In general, this invention relates to a removal device for a biological occlusion and more particularly to a catheter and occlusion engaging element which is adapted to the removal of blockages in hemodialysis grafts.
There are many techniques and devices known in the art for removing blockages in the vascular system and other passageways of the human body.
There is a continuing need for improved devices to meet at least the following objectives.
The first objective is to reduce cost. This is particularly important in recent years where it is clear for safety and sanitary reasons that these will be single use devices. A device, even though it performs a function in some improved manner, will not be widely used if it is considerably more costly than the alternatives available.
A second objective is to provide a device that is simple to use and in a very real sense simple to understand. This will encourage its adoption and use by medical personnel. It will also tend to keep cost low.
The third objective is to provide a device that entails a procedure with which the medical profession is familiar so that the skills that have been learned from previous experience will continue to have applicability.
A fourth objective relates to the effectiveness and thoroughness with which the blockage is removed. It is important that a maim amount of the blockage be removed; recognizing that no device is likely to provide one-hundred percent removal.
A fifth objective concerns safety; a matter which is often so critical as to trump the other considerations. It is important to avoid tissue trauma. In many circumstances, it is critically important to avoid breaking up a blockage in a fashion that leads to flushing elements of the blockage throughout the body involved.
There are trade-offs in design considerations to achieve the above five interrelated objectives. Extreme simplicity and a very simple procedure might over compromise safety. Addressing all of these considerations calls for some trade-off between the objectives.
Accordingly, an object of this invention is to provide an improved removal device for a body passageway blockage which achieves the objectives of reduced cost, enhanced simplicity, a standard procedure, high effectiveness and a high degree of safety. Most particularly, it is an object of this invention to achieve these objectives with an enhanced trade-off value for the combined objectives.
A first aspect of the invention is directed to a method of removing an occlusion from a graft or other body passageway, the improvement comprising the following steps. A catheter is inserted into a graft or other body passageway, the catheter having a lumen, an open distal end and a blocking mechanism at the distal end. A blocking mechanism is provided in a radially compressed state during the step of inserting. The blocking mechanism is radially expanded into a radially expanded state extending near to the wall of the graft or other body passageway after the step of inserting. After the step of radially expanding the blocking mechanism, a wire is advanced into the occlusion. The expanded state of the blocking mechanism is used for blocking proximal passage of occlusion material around the outside of the catheter. Occlusion material is moved proximally through the open end and into the lumen.
A second aspect of the invention is directed to a method of blocking occlusion material in a body passageway and includes the following steps. A catheter is inserted into a body passageway, the catheter having a lumen, an open distal end and a blocking mechanism adjacent to the distal end such that the distal end of the catheter is positioned proximate to the occlusion material. The blocking mechanism is provided in a radially compressed state during the step of inserting the catheter. After the step of inserting the catheter, the blocking mechanism is radially expanded into a radially expanded state extending near to the wall of the body passageway for blocking proximal passage of occlusion material around the outside of the catheter. After the step of radially expanding the blocking mechanism, a wire is advanced into the occlusion. In some examples the wire has a distal end and an engagement mechanism, for example a balloon, supported on the wire distal end.
A third aspect of the invention is directed to a method of removing an occlusion from a body passageway comprising the following steps. A catheter is inserted into a body passageway, the catheter having a lumen, an open distal end and a blocking mechanism at the distal end such that the distal end of the catheter is positioned proximate to the occlusion material. The blocking mechanism is provided in a radially compressed state during the step of inserting the catheter. After the step of inserting the catheter, the blocking mechanism is radially expanded into a radially expanded state extending near to the wall of the body passageway for blocking proximal passage of occlusion material around the outside of the catheter. After the step of radially expanding the blocking mechanism, a wire is advanced into the occlusion. Occlusion material is moved proximally through the open end and into the lumen.
