Occlusive devices

Information

  • Patent Grant
  • 10478194
  • Patent Number
    10,478,194
  • Date Filed
    Wednesday, September 23, 2015
    8 years ago
  • Date Issued
    Tuesday, November 19, 2019
    4 years ago
Abstract
An implant can include a frame and a mesh component coupled to the frame. The mesh component can define a first porosity, and the frame can define a frame porosity. The combined porosity of the mesh component and the frame can restrict blood flow into the implant.
Description
BACKGROUND

Field of the Inventions


The present disclosure generally relates to intrasaccular medical devices, and more particularly, to a medical implant having a frame and a mesh component for occluding a target area of a patient's vasculature.


Description of the Related Art


Walls of the vasculature, particularly arterial walls, may develop areas of pathological dilatation called aneurysms. As is well known, aneurysms have thin, weak walls that are prone to rupturing. Aneurysms can be the result of the vessel wall being weakened by disease, injury or a congenital abnormality. Aneurysms could be found in different parts of the body with the most common being abdominal aortic aneurysms (AAA) and brain or cerebral aneurysms. When the weakened wall of an aneurysm ruptures, it can result in death.


Aneurysms are generally treated by excluding the weakened part of the vessel from the arterial circulation. For treating a cerebral aneurysm, such reinforcement is done in many ways including: (i) surgical clipping, where a metal clip is secured around the base of the aneurysm; (ii) packing the aneurysm with small, flexible wire coils (micro-coils) or braided ball devices; (iii) using embolic materials to “fill” or “pack” an aneurysm; (iv) using detachable balloons or coils to occlude the parent vessel that supplies the aneurysm; and (v) using stents to divert blood flow away from the aneurysm.


SUMMARY

Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and embodiments hereof as well as the appended drawings.


Systems and procedures for treating aneurysms can include an implantable device that can be inserted into an aneurysm to facilitate a thrombotic, healing effect. The implantable device can have specific characteristics, including porosity, composition, material, shape, size, interconnectedness, inter-engagement, coating, etc. These characteristics can be selected in order to achieve a desired treatment or placement of the implantable device.


Implants or implantable devices for occluding a target area of a patient's vasculature, such as an aneurysm, can comprise a frame or frame component and one or more mesh components for mesh components that are coupled to the frame. The implantable device can be configured to provide an atraumatic, high surface area region that can promote endothelialization when the implantable device is implanted into a body lumen. The high surface area coverage can be created using a mesh component positioned along a given region of the frame. In some embodiments, a single mesh component can be coupled to the frame that has a generally constant porosity. However, the single mesh component can have a variable porosity. Further, multiple mesh components can be coupled to the frame that each have different porosities.


In some embodiments, the implantable device can have an average porosity that changes from a first end or region of the device to a second end or region of the device. Different regions of the device can define different porosities due to the presence of one or more mesh components in a given region or based on the porosity of the frame itself in a given region. Some embodiments therefore provide an implantable device that can have a first porosity in a distal region and a second porosity and a proximal region based on the presence of the mesh component in the proximal region of the device.


The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered embodiments (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent embodiments may be combined in any combination with each other or one or more other independent embodiments, to form an independent embodiment. The other embodiments can be presented in a similar manner. The following is a non-limiting summary of some embodiments presented herein:


Clause 1. An implant for occluding a target area of a patient's vasculature, comprising: a frame comprising a plurality of braided filaments that define a plurality of openings, the plurality of filaments and openings collectively defining a frame porosity, the frame comprising a distal region and a proximal region, the frame being expandable from a compressed configuration to an expanded configuration; and a mesh component coupled to the frame along at least the proximal region thereof, the mesh component comprising a plurality of filaments and a plurality of openings, the plurality of filaments and openings collectively defining a first porosity permitting blood flow therethrough, the first porosity being less than the frame porosity, such that blood flow into the implant is more restricted along the proximal region than along the distal region of the frame.


Clause 2. The implant of Clause 1, wherein the mesh component is a first mesh component, and the implant further comprises a second mesh component coupled to the frame along the proximal region.


Clause 3. The implant of Clause 2, wherein the second mesh component comprises a second porosity, different from the first porosity.


Clause 4. The implant of any of Clauses 2-3, wherein first and second mesh components overlie respective first and second openings in the frame, the first opening being adjacent to the second opening.


Clause 5. The implant of any of Clauses 2-4, wherein the second mesh component is positioned adjacent to the first mesh component.


Clause 6. The implant of any of Clauses 2-5, wherein an edge of the second mesh component borders an edge of the first mesh component.


Clause 7. The implant of any of Clauses 2-6, further comprising a third mesh component coupled to the frame along the proximal region.


Clause 8. The implant of Clause 7, wherein the third mesh component is positioned adjacent to the first mesh component.


Clause 9. The implant of any of Clauses 7-8, wherein the third mesh component comprises a third porosity, different from the first porosity.


Clause 10. The implant of any of Clauses 7-9, wherein the second mesh component comprises a second porosity, and the third mesh component comprises a third porosity, different from the second porosity.


Clause 11. The implant of Clause 10, wherein the first porosity is different from the second and third porosities.


Clause 12. The implant of any of Clauses 1-11, wherein the mesh component comprises a strip of material.


Clause 13. The implant of any of Clauses 1-12, wherein the frame comprises a globular shape.


Clause 14. The implant of Clause 13, wherein the frame comprises a spherical shape.


Clause 15. The implant of any of Clauses 13-14, wherein the frame comprises a rounded first portion and a substantially cylindrical second portion.


Clause 16. The implant of any of Clauses 1-15, wherein the mesh component is fixedly coupled to the frame at a plurality of coupling points.


Clause 17. The implant of Clause 16, wherein the mesh component is welded to the frame at the plurality of coupling points.


Clause 18. The implant of any of Clauses 1-17, wherein the mesh component comprises a braided material.


Clause 19. The implant of any of Clauses 1-18, wherein the mesh component is positioned along an exterior of the frame.


Clause 20. The implant of any of Clauses 1-19, wherein the frame and the mesh component are laminated together.


Clause 21. An implant for occluding a target area of a patient's vasculature, comprising a braided frame comprising filaments that intersect each other to define openings, the filaments and openings collectively defining a frame porosity, the frame being expandable from a compressed configuration to an expanded configuration, and a mesh component coupled to the frame, the mesh component comprising filaments and openings that collectively define a first porosity permitting blood flow therethrough, the first porosity being less than the frame porosity, for restricting blood flow into the implant.


Clause 22. The implant of Clause 21, wherein the mesh component is a first mesh component, and the implant further comprises a second mesh component coupled to the frame.


Clause 23. The implant of Clause 22, wherein the second mesh component comprises a second porosity, different from the first porosity.


Clause 24. The implant of any of Clauses 22-23, wherein first and second mesh components overlie respective first and second openings in the frame, the first opening being adjacent to the second opening.


Clause 25. The implant of any of Clauses 22-24, wherein the second mesh component is positioned adjacent to the first mesh component.


Clause 26. The implant of any of Clauses 22-25, wherein an edge of the second mesh component borders an edge of the first mesh component.


Clause 27. The implant of any of Clauses 22-26, further comprising a third mesh component coupled to the frame along the proximal region.


Clause 28. The implant of Clause 27, wherein the third mesh component is positioned adjacent to the first mesh component.


Clause 29. The implant of any of Clauses 27-28, wherein the third mesh component comprises a third porosity, different from the first porosity.


Clause 30. The implant of any of Clauses 27-29, wherein the second mesh component comprises a second porosity, and the third mesh component comprises a third porosity, different from the second porosity.


Clause 31. The implant of Clause 30, wherein the first porosity is different from the second and third porosities.


Clause 32. The implant of any of Clauses 21-31, wherein the mesh component surrounds substantially all of the frame.


Clause 33. The implant of any of Clauses 21-32, wherein the mesh component is disposed along an interior of the frame.


Clause 34. The implant of any of Clauses 21-33, wherein the mesh component is disposed along an exterior of the frame.


Clause 35. The implant of any of Clauses 21-34, wherein the mesh component is fixedly coupled to the frame at a plurality of coupling points.


Clause 36. The implant of any of Clauses 21-35, wherein the frame and the mesh component are welded together.


