Lorenzo Oct 2021 B2
11166731 Wolfe et al. Nov 2021 B2
11179159 Cox et al. Nov 2021 B2
11185335 Badruddin et al. Nov 2021 B2
11202636 Zaidat et al. Dec 2021 B2
11241223 Herbert et al. Feb 2022 B2
11253261 Jayaraman Feb 2022 B2
11266414 Fulton, III Mar 2022 B2
11284901 Griffin Mar 2022 B2
20010041900 Callister Nov 2001 A1
20020082638 Porter et al. Jun 2002 A1
20020143349 Gifford, II et al. Oct 2002 A1
20020169473 Sepetka Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030055451 Jones et al. Mar 2003 A1
20030120337 Tassel et al. Jun 2003 A1
20030171739 Murphy et al. Sep 2003 A1
20030176884 Berrada Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030195553 Wallace et al. Oct 2003 A1
20030220667 Van Der Burg Nov 2003 A1
20040034366 Burg et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040087998 Lee et al. May 2004 A1
20040098027 Teoh et al. May 2004 A1
20040127935 Tassel et al. Jul 2004 A1
20040133222 Tran et al. Jul 2004 A1
20040167597 Costantino Aug 2004 A1
20040172056 Guterman Sep 2004 A1
20040181253 Sepetka Sep 2004 A1
20040193246 Ferrera Sep 2004 A1
20040254594 Alfaro Dec 2004 A1
20040260332 Dubrul Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050119684 Guterman Jun 2005 A1
20050251200 Porter Nov 2005 A1
20060052816 Bates et al. Mar 2006 A1
20060058735 Lesh Mar 2006 A1
20060064151 Guterman Mar 2006 A1
20060116709 Sepetka Jun 2006 A1
20060116713 Sepetka Jun 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060155367 Hines Jul 2006 A1
20060167494 Suddaby Jul 2006 A1
20060206199 Churchwell et al. Sep 2006 A1
20070043391 Moszner et al. Feb 2007 A1
20070106311 Wallace et al. May 2007 A1
20070150045 Ferrera Jun 2007 A1
20070173928 Morsi Jul 2007 A1
20070198075 Levy Aug 2007 A1
20070203567 Levy Aug 2007 A1
20070208376 Meng Sep 2007 A1
20070225760 Moszner Sep 2007 A1
20070270902 Slazas Nov 2007 A1
20070288083 Hines Dec 2007 A1
20080045995 Guterman Feb 2008 A1
20080097401 Trapp Apr 2008 A1
20080097495 Feller, III et al. Apr 2008 A1
20080119886 Greenhalgh May 2008 A1
20080147100 Wallace Jun 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20090082803 Adams Mar 2009 A1
20090099647 Glimsdale et al. Apr 2009 A1
20090192455 Ferrera Jul 2009 A1
20090209855 Drilling et al. Aug 2009 A1
20090228029 Lee Sep 2009 A1
20090281557 Sander et al. Nov 2009 A1
20090297582 Meyer Dec 2009 A1
20090318941 Sepetka Dec 2009 A1
20100069948 Veznedaroglu et al. Mar 2010 A1
20100174309 Fulkerson Jul 2010 A1
20100217187 Fulkerson Aug 2010 A1
20100256600 Ferrera Oct 2010 A1
20100268204 Tieu et al. Oct 2010 A1
20100318097 Ferrera Dec 2010 A1
20110022149 Cox Jan 2011 A1
20110040319 Fulton, III Feb 2011 A1
20110046658 Connor et al. Feb 2011 A1
20110054519 Neuss Mar 2011 A1
20110082491 Sepetka Apr 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110190797 Fulkerson Aug 2011 A1