A fourth aspect of the invention is directed to an apparatus for removing an occlusion. A catheter, for insertion into a body passageway proximate an occlusion, has a distal open end and a lumen. A blocking mechanism is disposed on the catheter distal end. The blocking mechanism has a radially compressed state for insertion into the body passageway and a radially expanded state extending near to the wall of the passageway to block passage of material around the outside of the catheter distal end. A wire, having a distal end, is insertable through the catheter lumen, such that the wire distal end does not extend into the occlusion until after the blocking mechanism is in the radially expanded state. In some examples the blocking element may be a balloon. In some examples an engaging element, such as a balloon, may be supported on the wire distal end.
A fifth aspect of the invention is directed to apparatus for removing an occlusion. A catheter, for insertion into a body passageway proximate an occlusion, has a distal open end and a lumen. A blocking mechanism is disposed on the catheter distal end. The blocking mechanism has a radially compressed state for insertion into the body passageway and a radially expanded state extending near to the wall of the passageway to block passage of material around the outside of the catheter distal end. A member, having a distal end, is insertable through the catheter lumen, such that the tubular member distal end does not extend into the occlusion until after the blocking mechanism is in the radially expanded state.
Other aspects of the invention may include the following.
An occluder for use in a body passageway includes a catheter, a multi-wing blood flow blocking element positioned near the distal end of the catheter, and an actuator associated with said catheter to move said blood flow blocking element from a radially compressed insertion state to a radially expanded blocking state. The blood flow blocking element has a generally funnel surface extending out from said distal end of said catheter when in said radially expanded blocking state.
A method of deploying an occluder in a body passageway includes inserting a catheter into a body passageway, said catheter having a multi-wing blood flow blocking element. The blood flow blocking element is provided in a radially compressed state during the inserting step. The blood flow blocking element is radially expanded into a radially expanded state extending to or near to the wall of the body passageway after the inserting step. The radially expanding step includes providing said expanded state with a generally funnel surface extending out from said distal end of said catheter, and using said expanded state of said blood flow blocking element for blocking passage of material around the outside of said catheter.
A method of capturing tissue in a body. An elongate tubular member, having a lumen, a proximal end and a distal end, is inserted into a body. A malecot-style tissue capture element is provided in a radially compressed state during the inserting step. The tissue capture element is radially expanded into a radially expanded state after the inserting step. A proximal surface on said the capture element extends out from the distal end of the elongate tubular member wherein the tissue is captured along the proximal surface.
An occluder for use in a body passageway includes a catheter, a blood flow blocking element comprising structural members which define openings therebetween, the blood flow blocking element positioned near the distal end of the catheter. The blood flow blocking element has a radially compressed insertion state and a radially expanded blocking state. The occluder also includes an actuator associated with said catheter to move said blood flow blocking element from said compressed state to said expanded state. The blood flow blocking element has a generally funnel surface extending out from said distal end of said catheter when the blood flow blocking element is in said radially expanded blocking state.
A method of deploying an occluder in a body passageway includes inserting a catheter into a body passageway. The catheter has a blood flow blocking element comprising structural members which define openings therebetween and an axially movable actuator operably coupleable to the blood flow blocking element. The blood flow blocking element is provided in a radially compressed state during the inserting step. The actuator is moved thereby radially expanding said blood flow blocking element into a radially expanded state extending to or near to the wall of the body passageway after said step of inserting. The radially expanding step includes providing said expanded state with a generally funnel surface extending out from said distal end of said catheter. The expanded state of said blood flow blocking element is used for blocking passage of material around the outside of said catheter.
A method of capturing tissue in a body uses elongate tubular member, having a lumen, an actuator passing through the lumen, a proximal end and a distal end, is inserted into a body. A tissue capture element is provided in a radially compressed state during the inserting step. The tissue capture element comprises structural members which define openings therebetween. The actuator is operably coupleable to the tissue capture element. The actuator is moved thereby radially expanding the tissue capture element into a radially expanded state after the step of inserting. A proximal surface is provided on the capture element, the proximal surface extending out from the distal end of the elongate tubular member wherein the tissue is captured along the proximal surface.