Clause 37. The implant of any of Clauses 21-36, wherein the pluralities of first and second filaments are interwoven to form a single layer.


Clause 38. The implant of any of Clauses 21-37, wherein the implant comprises a globular shape.


Clause 39. The implant of Clause 38, wherein the implant comprises a spherical shape.


Clause 40. The implant of any of Clauses 38-39, wherein the implant comprises a rounded first portion and a substantially cylindrical second portion.


Clause 41. A method of operating an implant assembly, comprising: closing an end a tubular braid to a substantially closed configuration using a tie, the tubular braid comprising filaments that intersect to define openings, the filaments and openings collectively defining a frame porosity; while holding the end substantially closed, inserting a form into an open end to position the braid around the form; setting a device frame shape based on the form provide an implant; and coupling a mesh component onto the implant, the mesh component comprising filaments and openings that collectively define a first porosity permitting blood flow therethrough, the first porosity being less than the frame porosity, for restricting blood flow into the implant.


Clause 42. The method of Clause 41, wherein the coupling comprises laminating the mesh component onto the tubular braid.


Clause 43. The method of any of Clauses 41-42, wherein the coupling comprises welding the mesh component to the tubular braid.


Clause 44. The method of any of Clauses 41-43, wherein the mesh component comprises a first mesh component, and the coupling comprises coupling a second mesh component to the implant adjacent to the first mesh component.


Clause 45. The method of Clause 44, wherein the coupling comprises coupling a third mesh component to the implant.


Clause 46. The method of any of Clauses 41-45, wherein the coupling comprises positioning the mesh component along an exterior of the implant.


Clause 47. The method of any of Clauses 41-46, wherein the closing comprises collapsing a midsection of a tubular braid to a substantially closed configuration using the tie and inverting a first tubular section of the tubular braid over the tie at the midsection to produce dual layers in the braid such that the braid has a tubular configuration with a closed end at the midsection and an open end opposite the midsection.


Clause 48. The method of any of Clauses 41-47, further comprising removing the tie from the braid.


Clause 49. The method of Clause 47, wherein the removing the tie comprises burning away the tie during heatsetting.


Clause 50. The method of any of Clauses 41-49, further comprising removing the form from the braid.


The method of any of Clauses 41-50, wherein the removing comprises removing the form in one piece.


Clause 52. An implant having any of the features of any of the previous Clauses.


Clause 53. A method of manufacturing any of the implants or assemblies of any of the previous Clauses.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide further understanding of the subject technology and are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and together with the description serve to explain the principles of the subject technology.



FIG. 1 is a side cross-sectional view illustrating deployment of a device into an aneurysm, according to some embodiments.



FIG. 2 is a schematic view of an embodiment of an implantable device having a frame and a mesh component, according to some embodiments.



FIG. 3 is a schematic view of an implantable device wherein the mesh component comprises a plurality of individual mesh components having different porosities, according to some embodiments.



FIG. 4 is a schematic view of yet another implantable device wherein the mesh component comprises a pair of mesh components extending along the entire frame and having different porosities, according to some embodiments.



FIGS. 5 and 6 illustrate schematic views of implantable devices having one or more strips of mesh component coupled to the frames thereof, according to some embodiments.



FIGS. 7 and 8 illustrate implantable devices in a pre-assembled state, wherein the implantable devices comprise differing mesh components and/or differing porosities of the mesh components, according to some embodiments.



FIGS. 9A-9D illustrate schematic steps in a method of forming an implantable device using a tubular braid material, according to some embodiments.



FIGS. 10 and 11 illustrate schematic views of implantable devices that are positioned within aneurysms located along a blood vessel, according to some embodiments.





DETAILED DESCRIPTION

In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It should be understood that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.


Referring now to the figures, FIG. 1 is a side cross-sectional view illustrating deployment of a device into an aneurysm, according to some embodiments. As shown, a device 10 can be advanced to a target aneurysm 40 using a device assembly 20. The device 10 can be advanced from a catheter 22 of the assembly 20 and through a neck 42 of the aneurysm 40 toward a fundus 44 of the aneurysm 40.



FIG. 2 illustrates an implantable device 100 that comprises a frame 102 and a mesh component 104. The mesh component 104 is coupled to filaments 106 that make up the frame 102. For example, the frame 102 can be formed from a plurality of braided filaments 106 that intersect with each other to provide a plurality of openings 108 along the exterior of the frame 102. The filaments 106 can be coupled together at an end using a suture, hub, or marker band 116, such as through the manufacturing method disclosed in FIGS. 9A-9D. The frame 102 can be formed from as few as six (6) filaments to achieve an easily compressible frame while providing a scaffold to which the mesh component 104 is coupled. The openings 108 can be defined as the voids in the exterior surface of the frame 102 that are bounded by the filaments 106. Similarly, the mesh component 104 can be formed from a plurality of braided filaments that intersect with each other to provide a plurality of openings. The materials used for the frame 102 and/or the mesh component 104 can comprise any known biocompatible or biodegradable materials including stainless steel, nitinol, cobalt chromium, or poly lactic-co-glycolic acid (PLGA).


As illustrated in FIG. 2, the mesh component 104 can be coupled to the frame 102 in order to extend across one or more openings 108 of the frame 102. In so doing, the mesh component 104 can extend over or overlap with one or more filaments 106. The mesh component 104 can be coupled to each and every filament 106 that the mesh component 104 overlaps, according to some embodiments. However, the mesh component 104 may also be coupled to only a portion of the filaments 106 that the mesh component 104 overlaps, and in some cases, to at least one (but not each) of the filaments.


The mesh component 104 shown in FIG. 2 extends across openings of the frame and couples to filaments that form an outer border of the openings over which the mesh component extends. These borders, shown as element 120 in FIG. 2, represent the attachment points between the mesh component 104 and the frame 102. As noted above, the mesh component 104 can be coupled to each of the filaments of the frame 102 that the mesh component 104 overlaps. However, the frame 102 can be coupled to only a few of the filaments of the frame 102 that the mesh component 104 overlaps, according to some embodiments.


Referring still to FIG. 2, the frame 102 can define a distal region 130 and a proximal region 132. The distal and proximal regions 130, 132 can be opposing regions of the device 100. In some embodiments, the mesh component 104 can extend along either or both of the distal and proximal regions 130, 132. The distal and proximal regions 130, 132, as generally shown in FIG. 2, 132 can represent either a minority or majority of the overall surface area of the device 100. The distal and proximal regions 130, 132 can, in some embodiments, be distinguished based on not only the location of the region on the device, but may also be distinguished based on physical aspects of the device, such as shape, frame properties, filament configuration, or other such measures.


The mesh component 104 can be coupled to the implantable device 100 by a variety of mechanical, chemical, and thermal methods well known in medical device manufacture. Depending on the materials selected for implant manufacture, the mesh component 104 can be spot welded, partially melted or heated, or coupled using an adhesive or glue. Alternatively, the mesh component 104 can be coupled to the frame 102 by weaving, threading, or otherwise interconnecting the mesh component 104 with one or more filaments 106 of the frame 102. In some embodiments, the coupling between the mesh component 104 and the filaments 106 can require or utilize additional components or materials. Such embodiments can, for example, utilize sutures or ties to couple the mesh component 104 to filaments 106.


In some embodiments, the mesh component 104 can be laminated to the frame 102 by application of pressure and/or heat, adhesives, or other bonding methods, such as those described above. Further, in some embodiments, a lamination of multiple mesh layers with at least one frame layer can be achieved. As discussed herein, a variety of coatings and other materials can be applied to the structure of the implantable device 100, which can also function to maintain an engagement between the mesh component 104 and the frame 102.


In some embodiments, it is desirable to pretreat the one or more filaments 106 and/or at least a portion of the mesh component 104 to enhance the coupling process. For example, one or more of the filaments 106 (or at least a portion of the frame 102) and/or at least a portion of the mesh component 104 can be pretreated to modify a structural property, such as surface roughness, and/or to add a coating thereto. The surface roughness can be increased by passing a filament and/or a portion of the mesh component through a particulate or chemical bath or otherwise physically contacting a filament and/or the mesh component, e.g., as individual wires prior to being woven into the structure of the frame 102 or prior to being woven into the structure of the mesh component 104. Further, one or more of the filaments 106 (or at least a portion of the frame 102) and/or at least a portion of the mesh component 104 can be coated, e.g., as individual wires, prior to attempting to couple the frame 102 and the mesh component 104. For example, a filament and/or a portion of the mesh component can be coated with a urethane prior to attempting to couple the frame 102 and the mesh component 104. Thus, if one or both of a filament or the mesh component has a coating, heat can be applied during the coupling process to cause the coating (e.g., a urethane) to melt and couple the frame 102 and the mesh component 104 together.