20110202085 Loganathan Aug 2011 A1
20110264132 Strauss Oct 2011 A1
20110319926 Becking et al. Dec 2011 A1
20110319978 Schaffer Dec 2011 A1
20120016406 Ferrera Jan 2012 A1
20120041460 Ferrera Feb 2012 A1
20120041475 Ferrera Feb 2012 A1
20120071911 Sadasivan Mar 2012 A1
20120150147 Leynov Jun 2012 A1
20120165919 Cox Jun 2012 A1
20120172973 Deckard et al. Jul 2012 A1
20120271337 Figulla et al. Oct 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120330341 Becking et al. Dec 2012 A1
20120330347 Becking Dec 2012 A1
20130035628 Garrison et al. Feb 2013 A1
20130035712 Theobald et al. Feb 2013 A1
20130066357 Aboytes et al. Mar 2013 A1
20130066360 Becking Mar 2013 A1
20130066413 Jin Mar 2013 A1
20130090682 Bachman et al. Apr 2013 A1
20130123830 Becking May 2013 A1
20130165967 Amin Jun 2013 A1
20130190800 Murphy Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130245667 Marchand Sep 2013 A1
20130274862 Cox Oct 2013 A1
20130274866 Cox Oct 2013 A1
20130274868 Cox et al. Oct 2013 A1
20140005714 Quick et al. Jan 2014 A1
20140012307 Franano et al. Jan 2014 A1
20140012363 Franano et al. Jan 2014 A1
20140018838 Franano et al. Jan 2014 A1
20140052233 Cox Feb 2014 A1
20140163609 Solem Jun 2014 A1
20140172001 Becking et al. Jun 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140257360 Keillor Sep 2014 A1
20140257374 Heisel et al. Sep 2014 A1
20140343602 Cox Nov 2014 A1
20140358178 Hewitt et al. Dec 2014 A1
20150105817 Marchand Apr 2015 A1
20150133990 Davidson May 2015 A1
20150150563 Marchand Jun 2015 A1
20150250628 Monstadt Sep 2015 A1
20150272589 Lorenzo Oct 2015 A1
20150313605 Griffin Nov 2015 A1
20150351770 Fulton, III Dec 2015 A1
20150351775 Fulton, III Dec 2015 A1
20160106437 Van Der Burg Apr 2016 A1
20160113662 Kobayashi et al. Apr 2016 A1
20160120551 Connor May 2016 A1
20160174991 Chin Jun 2016 A1
20160206321 Connor Jul 2016 A1
20160213380 O'Brien Jul 2016 A1
20160249934 Hewitt et al. Sep 2016 A1
20160249935 Hewitt et al. Sep 2016 A1
20160345979 Adams et al. Dec 2016 A1
20170128077 Hewitt et al. May 2017 A1
20170156733 Becking Jun 2017 A1
20170156734 Griffin Jun 2017 A1
20170172581 Bose Jun 2017 A1
20180125500 Connor May 2018 A1
20180193024 Walzman Jul 2018 A1
20180193027 Wang et al. Jul 2018 A1
20180193043 Marchand et al. Jul 2018 A1
20180206848 Walzman Jul 2018 A1
20180206851 Walzman Jul 2018 A1
20180214158 Walzman Aug 2018 A1
20180333248 Davidson Nov 2018 A1
20190008522 Lorenzo Jan 2019 A1
20190053810 Griffin Feb 2019 A1
20190059909 Griffin Feb 2019 A1
20190110796 Jayaraman Apr 2019 A1
20190183519 Imai et al. Jun 2019 A1
20190209146 Hebert Jul 2019 A1
20190209178 Richter Jul 2019 A1
20190216467 Goyal Jul 2019 A1
20190223876 Badruddin Jul 2019 A1
20190223881 Hewitt Jul 2019 A1
20190231328 Hebert Aug 2019 A1
20190262002 Benjamin Aug 2019 A1
20190269414 Griffin Sep 2019 A1