A medical instrument, for use in a body, includes an elongate tubular member, having a lumen and a distal end, and a blood flow blocking element comprising structural members which define openings therebetween. The blood flow blocking element is positioned near said distal end of said elongate member. An annular membrane is around said structural members of said blood flow blocking element. An actuator is associated with said elongate member to move said blood flow blocking element from a radially compressed state to a radially expanded blocking state. The blood flow blocking element in said radially expanded blocking state has a generally funnel shape surface extending from said distal end of said elongate tubular member.
An occluder, for use in a body passageway, includes a catheter, a blood flow blocking element comprising structural members which define openings therebetween, the blood flow blocking element positioned near the distal end of the catheter, and an annular membrane around said structural members of said blood flow blocking element. An actuator is associated with said catheter to move said blood flow blocking element from a radially compressed insertion state to a radially expanded blocking state.
A method of deploying an occluder in a body passageway includes inserting catheter into a body passageway. The catheter has a blood flow blocking element comprising structural members which define openings therebetween, the blood flow blocking element being covered with an annular elastomeric, impermeable membrane. An axially movable actuator is operably coupleable to a distal portion of the blood flow blocking element. The blood flow blocking element is provided in a radially compressed state during said step of inserting. The actuator is moved thereby radially expanding said blood flow blocking element into a radially expanded state extending to or near to the wall of the body passageway after said step of inserting. The blood flow blocking element is used in its expanded state for blocking passage of material around the outside of said catheter.
In brief one embodiment of this invention is particularly adapted to the removal of blockages in hemodialysis grafts. That embodiment combines a catheter having a blocking feature that blocks the annulus between the catheter and the graft and a support wire having an occlusion engaging element.
The support wire extends through the catheter, through or around the occlusion and at its distal end has an annular braided element attached thereto. The support wire is a dual element support wire having a core and an annular shell that slides on the core. The distal end of the core is attached to the distal end of the annular braided element and the distal end of the shell is attached to the proximal end of the annular braided element. Thus movement of the core and shell relative to one another moves the braided element from a radially retracted position which is useful for insertion through the catheter to a radially expanded position which expands it to the sidewall of the graft. When the annular braided element is in its radially compressed state, it can be passed through the occlusion together with the rest of the wire to reside on the distal end of the occlusion. When the braided element is expanded and moved proximally (that is, in a retrograde fashion), it will engage the occlusion and force the occlusion into the catheter. Alternatively, no motion of the engaging element may be required if aspiration is applied. In this case, the engaging element acts as a seal to prevent the suction from aspiration to remove much material beyond its point of deployment in the channel.
The distal end of the catheter is proximal of the occlusion and contains a blocking mechanism that extends radially from the distal end of the catheter to the wall of the graft or body passageway. This catheter blocking element also has a radially retracted insertion state and a radially expanded blocking state. The blocking element is a multi-wing malecot type device which is covered by a thin elastomeric film or membrane.
This malecot type of device is bonded to the distal end of the catheter or an integral part of the catheter. The distal tip of the dilator, over which the catheter is inserted, has a slightly increased diameter. This tip is in the nature of a ferrule. When the dilator is removed, the ferrule abuts against the distal end of the multi-wing malecot pushing this blocking element from its radially compressed state into its radially expanded state. Alternatively, the tip of the dilator can be bonded to the catheter with a break-away bond so that when the dilator is removed, the blocking element is expanded in a similar fashion. In this radially expanded state, the malecot and its film cover blocks the annulus around the catheter so that the occluded blood or other obstruction which is being removed is forced into the catheter where it is aspirated or otherwise removed.
Conversely, it is understood that the blocking element could be fabricated from tubular braid and the engaging element could be formed from the malecot style configuration.