In embodiments the implantable device 100 may vary in porosity gradually, as through a single mesh component comprised of varying pitch, or through the combination of several mesh components 104 coupled to the frame 102. When coupled to the frame 102 along at least the proximal region 132, as illustrated in FIG. 2, the porosity of the implantable device 100 changes from the distal region 132 to the proximal region 132. Therefore, because the porosity of the implantable device 100 is greater along the distal region 130 than along the proximal region 132, blood flow into the implantable device 100 can be more restricted along the proximal region 132 than along the distal region 130. Using this unique configuration, a clinician can position the implantable device 100 within the vasculature, for example positioning the proximal region 132 at the neck of an aneurysm to significantly reduce blood flow into the weakened structure and promote resultant endothelialization in the aneurysm.


Additionally, an implantable device can comprise more than two regions, such as three, four, five, or more regions, as shown, for example, in FIGS. 3 and 6. Regions of the device can also begin or end based on the presence of a mesh component. Thus, a region of the implantable device can and where one or more mesh components and support begins, thus giving rise to a different region of the device. Accordingly, a device that has a single patch of mesh component can have a distal region defined as the region of the frame along which the mesh component extends and a proximal region, defined as the remaining surface area of the frame.


As it used herein, the term “porosity” can refer to the surface porosity of the implantable device. The surface porosity can be defined as the ratio of empty space (i.e., the surface area of the openings in the mesh component and/or frame) and the total surface area of a given region of the device. In order to calculate the porosity of the implantable device along a specific region of the frame covered by mesh component, the surface area of the openings may be found by first determining the total surface area of filaments in the specific region, accounting for all filaments in the specific region, and calculating a topographical or 2-D representation of total filament area, based on the dimensions (width or diameter and length) of filaments of the frame and/or the dimensions (width or diameter and length) of filaments of the mesh component. The total surface area of the frame and/or mesh component can then be subtracted from the total surface area of the given region in order to provide a resulting surface area of the openings in the given region.


In calculating the porosity of a given region or section of the device, a person of skill in the art can use images of a given device to guide or facilitate the calculation of the openings surface area and total surface area ratio. Such a calculation can rely on known information regarding the size and/or quantity of fibers or filaments in the frame and/or mesh component used in the implantable device.



FIGS. 2-3 illustrate that in some embodiments, implantable devices can be provided in which the mesh component comprises a plurality of panels that extend partially or fully across the frame and/or provide differing porosities in order to create an implantable device that has specific porosity characteristics at one or more locations along the implantable device.


For example, as shown in FIG. 2, the mesh component 104 of the implantable device 100 is coupled to a frame of the device 100. In such an embodiment, the mesh component can define a single or generally constant porosity.


As shown in FIG. 2, in accordance with some embodiments, the frame 102 (as well as any of the frames disclosed herein) can be configured such that a distal region 160 and a proximal region 162 each represent “an end” of a “braid ball” whereat the filaments 106 of the frame 102 converge, thereby creating a relatively lower porosity when compared to a central region 164 of the frame 102. As such, the application or coupling of the mesh component 104 to the proximal region 162 can cause the distal region 162 to have a much lower porosity than the proximal region 160. However, the porosity of the proximal region 162 can change from a relatively higher porosity along the border of the distal region 162 with the central region 164 when compared to the porosity at end 168 of the distal region 162 of the device 100. The change in porosity of the device along the distal region 162, even though the mesh component 104 may define a substantially constant porosity, can be attributed to the convergence of filaments 106 towards each other as they approach the end 168 of distal region 162 of the implant 100.


In light of potential variable porosity structures of frames formed from tubular braided materials, in which opposing ends of the braid are collapsed, thereby causing filaments of the braid to converge towards each other and create regions of decreased porosity, as discussed above with respect to “braid balls,” some embodiments can be configured such that one or more mesh components is coupled to the frame and defines a variable porosity that, when summed or combined with the porosity of the underlying or overlying section of the frame, defines a porosity that is substantially constant along one or more sections or substantially the entirety of the surface area of the implantable device. Accordingly, some embodiments can provide implantable devices having a braided material whose variable porosity is offset by a mesh component having a variable porosity such that the composite porosity of the frame and the mesh component at any given location in a section or anywhere along the surface of the implantable component defines a substantially constant porosity.



FIG. 3 illustrates an embodiment of an implantable device 200 in which a plurality of mesh components or panels 202, 204, 206 have been coupled to a frame 210 of the device 200. The frame 210 can be formed from a braided material such that filaments 212 of the frame 210 converge at opposing ends or poles of the frame 210, as discussed above with respect to FIG. 2. The filaments 212 can be coupled together at an end using a suture, hub, or marker band 216, such as through the manufacturing method disclosed in FIGS. 9A-9D. The embodiment illustrated in FIG. 3 illustrates an example in which the device 200 has a variable porosity profile. FIG. 3 illustrates three different porosity panels 202, 204, 206 coupled to frame 210. Although shown in gradient manner of decreasing porosity from the central region to the proximal region, a skilled artisan will appreciate that any combination or number of varying porosity panels can be envisioned to achieve a desired porosity of the entire implantable device 200.


For example, FIG. 3 illustrates that a plurality of mesh components can be coupled to the frame 210 in an adjoining or abutting relationship with respect to each other. Thus, a given mesh component 220 can border with two different mesh components 222, 224. For example, the mesh component 220 can be coupled to a filament 226, 228 that acts as the boundary for the openings across which the respective mesh components 220, 222, 224 extend. Further, not only may different mesh components be positioned adjacent to each other along sections or regions of the frame, but as generally represented in FIG. 3, each of the mesh components 220, 222, 224, can have different porosities.



FIG. 4 illustrates yet another implantable device 250 that comprises a first mesh component 252, a second mesh component 254, and a frame 256 to which the first and second mesh components 252, 254 are coupled. The first and second mesh components 252, 254 can collectively extend across the entire surface area of the generally spherical geometry of the frame.


As shown in FIG. 4, two or more mesh components 252, 254 can be used to establish a given porosity characteristic for the device 250 at specific locations of the device 250. The mesh components used in such embodiments can have substantially constant porosities along at least a portion thereof and/or have variable porosities, as discussed herein.


The one or more mesh components can be coupled to the frame along an outer aspect or surface of the frame, such that the mesh component represents an outermost layer coupled to the frame, or along an inner aspect or interior of the frame, such that the frame generally encloses the mesh component within an inner volume of the frame or is coupled to the mesh component primarily along an interior-facing surface of the frame.



FIGS. 2-4 generally illustrate that the mesh component can be configured to cover substantially the entirety of an opening of the frame such that the mesh component extends across the total surface area of a given opening. Referring now to FIGS. 5 and 6, yet additional embodiments of the implantable device are provided. In some embodiments, the mesh component extends across openings of the frame such that the mesh component covers between about 30% to about 70% of the total surface area of the opening. Accordingly, the mesh component can be coupled to the frame without specifically outlining borders of the mesh component with respective filaments of the frame. The mesh component can therefore, as in the embodiments illustrated above, still be coupled to one or more filaments of the frame, but may have less of an interconnection with the frame along the perimeter or edge of the mesh component than in the embodiments discussed above. Nevertheless, sufficient coupling can be achieved between the mesh component and the filaments so as to enable such embodiments to effectively achieve an integrated or composite unit. Additionally, in order to further ensure interconnectedness between the frame and the mesh component, as with other embodiments, the mesh component can be disposed within and coupled to an inner aspect or surface of the filaments of the frame.