20190274691 Sepetka Sep 2019 A1
20190336132 Warner Nov 2019 A1
20190343533 Costalat Nov 2019 A1
20190357914 Gorochow Nov 2019 A1
20190365472 Connor Dec 2019 A1
20190374228 Wallace Dec 2019 A1
20190380718 Morsi Dec 2019 A1
20190388108 Ferrera Dec 2019 A1
20200029973 Walzman Jan 2020 A1
20200038032 Rhee Feb 2020 A1
20200038035 Griffin Feb 2020 A1
20200054344 Connor Feb 2020 A1
20200060702 Davidson Feb 2020 A1
20200069313 Xu Mar 2020 A1
20200093499 Lorenzo Mar 2020 A1
20200100795 Connor Apr 2020 A1
20200113576 Gorochow Apr 2020 A1
20200138422 Hebert May 2020 A1
20200155333 Franano May 2020 A1
20200163784 Franano May 2020 A1
20200187952 Walsh Jun 2020 A1
20200187978 Walzman Jun 2020 A1
20200253766 Walzman Aug 2020 A1
20200268365 Hebert Aug 2020 A1
20200281603 Marchand Sep 2020 A1
20200289124 Rangwala Sep 2020 A1
20200289125 Dholakia Sep 2020 A1
20200289126 Hewitt Sep 2020 A1
20200305886 Soto Del Oct 2020 A1
20200323534 Shimizu Oct 2020 A1
20200337710 Lorenzo Oct 2020 A1
20200340154 Köppe Oct 2020 A1
20200345376 Fulton, III Nov 2020 A1
20200367894 Pereira Nov 2020 A1
20200367896 Zaidat Nov 2020 A1
20200367897 Wolfe Nov 2020 A1
20200367904 Becking Nov 2020 A1
20200375606 Lorenzo Dec 2020 A1
20200375607 Soto Del Valle Dec 2020 A1
20200390455 Nguyen et al. Dec 2020 A1
20200397447 Lorenzo Dec 2020 A1
20200405347 Walzman Dec 2020 A1
20210007755 Lorenzo Jan 2021 A1
20210022765 Walzman Jan 2021 A1
20210045750 Wolfe Feb 2021 A1
20210077116 Ferrera Mar 2021 A1
20210106337 Hewitt Apr 2021 A1
20210128160 Li May 2021 A1
20210128161 Nageswaran May 2021 A1
20210128162 Rhee May 2021 A1
20210128165 Pulugurtha May 2021 A1
20210128166 Kealey May 2021 A1
20210128167 Patel May 2021 A1
20210128168 Nguyen May 2021 A1
20210128169 Li May 2021 A1
20210129275 Nguyen May 2021 A1
20210137530 Greene, Jr. et al. May 2021 A1
20210145449 Gorochow May 2021 A1
20210153871 Griffin May 2021 A1
20210153872 Nguyen et al. May 2021 A1
20210169496 Badruddin et al. Jun 2021 A1
20210169499 Merritt et al. Jun 2021 A1
20210186518 Gorochow et al. Jun 2021 A1
20210196284 Gorochow et al. Jul 2021 A1
20210204955 Wallace et al. Jul 2021 A1
20210219982 Badruddin et al. Jul 2021 A1
20210251635 Soto Del Valle et al. Aug 2021 A1
20210259719 Griffin Aug 2021 A1
20210275184 Hewitt et al. Sep 2021 A1
20210275188 Plaza et al. Sep 2021 A1
20210282784 Sepetka et al. Sep 2021 A1
20210282786 Zaidat et al. Sep 2021 A1
20210330331 Lorenzo Oct 2021 A1
20210346032 Patterson et al. Nov 2021 A1
20210361290 Badruddin et al. Nov 2021 A1
20210378646 Amplatz et al. Dec 2021 A1
20210401439 Lorenzo et al. Dec 2021 A1
20220022884 Wolfe et al. Jan 2022 A1
20220022886 Becking et al. Jan 2022 A1
20220054141 Zaidat et al. Feb 2022 A1
20220054286 Goyal Feb 2022 A1
Foreign Referenced Citations (204)
Number Date Country
2946078 Nov 2015 CA
102940514 Mar 2013 CN