More particular one embodiment of this invention which has been partly tested, was designed for use in a hemodialysis graft 10 having an I.D. of approximately six to seven mm. In that case, the catheter 16 has a 8 French O.D. (2.7 mm) and a 7 French I.D. (2.3 mm). The support wire 22 is a fairly standard movable core guide wire of 35 mils (that is, 0.35 inches, which is slightly under 1 mm). The actuator rod 26 in the support wire is approximately 15 mils and thus slightly under 0.5 mm. The braided element 24 has an insertion diameter that is approximately one mm and expands to cover the seven mm diameter of the graft. In order to achieve this seven fold increase in diameter, the braided element has a length of 11 to 13 mm Thus the catheter has an annulus of about 2.3 mm around the support wire, through which annulus the blood occlusion is aspirated.
The distal tip of the braided element 24 is connected to the distal tip of the actuator rod 26. The proximal edge of the braided element 24 is bonded to the distal end of the support wire 22. Thus when the actuator rod 26 is pushed in a distal direction relative to the wire 22, the braided device is forced into its collapsed state shown in
With reference to
There might be applications of the invention where the passageway involved is a tissue passageway such as a blood vessel or other channel within the body, where this braided element 24 is expanded to nearly the diameter of the vessel so that when it is moved to push out an occlusion, it will avoid trauma to the wall of the vessel. Further, the membrane on the expanding element will aid in decreasing the trauma to native vessels as described above. In such a case, the engaging element (and the blocking element) may be used only as a ‘seal’ so that the obstruction may be removed or otherwise obliterated. This seal allows the rest of the vessel to be uncontaminated and provides for a ‘closed system’ for irrigation and/or aspiration and subsequent obliteration or removal of the obstruction
It should be noted that the retention catheter described in U.S. Pat. No. 3,799,172 issued on Mar. 26, 1974 to Roman Szpur illustrates a structure that is similar to the malecot type device 18 illustrated in
This blocking element 18 is often called a malecot in the industry. It should be understood herein that the term malecot is used to refer in general to this type of multi-wing device.
More specifically, as shown in
What then occurs is shown in
The engaging apparatus includes an elongate tube; an elongate mandril inside the tube and an expandable tubular braid. The elongate mandril extends from the proximal end of the device to the distal end. The elongate tube extends from close to the proximal end of the device to close to the distal end. The distal end of the tubular braid is bonded to the distal end of the inner elongate mandril. The mandril may extend beyond the tubular braid. The proximal end of the tubular braid is bonded to the distal end of the elongate tube.
The braid may be open, but may be laminated or covered with a coating of elastic, generally inelastic, plastic or plastically deformable material, such as silicone rubber, latex, polyethylene, thermoplastic elastomers (such as C-Flex, commercially available from Consolidated Polymer Technology), polyurethane and the like. The assembly of tube, mandril and braid is introduced percutaneously in its radially compressed state. In this state, the outside diameter of the braid is close to the outside diameter of the elongate tube. This diameter is in the range of 10 to 50 mils, and usually 25 to 40 mils (i.e. thousandth of an inch). After insertion, the tubular braid is expanded by moving the mandril proximally with respect to the tube.
The tubular braid is preferably formed as a mesh of individual non-elastic filaments (called “yarns” in the braiding industry). But it can have some elastic filaments interwoven to create certain characteristics. The non-elastic yarns can be materials such as polyester, PET, polypropylene, polyamide fiber (Kevlar, DuPont), composite filament wound polymer, extruded polymer tubing (such as Nylon II or Ultem, commercially available from General Electric), stainless steel, Nickel Titanium (Nitinol), or the like so that axial shortening causes radial expansion of the braid. These materials have sufficient strength so that the engaging element will retain its expanded condition in the lumen of the body while removing the obstruction therefrom.
The braid may be of conventional construction, comprising round filaments, flat or ribbon filaments, square filaments, or the like. Non-round filaments may be advantageous to decrease the axial force required for expansion to create a preferred surface area configuration or to decrease the wall thickness of the tubular braid. The filament width or diameter will typically be from about 0.5 to 25 mils, usually being from about 5 to 10 mils. Suitable braids are commercially available from a variety of commercial suppliers.