With particular reference to FIG. 5, an implantable device 300 can comprise a mesh component 302 (e.g., a strip of mesh component) that is coupled to a frame 304. The mesh component 302 can comprise an edge 308 that extends generally transversely relative to filaments 306 of the frame 304. The filaments 306 can be coupled together at an end using a suture, hub, or marker band 316, such as through the method disclosed in FIGS. 9A-9D. The mesh component 302 or strip can have a substantially constant porosity or can comprise a variable porosity. The mesh component 302 can be coupled to the filaments 306 along areas in which the mesh component 302 overlaps with the filaments 306. However, less than a majority (e.g., less than 50%, less than 20%, or less than 10%) of the perimeter or edge 308 of the mesh component 302 can be directly coupled to the filaments 306. (Such an arrangement can contrast with the general arrangement illustrated in the embodiments shown in FIGS. 2-4.)



FIG. 6 illustrates another implantable device 350 in which the device 350 comprises first and second mesh components 352, 354 (e.g., strips of mesh component) that are coupled to a frame 356. The first and second mesh components 352, 354 can each overlap filaments of the device 350, and can be spaced apart from each other on the frame 356, or positioned abutting each other. The first and second mesh components 352, 354 can comprise different porosities, substantially constant porosities, or variable porosities.


The first and second mesh components 352, 354 can extend adjacent to each other along the frame 356. However, some embodiments can be provided in which different mesh components extend along the frame in different locations of the frame. Otherwise, FIG. 6 illustrates an embodiment that demonstrates that the perimeter or edge of the mesh components 360, 362 can traverse openings of the frame 356 in a manner similar to that described in FIG. 5, which discussion will not be repeated here for brevity.


In accordance with some embodiments, methods are provided for forming devices having one or more of the features disclosed herein. The frame and the mesh component can be coupled to each other before or after the frame is formed into a globular component, such as a spherical component. For example, FIGS. 7 and 8 illustrate intermediate configurations of implantable devices in which the devices are formed from a braided tubular or laser cut material. For example, in FIG. 7, a tubular component 400 can serve as the frame for the device and one or more mesh components 402 can be coupled to the tubular component 400, in a manner as illustrated in FIGS. 2-4. Further, FIG. 8 illustrates another tubular component 410 to which a mesh strip 412 is coupled, in a manner similar to that illustrated above with respect to FIGS. 5 and 6.


In accordance with some embodiments, when the frame comprises a braided material (i.e., when the frame is formed using a tubular braid), one of the advantages provided by some embodiments includes the ability to use any of a variety of braid and/or wire configurations. For example, the tubular braid can be formed using as few as 4, 5, or 6 wires. A distinct advantage of some embodiments is a minimal frame with the minimal amount of braid mesh. Another advantage of some embodiments is the substantially reduced profile possible during advancement of the device compared to other devices that use 36, 72, 144, or more wires. Such a reduced profile enables some embodiments to be delivered through much lower-sized catheters, such as 6 Fr, 5 Fr, or 4 Fr. The number of wires can be determined by counting the number of wire ends at the end of the braided tube. In some embodiments having a lower number of wires, e.g., 12 or fewer wires, the primary function of the frame is to provide structural and expansion characteristics. Thus, in such embodiments, the mesh component can primarily provide a desired porosity profile for the implantable device.


In any of the embodiments disclosed herein, the mesh component can optionally comprise a polymer cover, layer, or coating that is applied to the frame after the frame is in a rounded or globular configuration, as shown in FIGS. 2-6, or to the tubular member before the frame is assembled, as discussed and shown with respect to FIGS. 7-9D. For example, after the frame is formed or beforehand (when still in tubular form), the polymer cover can be laser machined to create a pattern of holes in the polymer cover. The pattern of holes can provide a substantially constant or variable porosity in the polymer cover. The polymer cover can comprise any of a variety of polymers, including but not limited to ePTFE, polyurethane, urethane, silicone, and/or others known in the art. Further, in some embodiments, the device can comprise a mesh component and a coating, such as a drug-eluting coating.


In accordance with some embodiments, a method of manufacturing the implantable device can be performed as illustrated in FIGS. 9A-9D. After a suitable tubular component 430 has been formed, including both an underlying frame, mesh or braid pattern 432 and a mesh component 434, the tubular component 430 is positioned over a wire 440 (i.e., the wire 440 is inserted into an inner lumen of the tubular member 430). Thereafter, as illustrated, in FIG. 9A, the tubular member can be closed or tied down onto the wire member 440 using a suture 442, thereby drawing a midsection 446 of the tubular member 430 toward the wire 440.


Thereafter, in FIG. 9B, a form 450 can be inserted into the lumen of the tubular member 430 and one end of the tubular member can be everted over the midsection 446 until the everted section of the tubular member forms an outer layer over the other section of the tubular member 430. Accordingly, the tubular member can thereby form inner and outer layers 452, 454. In accordance with some embodiments, the mesh component 434 can be interposed between the inner and outer layers 452, 454.


Other compression forms and methods for positioning the tubular member 430 can be used, such as those described in U.S. patent application Ser. No. 13/048,648, filed on Mar. 15, 2011, the entirety of which is incorporated herein by reference.



FIG. 9C illustrates that the inner and outer layers 452, 454 can be stretched and drawn around the form 450 and fastened using a suture, hub, or marker band 460 or suitable compression form equipment, as discussed in the above-noted that patent application. Thereafter, the device can be heat set (e.g., nitinol braid can be heat set at 550° C. for five minutes). During the heat setting process, suture material can be burned away, removing any impediment for achieving a zero or near-zero radius bend at the fold at the central region 446. Thereafter, additional material 462 that remains after heat setting the device shape can be trimmed off, as shown in FIG. 9D, thereby leaving a completed implant shape 470. In such a manufacturing method, the finished implant 470 can thereby enclose one or more mesh components or layers with one or more layers of frame components. For example, the mesh component can be coupled to an inner surface or aspect of a tubular component prior to beginning assembly of the device. During assembly of the device with such a tubular component, the tubular component can be everted over the portion of the tubular component to which the mesh component is coupled, thereby enclosing the mesh component between a dual layer of framing components or filaments.


In implementing the methods for manufacturing implantable devices in accordance with some embodiments disclosed herein, the configuration, size, porosity profile, and number of mesh components can be varied or modified in order to achieve a final implantable device having desired porosity characteristics. Some of the porosity characteristics have been illustrated above with respect to FIGS. 2-6, and can be modified as discussed herein.


Delivery Methods


Furthermore, delivery systems and procedures can be implemented for delivering an implantable device comprising one or more implantable devices, as discussed herein. Further, a system and method are provided for delivery of an implantable device to an aneurysm and/or recapturing the device for removal or repositioning.


According to some embodiments, one or more of implantable devices can be released into a target aneurysm and, in some embodiments, specifically oriented relative to the aneurysm ostium or neck and/or one or more perforating vessels (e.g., perforating arteries or arterioles) adjacent to the aneurysm.


In some embodiments, the implantable device can be released into the target vasculature and mechanically expanded using a balloon or other device. For example, the implantable device can be balloon expanded to facilitate expansion of the frame of the device. This expansion force can ensure that a coated or composite device is able to expand sufficiently, as desired.


In use, an access catheter is advanced within the neurovasculature as is conventional in the art. A suitable microcatheter adaptable for navigation through the tortuous neurovascular space to access the treatment site is disclosed in commonly assigned U.S. Pat. No. 7,507,229, the entire contents of which are hereby incorporated herein.


In some embodiments, the implantable device can be repositioned within the aneurysm as the device is expanding. The repositioning of the device can allow a clinician to position a lower porosity section of the device adjacent to or away from the neck of the aneurysm. The repositioning of the device can also allow a clinician to position a higher average porosity section of the device adjacent to one or more perforating vessels (e.g., perforating arteries or arterials) adjacent to the aneurysm. The repositioning of the device can also allow a clinician to position a lower porosity portion of the device adjacent to a bifurcation. The repositioning of the device can also allow a clinician to position a higher average porosity portion of the device toward or in the fundus of the aneurysm.


For example, referring now to FIGS. 10 and 11, methods of implanting a medical device can also be performed, in accordance with some embodiments disclosed herein. FIGS. 10 and 11 both illustrate an aneurysm 500 located on a parent vessel 502. FIG. 10 illustrates that a mesh component 512 of the implantable device 510 can be positioned within the aneurysm 500, using a delivery device 518, such that mesh component 512 extends across the ostium 520 of the aneurysm 500. The presence of the mesh component, and the decreased porosity and increased surface area provided thereby, can advantageously decrease blood flow into or out of the aneurysm 500 and encourage endothelialization at the ostium 520.