103099652 May 2013 CN
103142261 Jun 2013 CN
104168843 Nov 2014 CN
104958087 Oct 2015 CN
204931771 Jan 2016 CN
204971420 Jan 2016 CN
102008028308 Apr 2009 DE
102008015781 Sep 2011 DE
102011102955 Dec 2012 DE
102009058132 Jul 2014 DE
202008018523 Apr 2015 DE
102013106031 Jul 2015 DE
102012107175 Aug 2015 DE
102012102844 Mar 2020 DE
102019121546 Feb 2021 DE
102019121554 Feb 2021 DE
0836450 Apr 1988 EP
0902704 Mar 1999 EP
1003422 May 2000 EP
1295563 Mar 2003 EP
1441649 Aug 2004 EP
1483009 Dec 2004 EP
1494619 Jan 2005 EP
1527753 May 2005 EP
1569565 Sep 2005 EP
1574169 Sep 2005 EP
1054635 Nov 2005 EP
1610666 Jan 2006 EP
1633275 Mar 2006 EP
1651117 May 2006 EP
1659988 May 2006 EP
1725185 Nov 2006 EP
1804719 Jul 2007 EP
1862122 Dec 2007 EP
1923005 May 2008 EP
1923019 May 2008 EP
2063791 Jun 2009 EP
2134263 Dec 2009 EP
2157937 Mar 2010 EP
2207500 Jul 2010 EP
2244666 Nov 2010 EP
2265193 Dec 2010 EP
2266465 Dec 2010 EP
2279023 Feb 2011 EP
2324775 May 2011 EP
2349024 Aug 2011 EP
2367482 Sep 2011 EP
2387951 Nov 2011 EP
2399524 Dec 2011 EP
2460476 Jun 2012 EP
2468349 Jun 2012 EP
2496299 Sep 2012 EP
2506808 Oct 2012 EP
2543345 Jan 2013 EP
2567663 Mar 2013 EP
2596754 May 2013 EP
2613709 Jul 2013 EP
2617386 Jul 2013 EP
2618709 Jul 2013 EP
2647343 Oct 2013 EP
2677944 Jan 2014 EP
2744412 Jun 2014 EP
2848211 Mar 2015 EP
2854704 Apr 2015 EP
2887887 Jul 2015 EP
2923674 Sep 2015 EP
2926744 Oct 2015 EP
2943152 Nov 2015 EP
2964105 Jan 2016 EP
3068337 Sep 2016 EP
3082619 Oct 2016 EP
3131515 Feb 2017 EP
3136986 Mar 2017 EP
3148481 Apr 2017 EP
3151904 Apr 2017 EP
3171793 May 2017 EP
3187117 Jul 2017 EP
3247285 Nov 2017 EP
3261703 Jan 2018 EP
1998686 Feb 2018 EP
2460477 Apr 2018 EP
3345553 Jul 2018 EP
2806825 Aug 2018 EP
2753246 Nov 2018 EP
3413808 Dec 2018 EP
3429479 Jan 2019 EP
3456271 Mar 2019 EP
3456272 Mar 2019 EP
3501429 Jun 2019 EP
2254505 Jul 2019 EP
3510945 Jul 2019 EP
3512459 Jul 2019 EP
3517055 Jul 2019 EP
2194885 Nov 2019 EP
3572010 Nov 2019 EP
3173037 Dec 2019 EP
3574851 Dec 2019 EP
3585275 Jan 2020 EP
3600068 Feb 2020 EP
3622901 Mar 2020 EP
3628242 Apr 2020 EP
3636173 Apr 2020 EP
2405820 Jun 2020 EP
3669800 Jun 2020 EP
3677192 Jul 2020 EP
3714812 Sep 2020 EP
3153114 Nov 2020 EP
3740138 Nov 2020 EP
3755276 Dec 2020 EP
3501428 Apr 2021 EP
3568088 Apr 2021 EP
3808284 Apr 2021 EP
3821825 May 2021 EP
3838186 Jun 2021 EP
3865079 Aug 2021 EP
2460478 Sep 2021 EP
3908208 Nov 2021 EP
3908209 Nov 2021 EP
3908354 Nov 2021 EP
3061647 Jun 2020 FR
248515 Jul 2019 IL
H02150481 Jun 1990 JP
H0447415 Apr 1992 JP
H08507011 Jul 1996 JP
2003-175113 Jun 2003 JP
2005028863 Feb 2005 JP
2005537092 Dec 2005 JP
2006509578 Mar 2006 JP
2010500187 Jan 2010 JP
2012-501793 Jan 2012 JP
2012030497 Feb 2012 JP
2013-027592 Feb 2013 JP
2013-509914 Mar 2013 JP
2013537069 Sep 2013 JP
2018131107 Oct 2018 RU
2019120682 Sep 2019 RU