The tubular braids are typically formed by a “Maypole” dance of yarn carriers. The braid consists of two systems of yarns alternately passing over and under each other causing a zigzag pattern on the surface. One system of yarns moves helically clockwise with respect to the fabric axis while the other moves helically counter-clockwise. The resulting fabric is a tubular braid. Common applications of tubular braids are lacings, electrical cable covers (i.e. insulation and shielding), “Chinese hand-cuffs” and reinforcements for composites. To form a balanced, torque-free fabric (tubular braid), the structure must contain the same number of yarns in each helical direction. The tubular braid may also be pressed flat so as to form a double thickness fabric strip. The braid weave used in the tubular braid of the present invention will preferably be of the construction known as “two dimensional, tubular, diamond braid” that has a 1/1 intersection pattern of the yarns which is referred to as the “intersection repeat”. Alternatively, a Regular braid with a 2/2 intersection repeat and a Hercules braid with an intersection repeat of 3/3 may be used. In all instances, the helix angle (that being the angle between the axis of the tubular braid and the yarn) will increase as the braid is expanded. Even further, Longitudinal Lay-Ins can be added with the braid yarns and parallel to the axis to aid with stability, improve tensile and compressive properties and modulus of the fabric. When these longitudinal “Lay-In” yarns are elastic in nature, the tubular braid is known as an elastic braid. When the longitudinal yarns are stiff, the fabric is called a rigid braid. Biaxially braided fabrics such as those of the present invention are not dimensionally stable. This is why the braid can be placed into an expanded state from a relaxed state (in the case of putting it into the compressive mode). Alternatively this could be a decreased/reduced (braid diameter decreases) state when put into tension from the relaxed state. When put into tension (or compression for that matter) the braid eventually reaches a state wherein the diameter will decrease no more. This is called the “Jammed State”. On a stress strain curve, this corresponds to increase modulus. Much of the engineering analysis concerning braids are calculated using the “Jammed state” of the structure/braid. These calculations help one skilled in the art to design a braid with particular desired characteristics. Further, material characteristics are tensile strength, stiffness and Young's modulus. In most instances, varying the material characteristics will vary the force with which the expanded condition of the tubular can exert radially. Even further, the friction between the individual yarns has an effect on the force required to compress and un-compress the tubular braid. For the present invention, function should be relatively low for a chosen yarn so that the user will have little trouble deploying the engaging element. This is particularly important when the engaging element is located a significant distance from the user. Such is the case when the percutaneous entry is the groin (Femoral Artery for vascular interventions) and the point of engaging the engaging element is some distance away (i.e. the Carotid Artery in the neck). Similarly, this is true for long distances that are not vascular or percutaneous applications.
An important consideration of the invention described herein is that the support wire with its expanding element can be fabricated with a very small diameter. This is important because it allows an optimally large annular space between the wire and the inside of the catheter for maximum obstruction removal. Previous engaging elements have been used that use a balloon for the engaging element. This balloon design requires a larger shaft diameter than that of the present invention. Hence in these previous devices the annular space is not maximized as in the present invention. The term wire is used to refer to the support portion of the removal device. The material of the wire need not necessarily be metal. Further, it may be desirable to use a ‘double’ engaging element (i.e. two braided or malecot expanding elements separated a distance appropriate to entrap the occlusion) in the case for example where the occlusion is desired to be trapped in the vessel. The term wire is used herein to refer to a dual element device having a shell component and a core or mandril component which are longitudinally moveable relative to one another so as to be able to place the braided occlusion engaging element into its small diameter insertion state and its large diameter occlusion removal state.
Although the blocking element is described as a multi-malecot type of device, it should be understood that the blocking element may be designed in various fashions which are known in the art. See, for example,
The particular embodiment disclosed was designed for an application to remove congealed blood in a dialysis graft. For some applications, like removing clots from remote vascular areas, the blocking mechanism and engaging elements may be used only as distal and proximal seals around the device to be removed so that the clot or other obstruction can be removed with aspiration or can be obliterated with some therapy such as a chemical dissolving agent or acoustical energy or lithotripsy and the like. The residual obstruction in that case would be aspirated from the tubular catheter.