Similarly, FIG. 11 illustrates an implantable device 540 in which a mesh component 542 of the device is positioned within the aneurysm 500, and more specifically, against a dome 548 of the aneurysm 500 or spaced opposite to or away from the ostium 520. Further, an opposing region of the device, such as a region 550, which can be configured to define a porosity that is relatively less than the porosity of the device along the region occupied by the mesh component 542, can be positioned along the ostium 520 using a delivery device 558. In such an embodiment, placement of the implantable device 540 in this manner can allow endothelialization between the implantable device 540 along the dome 548 of the aneurysm and permit some blood flow into or out of the aneurysm.


Further, in accordance with some embodiments, the implantable device or a portion of the implantable device can be used in conjunction with other treatment modalities. For example, the implantable device can be delivered and subsequently packed with a liquid embolic The injection of a liquid embolic can increase the overall packing density within the implantable device. Additionally, coils can be introduced through an open end or pore of the implantable device.


In implementing a method for placing an implantable device within an aneurysm and injecting coils, expandable components, or other materials into the implantable device, the open end or widest interstices of the implantable device can be positioned at the neck of the aneurysm so as to facilitate insertion of the distal end of the catheter into the open end or between the filaments (i.e., into an interstice) of the implantable device. In embodiments having a braided material for the implantable device, the braid pattern can be properly aligned to facilitate entry of the materials into the implantable device. As in other embodiments disclosed herein, the implantable device can comprise a radiopaque material or component that facilitates visualization and enables the clinician to align the implantable device as needed within the aneurysm.


The composite effect of the coils, expandable components, and/or other materials inserted into the implantable device can provide the advantages and benefits discussed above with respect to various other implantable devices. As such, the clinician can determine and control various intrasaccular implant characteristics, including porosity, composition, material, shape, size, interconnectedness, inter-engagement, coating, etc.


According to some embodiments, systems or kits having an implantable device and at least one coil, expandable component, and/or other material can be provided.


Composite Porosity


In some embodiments, a composite structure of the implantable device can comprise two or three materials having different porosities. Further, the composite structure of the implantable device can comprise four, five, six, or more different materials having different porosities. Some embodiments of the implantable device can be configured to provide a specific porosity profile. The porosity profile can comprise a single, consistent average porosity across the surface of the entire implantable device, or multiple average porosity zones, portions, or regions having different average porosities that collectively form a composite implantable device.


For example, some embodiments can be configured to have a low average surface porosity. For purposes of illustration, high surface porosity is illustrated in the Figures using hexagonal patterns with larger-sized hexagons compared to hexagonal patterns with smaller-sized hexagons, which are used to illustrate medium and low porosity structures. Low surface porosity can provide higher resistance to blood flow therethrough, which can facilitate thrombogenesis. When such low porosity implantable devices are implanted into an aneurysm, such devices can tend to isolate the aneurysm from the parent vessel and minimize blood flow velocity within the aneurysm while supporting the aneurysm wall.


Conversely, as surface porosity increases, blood flow through the implantable device can increase, thereby tending to provide less support for thrombogenesis due to lower resistance to flow therethrough. Nevertheless, the realization of some embodiments disclosed herein is that high porosity structures can also support the aneurysm wall, beneficially aid in healing and thrombogenesis for select aneurysm morphologies, permit flow to other vessels (e.g., branch vessels, perforating arteries, or arterioles), and/or permit the introduction of other materials, such as a liquid embolic, etc.


The porosity of the implantable device may vary along any portion(s) thereof, including any combination of pore sizes of 1 micron or greater. Further, the pores or openings of the frame and mesh component(s) can range from about 1 μm to about 400 μm, from about 5 μm to about 300 μm, from about 8 μm to about 200 μm, from about 10 μm to about 150 μm, from about 15 μm to about 80 μm, or in some embodiments, from about 20 μm to about 50 μm. Further, at least a portion or section of the device can comprise an average porosity of between about 1 μm and about 150 μm. Further, at least a portion or section can comprise an average pore size of between about 100 μm and about 200 μm. Furthermore, at least a portion or section can comprise an average pore size of between about 200 μm and about 300 μm. When an implantable device is formed using multiple sections or portions, each section or portion can have an average porosity within any of the ranges discussed above. Furthermore, a pore size can be calculated using an “inscribed circle” calculation in which size of a given pore is represented by the diameter of the largest circle that fits into the given pore.


Further Embodiments


In accordance with some embodiments, at least a portion of the implantable device can comprise a coating or material for enhancing therapeutic, expansive, or imaging properties or characteristics of at least one or every implantable device.


In some embodiments, the implantable device can be coated with a biocompatible material to promote endothelialization or provide a therapeutic effect.


The coating may include thrombogenic coatings such as fibrin, fibrinogen or the like, anti-thrombogenic coatings such as heparin (and derivatives thereof), urukinase or t-PA, and endothelialization promoting coatings or facilitators such as, e.g., VEGF and RGD peptide, and/or combinations thereof. Drug eluting coatings and a drug eluting foam composite, such as anti-inflammatory or antibiotic, coatings are also envisioned. These drug eluting components may include nutrients, antibiotics, anti-inflammatory agents, antiplatelet agents, anesthetic agents such as lidocaine, and anti-proliferative agents, e.g., taxol derivatives such as paclitaxel. Hydrophilic, hygroscopic, and hydrophobic materials/agents are also envisioned.


Optionally, the implantable device can also comprise an expansion-limiting coating that slows expansion of the device from its natural rate of expansion to a slower rate of expansion such that in the process of expanding, the position of the device can be adjusted within the aneurysm or the device can be removed from the aneurysm, if necessary. Examples of polymers that can be used as expansion-limiting coatings can include hydrophobic polymers, organic non-polar polymers, PTFE, polyethylene, polyphenylene sulfide, oils, and other similar materials.


In embodiments, only specific segments of the implantable device may be embedded or coated with an agent to provide desired characteristics to the implantable device(s). For example, an implantable device can comprise a non-thrombogenic coating may be applied to a lower half of the implantable device to minimize clotting at this location. Such coatings may be desirable in aneurysms located at a bifurcation such that blood flow to branch arteries is permitted through the segment of the foam structure having the non-thrombogenic coating. The coated area may be a different color than the remaining portion of the implantable device to assist the surgeon in identifying this area.


Optionally, the coated area can also comprise radiopaque material to assist the surgeon in visualization and placement of the implantable device in a desired orientation relative to the aneurysm. The implantable device can have radiopacity characteristics either by adding radiopaque filler to the material (which in some embodiments comprises a foam material), such as bismuth, or attaching radiopaque markers. Alternatively, a radiopaque material can be coupled to the implantable device, such as by dipping, spraying, or otherwise mechanically, chemically, or thermally coupled, injected into, or blended into to the implantable device.


Further Aspects of Some Embodiments


The apparatus and methods discussed herein are not limited to the deployment and use of a medical device or stent within the vascular system but may include any number of further treatment applications. Other treatment sites may include areas or regions of the body including any hollow anatomical structures.


The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various Figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.


There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.


It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Some of the steps may be performed simultaneously. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.


Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.


The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.


A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.


Although the detailed description contains many specifics, these should not be construed as limiting the scope of the subject technology but merely as illustrating different examples and aspects of the subject technology. It should be appreciated that the scope of the subject technology includes other embodiments not discussed in detail above. Various other modifications, changes and variations may be made in the arrangement, operation and details of the method and apparatus of the subject technology disclosed herein without departing from the scope of the present disclosure. Unless otherwise expressed, reference to an element in the singular is not intended to mean “one and only one” unless explicitly stated, but rather is meant to mean “one or more.” In addition, it is not necessary for a device or method to address every problem that is solvable (or possess every advantage that is achievable) by different embodiments of the disclosure in order to be encompassed within the scope of the disclosure. The use herein of “can” and derivatives thereof shall be understood in the sense of “possibly” or “optionally” as opposed to an affirmative capability.