2704539 Oct 2019 RU
2018145502 Jun 2020 RU
2018145543 Jun 2020 RU
2019110988 Oct 2020 RU
2019115837 Nov 2020 RU
2019116175 Nov 2020 RU
2019127900 Mar 2021 RU
2019129351 Mar 2021 RU
2019129526 Mar 2021 RU
WO 2006034149 Mar 2006 WO
WO 2006052322 May 2006 WO
WO 2007076480 Jul 2007 WO
WO 2007079402 Jul 2007 WO
WO 2008036156 Mar 2008 WO
WO 2008151204 Dec 2008 WO
WO 2009132045 Oct 2009 WO
WO 2009135166 Nov 2009 WO
WO 2010030991 Mar 2010 WO
WO 2010134914 Nov 2010 WO
WO 2011057002 May 2011 WO
WO 2012032030 Mar 2012 WO
WO 2012034135 Mar 2012 WO
WO 2012099704 Jul 2012 WO
WO 2012099909 Jul 2012 WO
WO 2012099910 Jul 2012 WO
WO 2012113554 Aug 2012 WO
WO 2012135037 Oct 2012 WO
WO 2012163880 Dec 2012 WO
WO 2013016618 Jan 2013 WO
WO 2013005195 Jan 2013 WO
WO 2013028579 Feb 2013 WO
WO 2013103888 Jul 2013 WO
WO 2013109309 Jul 2013 WO
WO 2013152327 Oct 2013 WO
WO 2013184595 Dec 2013 WO
WO 2014029835 Feb 2014 WO
WO 2015095538 Jun 2015 WO
WO 2015160721 Oct 2015 WO
WO 2015166013 Nov 2015 WO
WO 2015184075 Dec 2015 WO
WO 2015187196 Dec 2015 WO
WO 2016107357 Jul 2016 WO
WO 2016118420 Jul 2016 WO
WO 2016137997 Sep 2016 WO
WO 2017106567 Jun 2017 WO
WO 2017139702 Aug 2017 WO
WO 2017156275 Sep 2017 WO
WO 2017161283 Sep 2017 WO
WO 2018051187 Mar 2018 WO
WO 2018130624 Jul 2018 WO
WO 2018156833 Aug 2018 WO
WO 2018175221 Sep 2018 WO
WO 2019143755 Jul 2019 WO
WO 2019165360 Aug 2019 WO
WO 2020139544 Jul 2020 WO
WO 2020150023 Jul 2020 WO
WO 2020190620 Sep 2020 WO
WO 2020190630 Sep 2020 WO
WO 2020190639 Sep 2020 WO
WO 2020243039 Dec 2020 WO
WO 2021028160 Feb 2021 WO
WO 2021028161 Feb 2021 WO
WO 2021051110 Mar 2021 WO
WO 2021087610 May 2021 WO
WO 2021092620 May 2021 WO
WO 2021183793 Sep 2021 WO
Non-Patent Literature Citations (46)
Entry
US 9,034,010 B2, 05/2015, Amin (withdrawn)
Bosworth et al., “Gamma irradiation of electrospun poly(ϵ-caprolactone) fibers affects material properties but not cell response,” Journal of Polymer Science Part B: Polymer Physics, Apr. 2012, pp. 870-876.
CA Office Action in Canadian Appln. No. 2,946,078, dated May 26, 2021, 4 pages.
CN Office Action in Chinese Appln. No. 201580035663.X, dated Aug. 1, 2018, 27 pages (with English Translation).
CN Office Action in Chinese Appln. No. 201780024233.7, dated Jul. 9, 2020, 20 pages (with English Translation).
CN Office Action in Chinese Appln. No. 201780024233.7, dated Oct. 22, 2020, 17 pages (with English Translation).
EP Extended Search Report in European Appln. No. 19159876.2, dated Jun. 14, 2019, 9 pages.
EP Extended Search Report in European Appln. No. 20201759.6, dated Nov. 12, 2020, 12 pages.
EP Office Action in European Appln No. 16808631.2, dated Aug. 16, 2019, 8 pages.
Izadi et al., “Teflon hierarchical nanopillars with dry and wet adhesive properties,” Journal of Polymer Science Part B: Polymer Physics, Apr. 2012, pp. 846-851.