It should be further understood that there might be a situation in which the blocking element or even the occlusion engaging element would be provided to the physician in a normal expanded state so that when the device is deployed, it would, through plastic memory or elastic memory, automatically snap into its expanded state.
This application is a continuation of Medical Devices and Methods, application Ser. No. 12/477,371 filed 3 Jun. 2009, attorney docket number GTEC 1004-1, which is a continuation in part of Body Passageway Occluder and Method, application Ser. No. 10/765,564 filed 27 Jan. 2004, attorney docket number GTEC 1001-5, which is a continuation of Tissue Removal Device and Method, application Ser. No. 09/819,350 filed 28 Mar. 2001, which is a continuation of Biological Passageway Occlusion Removal, application Ser. No. 09/189,547 filed 11 Nov. 1998, now U.S. Pat. No. 6,238,412 issued May 29, 2001, which claims the priority of U.S. Provisional Application, Ser. No. 60/065,118, filed on Nov. 12, 1997. The disclosures of each are incorporated by reference. Application Ser. No. 12/477,371 is a continuation in part of Biological Passageway Occlusion Removal, application Ser. No. 10/747,813 filed 29 Dec. 2003 attorney docket number GTEC 1001-4, which is a continuation in part of Tissue Removal Device and Method, application Ser. No. 09/819,350 Filed 28 Mar. 2001, which is a continuation of Biological Passageway Occlusion Removal, application Ser. No. 09/189,574 Filed 11 Nov. 1998, now U.S. Pat. No. 6,238,412 issued May 29, 2001, which claims the priority of U.S. Provisional Application, Ser. No. 60/065,118, filed on Nov. 12, 1997. The disclosures of each are incorporated by reference. Application No. 12/477,371 is a continuation in part of Medical Device and Method U.S. patent application Ser. No. 10/824,779 entitled Medical Device and Method, filed 15 Apr. 2004, attorney docket number GTEC 1002-1, which is a continuation in part of U.S. patent application Ser. No. 10/765,564 filed Jan. 27, 2004 which is a continuation of U.S. patent application Ser. No. 09/819,350, now U.S. Pat. No. 6,699,260, filed Mar. 28, 2001, which is a continuation of U.S. patent application Ser. No. 09/189,574, now U.S. Pat. No. 6,238,412, filed Nov. 11, 1998, and claiming the benefit of provisional Patent Application No. 60/065,118 filed Nov. 12, 1997. U.S. patent application Ser. No. 10/824,779 also claims the benefit of provisional Patent Application No. 60/463,203 entitled Anastomotic Apparatus and Methods for Use, filed on Apr. 16, 2003 and provisional Patent Application No. 60/496,811 entitled Thermoplastic Manufacturing Apparatus and Methods for Use, filed on Aug. 21, 2003. The disclosures of each are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60065118 | Nov 1997 | US | |
60065118 | Nov 1997 | US | |
60065118 | Nov 1997 | US | |
60463203 | Apr 2003 | US | |
60496811 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12477371 | Jun 2009 | US |
Child | 12647214 | US | |
Parent | 09189574 | Nov 1998 | US |
Child | 09819350 | US | |
Parent | 09819350 | Mar 2001 | US |
Child | 10765564 | US | |
Parent | 09189574 | Nov 1998 | US |
Child | 09819350 | US | |
Parent | 09819350 | Mar 2001 | US |
Child | 10765564 | US | |
Parent | 09189574 | Nov 1998 | US |
Child | 09819350 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10747813 | Dec 2003 | US |
Child | 12477371 | US | |
Parent | 09819350 | Mar 2001 | US |
Child | 10747813 | US | |
Parent | 10765564 | Jan 2004 | US |
Child | 12477371 | US | |
Parent | 10824779 | Apr 2004 | US |
Child | 12477371 | US | |
Parent | 10765564 | Jan 2004 | US |
Child | 10824779 | US |