Claims
  • 1. An implant for occluding a target area of a patient's vasculature, comprising: a frame comprising a lattice formed of a first plurality of braided filaments that define a first plurality of openings, the first openings having a pore size of from about 1 μm to about 400 μm, the frame comprising a distal region and a proximal region, the frame being expandable from a compressed configuration to an expanded configuration in which the frame has a generally spherical shape, and wherein the first plurality of filaments are coupled together at a hub disposed at a proximal end of the frame;a first mesh component coupled to the frame along at least a first portion of the proximal region, the first mesh component comprising a second plurality of braided filaments that define a second plurality of openings, the second pluralities of filaments and openings collectively defining a mesh porosity permitting blood flow therethrough, the mesh porosity being less than a porosity of the frame, such that blood flow into the implant is more restricted along the proximal region than along the distal region of the frame; anda second mesh component coupled to the frame along at least a second portion of the proximal region, the second portion differing from the first portion, the second mesh component comprising a third plurality of braided filaments that define a third plurality of openings,wherein a proximal end of the implant is configured to be detachably coupled to a delivery device.
  • 2. The implant of claim 1, wherein the mesh porosity is a first mesh porosity, and the second mesh component comprises a second mesh porosity different from the first porosity.
  • 3. The implant of claim 1, wherein first and second mesh components overlie adjacent first openings in the frame.
  • 4. The implant of claim 1, further comprising a third mesh component coupled to the frame along the proximal region.
  • 5. The implant of claim 4, wherein the mesh porosity is a first mesh porosity, and wherein the third mesh component comprises a third mesh porosity, different from the first mesh porosity.
  • 6. The implant of claim 4, wherein the mesh porosity is a first mesh porosity, and wherein the second mesh component comprises a second mesh porosity, and the third mesh component comprises a third mesh porosity, different from the second mesh porosity.
  • 7. The implant of claim 4, wherein the first, second, and third mesh components abut one another along a surface of the frame.
  • 8. The implant of claim 1, wherein the first mesh component is fixedly coupled to the frame at a plurality of coupling points.
  • 9. The implant of claim 8, wherein the first mesh component is welded to the frame at the plurality of coupling points.
  • 10. The implant of claim 1, wherein an end of the first mesh component abuts an end of the second mesh component along a surface of the frame.
  • 11. The implant of claim 1, wherein the first and second mesh components are coupled to the frame such that an end portion of the first mesh component adjoins or abuts an end portion of the second mesh component.
  • 12. The implant of claim 1, wherein an individual one of the first plurality of braided filaments is between at least a portion of the first and second mesh components.
  • 13. An implant for occluding a target area of a patient's vasculature, comprising: a lattice formed of a braided frame comprising first filaments that intersect each other to define first openings having a pore size of from about 1 μm to about 400 μm, the frame being expandable from a compressed configuration to an expanded configuration in which the frame has a generally spherical shape, wherein the first filaments are coupled together at a hub disposed at a proximal end of the frame,a first mesh component coupled to the frame, the first mesh component comprising second filaments and second openings that collectively define a mesh porosity permitting blood flow therethrough, wherein the mesh porosity is less than a porosity of the frame for restricting blood flow into the implant; anda second mesh component coupled to the frame, the second mesh component comprising a third plurality of braided filaments that define a third plurality of openings,wherein an individual one of the first filaments is between the first and second mesh components, andwherein a proximal end of the implant is configured to be detachably coupled to a delivery device.
  • 14. The implant of claim 13, wherein the mesh porosity is a first mesh porosity, and wherein the second mesh component comprises a second mesh porosity, different from the first mesh porosity.
  • 15. The implant of claim 13, wherein the second mesh component is positioned adjacent to the first mesh component.
  • 16. The implant of claim 13, further comprising a third mesh component coupled to the frame along a proximal region thereof.
  • 17. The implant of claim 16, wherein the first, second, and third mesh components abut one another along a surface of the frame.
  • 18. The implant of claim 13, wherein the first mesh component surrounds substantially all of the frame.
  • 19. The implant of claim 13, wherein an end of first mesh component abuts an end of the second mesh component along a surface of the frame.
  • 20. An implant for occluding a target area of a patient's vasculature, comprising: a frame comprising a proximal region and first filaments that intersect each other to define first openings having a pore size of from about 1 μm to about 400 μm, the frame being expandable from a compressed configuration wherein the first filaments are coupled together at a hub disposed at a proximal end of the frame to an expanded configuration; anda first mesh component coupled to a first portion of the proximal region of the frame, the first mesh component comprising second filaments and a first mesh porosity configured to permit blood flow therethrough, wherein the first mesh porosity is less than a porosity of the frame; anda second mesh component coupled to a second portion of the proximal region of the frame, the second portion differing from the first portion, the second mesh component comprising third filaments and a second mesh porosity configured to permit blood flow therethrough, the second mesh porosity differing from the first mesh porosity,wherein a proximal end of the implant is configured to be detachably coupled to a delivery device.
US Referenced Citations (562)
Number Name Date Kind
3108593 Glassman Oct 1963 A
4425908 Simon Jan 1984 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4655771 Wallsten Apr 1987 A
4768507 Fischell et al. Sep 1988 A
4921484 Hillstead May 1990 A
4998539 Delsanti Mar 1991 A
5026377 Burton et al. Jun 1991 A
5061275 Wallsten et al. Oct 1991 A
5064435 Porter Nov 1991 A
5104404 Wolff Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5158548 Lau et al. Oct 1992 A
5222971 Willard et al. Jun 1993 A
5250071 Palermo Oct 1993 A
5308356 Blackshear, Jr. et al. May 1994 A
5334210 Gianturco Aug 1994 A
5354295 Guglielmi et al. Oct 1994 A
5378239 Termin et al. Jan 1995 A
5405379 Lane Apr 1995 A
5425984 Kennedy et al. Jun 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5499981 Kordis Mar 1996 A
5527338 Purdy Jun 1996 A
5545208 Wolff et al. Aug 1996 A
5545209 Roberts et al. Aug 1996 A
5549635 Solar Aug 1996 A
5624461 Mariant Apr 1997 A
5634942 Chevillon et al. Jun 1997 A