Ohta et al., “Size control of phase-separated liquid crystal droplets in a polymer matrix based on the phase diagram,” Journal of Polymer Science Part B: Polymer Physics, Apr. 2012, pp. 863-869.
Popov et al., “Interacting nanoparticles with functional surface groups,” Journal of Polymer Science Part B: Polymer Physics, Mar. 2012, pp. 852-862.
JP Office Action in Japanese Application No. 2018-529554, dated Jul. 12, 2021, 6 pages (with English translation).
JP Office Action in Japanese Application No. 2018-529554, dated Sep. 15, 2020, 6 pages (with English translation).
JP Office Action in Japanese Application No. 2019-145966, dated Sep. 1, 2020, 6pages (with English translation).
PCT International Preliminary Report on Patentability in International Application No. PCT/EP2016/080152, dated Jun. 12, 2018, 10 pages.
PCT International Preliminary Report on Patentability in International Application No. PCT/EP2017/055765, dated Sep. 11, 2018, 9 pages.
PCT International Written Opinion in International Application No. PCT/EP2021/054103, dated Aug. 26, 2021, 4 pages.
CN Office Action in Chinese Appln. No. 201780024233.7, dated Apr. 22, 2021, 6 pages (need translation).
U.S. Appl. No. 15/372,128, filed May 14, 2019.
U.S. Appl. No. 14/699,188, filed Nov. 5, 2015.
U.S. Appl. No. 16/172,157, filed Oct. 26, 2018.
U.S. Appl. No. 16/407,957, filed Sep. 5, 2019.
U.S. Appl. No. 16/590,821, filed Oct. 2, 2019.
U.S. Appl. No. 16/640,142, filed Feb. 19, 2020.
U.S. Appl. No. 16/080,626, filed Aug. 28, 2018.
U.S. Appl. No. 16/796,788, filed Feb. 20, 2020.
Altes et al., “Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices,” AJR Am J Roentgenol, 2000, 174(2):349-354.
Blackshear et al., “Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation,” Ann. Thorac. Surg., Feb. 1996, 61(2):755-9.
CN Office Action in Chinese Appln. No. 201780024233.7, dated Jul. 9, 2020, 10 pages (need translation).
EP Extended European Search Report in European Appln. No. 17710255.5, dated Nov. 12, 2020, 13 pages.
Gottlieb et al., “Anticoagulation in atrial fibrillation. Does efficacy in clinical trials translate into effectiveness in practice?” Arch. Intern. Med., Sep. 1994, 154(17):1945-53.
JP Office Action in Japanese Appln. 2017-508761, dated Nov. 27, 2018, 4 pages (English translation).
JP Office Action in Japanese Appln. No. 2017-508761, dated Mar. 19, 2019, 3 pages (English translation).
JP Office Action in Japanese Appln. No. 2018-529554, dated Nov. 30, 2020, 11 pages (with English translation).
PCT Form ISA/206—Invitation to Pay Additional Fees in International Appln. PCT/EP2016/080152, dated Feb. 24, 2017, 9 pages.
PCT International Preliminary Report on Patentability in International Application No. PCT/EP2015/059429, dated Jul. 13, 2016, 11 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/EP2019/072576, dated Feb. 25, 2020, 12 pages.
PCT International Search Report and Written Opinion in International Application No. PCT/EP2016/080152 dated Jun. 16, 2017, 8 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/EP2018/072576, dated Nov. 21, 2018, 20 pages.
PCT International Search Report and Written Opinion in International Appln. PCT/EP2015/059429, dated Jul. 6, 2015, 5 pages.
PCT International Search Report in International Appln. PCT/EP2017/055765, dated Apr. 18, 2017, 5 pages.
Schaffer, “Biocompatible Wire,” Advanced Materials & Processes, Oct. 2002, pp. 51-54.
U.S. Appl. No. 17/847,856, filed Jun. 23, 2022.
U.S. Appl. No. 17/849,125, filed Jun. 24, 2022.
U.S. Appl. No. 17/873,551, filed Jul. 26, 2022.
Related Publications (1)
Number Date Country
20210068842 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62307137 Mar 2016 US
Continuations (1)
Number Date Country
Parent 16080626 US
Child 16952756 US