5645558 Horton Jul 1997 A
5662703 Yurek et al. Sep 1997 A
5669931 Kupiecki et al. Sep 1997 A
5690671 McGurk et al. Nov 1997 A
5702419 Berry et al. Dec 1997 A
5713907 Hogendijk et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5728906 Eguchi et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5741333 Frid Apr 1998 A
5749891 Ken et al. May 1998 A
5749919 Blanc May 1998 A
5749920 Quiachon et al. May 1998 A
5766151 Valley et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5814062 Sepetka et al. Sep 1998 A
5830230 Berryman et al. Nov 1998 A
5846261 Kotula et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855578 Guglielmi et al. Jan 1999 A
5879366 Shaw et al. Mar 1999 A
5911731 Pham et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5925060 Forber Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5928260 Chin et al. Jul 1999 A
5935148 Villar et al. Aug 1999 A
5935362 Petrick Aug 1999 A
5941249 Maynard Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5951599 McCrory Sep 1999 A
5957948 Mariant Sep 1999 A
5976162 Doan et al. Nov 1999 A
5980554 Lenker et al. Nov 1999 A
6001092 Mirigian et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6024756 Huebsch et al. Feb 2000 A
6033423 Ken et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6059813 Vrba et al. May 2000 A
6063070 Eder May 2000 A
6063104 Villar et al. May 2000 A
6086577 Ken et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096034 Kupiecki et al. Aug 2000 A
6096073 Webster et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6106530 Harada Aug 2000 A
6110191 Dehdashtian et al. Aug 2000 A
6123715 Amplatz Sep 2000 A
6139564 Teoh Oct 2000 A
6152144 Lesh et al. Nov 2000 A
6168592 Kupiecki et al. Jan 2001 B1
6168615 Ken et al. Jan 2001 B1
6168618 Frantzen Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6183495 Lenker et al. Feb 2001 B1
6190402 Horton et al. Feb 2001 B1
6193708 Ken et al. Feb 2001 B1
6217609 Haverkost Apr 2001 B1
6221086 Forber Apr 2001 B1
6261305 Marotta et al. Jul 2001 B1
6280412 Pederson, Jr. et al. Aug 2001 B1
6306141 Jervis Oct 2001 B1
6309367 Boock Oct 2001 B1
6322576 Wallace et al. Nov 2001 B1
6325815 Kusleika Dec 2001 B1
6325820 Khosravi et al. Dec 2001 B1
6331184 Abrams Dec 2001 B1
6332576 Colley et al. Dec 2001 B1
6342068 Thompson Jan 2002 B1
6344041 Kupiecki et al. Feb 2002 B1
6344048 Chin et al. Feb 2002 B1
6346117 Greenhalgh Feb 2002 B1
6350270 Roue Feb 2002 B1
6361545 Macoviak Mar 2002 B1
6361558 Hieshima et al. Mar 2002 B1
6368339 Amplatz Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6383174 Eder May 2002 B1
6391037 Greenhalgh May 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6428558 Jones et al. Aug 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6454780 Wallace Sep 2002 B1
6506204 Mazzocchi Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6530934 Jacobsen et al. Mar 2003 B1
6544278 Vrba et al. Apr 2003 B1
6547804 Porter et al. Apr 2003 B2
6551303 Van Tassel et al. Apr 2003 B1
6569179 Teoh et al. May 2003 B2
6579302 Duerig et al. Jun 2003 B2
6579303 Amplatz Jun 2003 B2
6585748 Jeffree Jul 2003 B1
6585756 Strecker Jul 2003 B1
6589256 Forber Jul 2003 B2
6589265 Palmer et al. Jul 2003 B1
6592605 Lenker et al. Jul 2003 B2
6599308 Amplatz Jul 2003 B2
6602261 Greene et al. Aug 2003 B2
6605101 Schaefer et al. Aug 2003 B1
6605102 Mazzocchi et al. Aug 2003 B1
6605111 Bose et al. Aug 2003 B2
6607551 Sullivan et al. Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6626939 Burnside et al. Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6666882 Bose et al. Dec 2003 B1
6666883 Seguin et al. Dec 2003 B1
6669717 Marotta et al. Dec 2003 B2
6669721 Bose et al. Dec 2003 B1
6676696 Marotta et al. Jan 2004 B1
6682505 Bates et al. Jan 2004 B2
6682546 Amplatz Jan 2004 B2
6689150 VanTassel et al. Feb 2004 B1
6689486 Ho et al. Feb 2004 B2
6695876 Marotta et al. Feb 2004 B1
6698877 Urlaub et al. Mar 2004 B2
6699274 Stinson Mar 2004 B2
6709465 Mitchell et al. Mar 2004 B2
6712835 Mazzocchi et al. Mar 2004 B2
6723112 Ho et al. Apr 2004 B2
6723116 Taheri Apr 2004 B2
6730108 Van Tassel et al. May 2004 B2
6746468 Sepetka et al. Jun 2004 B1
6746890 Gupta et al. Jun 2004 B2
6780196 Chin et al. Aug 2004 B2
6792979 Konya et al. Sep 2004 B2
6797083 Peterson Sep 2004 B2
6802851 Jones et al. Oct 2004 B2
RE38653 Igaki et al. Nov 2004 E
6811560 Jones et al. Nov 2004 B2
6855153 Saadat Feb 2005 B2
6855154 Abdel-Gawwad Feb 2005 B2
RE38711 Igaki et al. Mar 2005 E
6860893 Wallace et al. Mar 2005 B2
6878384 Cruise et al. Apr 2005 B2
6936055 Ken et al. Aug 2005 B1
6949103 Mazzocchi et al. Sep 2005 B2
6949113 Van Tassel et al. Sep 2005 B2
6953472 Palmer et al. Oct 2005 B2
6979341 Scribner et al. Dec 2005 B2
6989019 Mazzocchi et al. Jan 2006 B2
6994092 van der Burg et al. Feb 2006 B2
6994717 Konya et al. Feb 2006 B2
7011671 Welch Mar 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7029487 Greene, Jr. et al. Apr 2006 B2
7033375 Mazzocchi et al. Apr 2006 B2
7048752 Mazzocchi et al. May 2006 B2
7063679 Maguire et al. Jun 2006 B2
7070607 Murayama et al. Jul 2006 B2
7070609 West Jul 2006 B2
7083632 Avellanet et al. Aug 2006 B2
7128073 van der Burg et al. Oct 2006 B1
7128736 Abrams et al. Oct 2006 B1
7169177 Obara Jan 2007 B2
7195636 Avellanet et al. Mar 2007 B2
7211109 Thompson May 2007 B2
7229461 Chin et al. Jun 2007 B2
7232461 Ramer Jun 2007 B2
7244267 Huter et al. Jul 2007 B2
7261720 Stevens et al. Aug 2007 B2
7303571 Makower et al. Dec 2007 B2
7306622 Jones et al. Dec 2007 B2
7331980 Dubrul et al. Feb 2008 B2
7367985 Mazzocchi et al. May 2008 B2
7367986 Mazzocchi et al. May 2008 B2
7371250 Mazzocchi et al. May 2008 B2
7393358 Malewicz Jul 2008 B2
7404820 Mazzocchi et al. Jul 2008 B2
7410482 Murphy et al. Aug 2008 B2
7410492 Mazzocchi et al. Aug 2008 B2
7413622 Peterson Aug 2008 B2
7419503 Pulnev et al. Sep 2008 B2
7442200 Mazzocchi et al. Oct 2008 B2
7485088 Murphy et al. Feb 2009 B2
7556635 Mazzocchi et al. Jul 2009 B2
7566338 Mazzocchi et al. Jul 2009 B2
7569066 Gerberding et al. Aug 2009 B2
7572273 Mazzocchi et al. Aug 2009 B2
7572288 Cox Aug 2009 B2
7575590 Watson Aug 2009 B2
7597704 Frazier et al. Oct 2009 B2
7601160 Richter Oct 2009 B2
7608088 Jones et al. Oct 2009 B2
7621928 Thramann et al. Nov 2009 B2
7632296 Malewicz Dec 2009 B2
7670355 Mazzocchi et al. Mar 2010 B2
7670356 Mazzocchi et al. Mar 2010 B2
7678130 Mazzocchi et al. Mar 2010 B2
7682390 Seguin Mar 2010 B2
7691124 Balgobin Apr 2010 B2
7695488 Berenstein et al. Apr 2010 B2
7699056 Tran et al. Apr 2010 B2
7727189 VanTassel et al. Jun 2010 B2
7744583 Seifert et al. Jun 2010 B2
7744652 Morsi Jun 2010 B2
7763011 Ortiz et al. Jul 2010 B2
7828815 Mazzocchi et al. Nov 2010 B2
7828816 Mazzocchi et al. Nov 2010 B2
7906066 Wilson et al. Mar 2011 B2
7922732 Mazzocchi et al. Apr 2011 B2
7955343 Makower et al. Jun 2011 B2
7972359 Kreidler Jul 2011 B2
RE42625 Guglielmi Aug 2011 E
7993364 Morsi Aug 2011 B2
RE42758 Ken et al. Sep 2011 E
8016869 Nikolchev Sep 2011 B2
8016872 Parker Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8062379 Morsi Nov 2011 B2
8075585 Lee et al. Dec 2011 B2
8142456 Rosqueta et al. Mar 2012 B2
8202280 Richter Jun 2012 B2
8221445 van Tassel et al. Jul 2012 B2
8261648 Marchand et al. Sep 2012 B1
8298257 Sepetka et al. Oct 2012 B2
8333783 Braun et al. Dec 2012 B2
8425541 Masters et al. Apr 2013 B2
8430012 Marchand et al. Apr 2013 B1
8454681 Holman et al. Jun 2013 B2
8470013 Duggal et al. Jun 2013 B2
8715317 Janardhan et al. May 2014 B1
8906057 Connor et al. Dec 2014 B2
9179918 Levy et al. Nov 2015 B2
9211202 Strother et al. Dec 2015 B2
9486224 Riina et al. Nov 2016 B2
9833309 Levi et al. Dec 2017 B2
9844380 Furey Dec 2017 B2
9907684 Connor et al. Mar 2018 B2
9962146 Hebert et al. May 2018 B2
10028745 Morsi Jul 2018 B2
20010000797 Mazzocchi May 2001 A1
20010001835 Greene et al. May 2001 A1
20010007082 Dusbabek et al. Jul 2001 A1
20010012949 Forber Aug 2001 A1
20010031981 Evans Oct 2001 A1
20010051822 Stack et al. Dec 2001 A1
20020013599 Limon et al. Jan 2002 A1
20020013618 Marotta et al. Jan 2002 A1
20020042628 Chin et al. Apr 2002 A1
20020062091 Jacobsen et al. May 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020165572 Saadat Nov 2002 A1
20020169473 Sepetka et al. Nov 2002 A1
20030004538 Secrest et al. Jan 2003 A1
20030018294 Cox Jan 2003 A1
20030028209 Teoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030074049 Hoganson Apr 2003 A1
20030114917 Holloway Jun 2003 A1
20030171739 Murphy et al. Sep 2003 A1
20030171770 Kusleika et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195553 Wallace et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199919 Palmer et al. Oct 2003 A1
20040015224 Armstrong et al. Jan 2004 A1
20040034386 Fulton et al. Feb 2004 A1
20040044391 Porter Mar 2004 A1
20040044396 Clerc Mar 2004 A1
20040098027 Teoh May 2004 A1
20040098030 Makower et al. May 2004 A1
20040106945 Thramann et al. Jun 2004 A1
20040106977 Sullivan et al. Jun 2004 A1
20040111112 Hoffmann Jun 2004 A1
20040122467 VanTassel et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040143239 Zhou et al. Jul 2004 A1
20040143286 Johnson et al. Jul 2004 A1
20040153119 Kusleika et al. Aug 2004 A1
20040162606 Thompson Aug 2004 A1
20040172056 Guterman et al. Sep 2004 A1
20040172121 Eidenschink et al. Sep 2004 A1
20040181253 Sepetka et al. Sep 2004 A1
20040186562 Cox Sep 2004 A1
20040193206 Gerberding et al. Sep 2004 A1
20040215229 Coyle Oct 2004 A1
20040215332 Frid Oct 2004 A1
20040249408 Murphy et al. Dec 2004 A1
20040267346 Shelso Dec 2004 A1
20050010281 Yodfat et al. Jan 2005 A1
20050021077 Chin et al. Jan 2005 A1
20050033408 Jones et al. Feb 2005 A1
20050033409 Burke et al. Feb 2005 A1
20050043750 Scott, III Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050060017 Fischell et al. Mar 2005 A1
20050096728 Ramer May 2005 A1
20050096732 Marotta et al. May 2005 A1
20050107823 Leone et al. May 2005 A1
20050131443 Abdel-Gawwad Jun 2005 A1
20050222605 Greenhalgh et al. Oct 2005 A1
20050228434 Amplatz et al. Oct 2005 A1
20050267511 Marks et al. Dec 2005 A1
20050267568 Berez et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050288763 Andreas et al. Dec 2005 A1
20060052816 Bates et al. Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060074475 Gumm Apr 2006 A1
20060106421 Teoh May 2006 A1
20060116713 Sepetka et al. Jun 2006 A1
20060116714 Sepetka et al. Jun 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060167494 Suddaby Jul 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060190076 Taheri Aug 2006 A1
20060200221 Malewicz Sep 2006 A1
20060200234 Hines Sep 2006 A1
20060206199 Churchwell et al. Sep 2006 A1
20060206200 Garcia et al. Sep 2006 A1
20060217799 Mailander et al. Sep 2006 A1
20060229700 Acosta et al. Oct 2006 A1
20060235464 Avellanet et al. Oct 2006 A1
20060235501 Igaki Oct 2006 A1
20060241690 Amplatz et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060264905 Eskridge et al. Nov 2006 A1
20060264907 Eskridge et al. Nov 2006 A1
20060271149 Berez et al. Nov 2006 A1
20060271153 Garcia et al. Nov 2006 A1
20060276827 Mitelberg et al. Dec 2006 A1
20060282152 Beyerlein et al. Dec 2006 A1
20060292206 Kim et al. Dec 2006 A1
20060293744 Peckham et al. Dec 2006 A1
20070005125 Berenstein et al. Jan 2007 A1
20070016243 Ramaiah et al. Jan 2007 A1
20070021816 Rudin Jan 2007 A1
20070050017 Sims et al. Mar 2007 A1
20070066993 Kreidler Mar 2007 A1
20070088387 Eskridge et al. Apr 2007 A1
20070093889 Wu et al. Apr 2007 A1
20070100415 Licata et al. May 2007 A1
20070100426 Rudakov et al. May 2007 A1
20070106311 Wallace et al. May 2007 A1
20070135826 Zaver et al. Jun 2007 A1
20070150045 Ferrera Jun 2007 A1
20070162104 Frid Jul 2007 A1
20070173928 Morsi Jul 2007 A1
20070175536 Monetti et al. Aug 2007 A1
20070191884 Eskridge et al. Aug 2007 A1
20070191924 Rudakov Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070203567 Levy Aug 2007 A1
20070219619 Dieck et al. Sep 2007 A1
20070221230 Thompson et al. Sep 2007 A1
20070225760 Moszner et al. Sep 2007 A1
20070225794 Thramann et al. Sep 2007 A1
20070233224 Leynov et al. Oct 2007 A1
20070233244 Lopez et al. Oct 2007 A1
20070239261 Bose et al. Oct 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288083 Hines Dec 2007 A1
20070293935 Olsen et al. Dec 2007 A1
20080009934 Schneider et al. Jan 2008 A1
20080021535 Leopold et al. Jan 2008 A1
20080039933 Yodfat et al. Feb 2008 A1
20080045996 Makower et al. Feb 2008 A1
20080045997 Balgobin et al. Feb 2008 A1
20080051705 Von Oepen et al. Feb 2008 A1
20080058856 Ramaiah et al. Mar 2008 A1
20080065141 Holman et al. Mar 2008 A1
20080065145 Carpenter Mar 2008 A1
20080097495 Feller, III et al. Apr 2008 A1
20080109063 Hancock et al. May 2008 A1
20080114391 Dieck et al. May 2008 A1
20080114436 Dieck et al. May 2008 A1
20080114439 Ramaiah et al. May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080125806 Mazzocchi et al. May 2008 A1
20080125848 Kusleika et al. May 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080140177 Hines Jun 2008 A1
20080154286 Abbott et al. Jun 2008 A1
20080195139 Donald et al. Aug 2008 A1
20080219533 Grigorescu Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080243226 Fernandez et al. Oct 2008 A1
20080249562 Cahill Oct 2008 A1
20080262598 Elmaleh Oct 2008 A1
20080281350 Sepetka et al. Nov 2008 A1
20080319533 Lehe Dec 2008 A1
20090025820 Adams Jan 2009 A1
20090069806 De La Mora Levy et al. Mar 2009 A1
20090082803 Adams et al. Mar 2009 A1
20090099647 Glimsdale et al. Apr 2009 A1
20090112251 Qian et al. Apr 2009 A1
20090118811 Moloney May 2009 A1
20090125094 Rust May 2009 A1
20090143849 Ozawa et al. Jun 2009 A1
20090143851 Paul, Jr. Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090204145 Matthews Aug 2009 A1
20090210047 Amplatz et al. Aug 2009 A1
20090216307 Kaufmann et al. Aug 2009 A1
20090228029 Lee Sep 2009 A1
20090228093 Taylor et al. Sep 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090264914 Riina et al. Oct 2009 A1
20090275974 Marchand et al. Nov 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090287294 Rosqueta et al. Nov 2009 A1
20090287297 Cox Nov 2009 A1
20090292348 Berez et al. Nov 2009 A1
20090318941 Sepetka et al. Dec 2009 A1
20090318948 Linder et al. Dec 2009 A1
20100004726 Hancock et al. Jan 2010 A1
20100004761 Flanders et al. Jan 2010 A1
20100023048 Mach Jan 2010 A1
20100023105 Levy et al. Jan 2010 A1
20100030220 Truckai et al. Feb 2010 A1
20100036390 Gumm Feb 2010 A1
20100042133 Ramzipoor et al. Feb 2010 A1
20100069948 Veznedaroglu et al. Mar 2010 A1
20100087908 Hilaire et al. Apr 2010 A1
20100094335 Gerberding et al. Apr 2010 A1
20100106178 Obermiller et al. Apr 2010 A1
20100131002 Connor et al. May 2010 A1
20100144895 Porter Jun 2010 A1
20100152767 Greenhalgh et al. Jun 2010 A1
20100185271 Zhang Jul 2010 A1
20100222802 Gillespie, Jr. et al. Sep 2010 A1
20100249894 Oba et al. Sep 2010 A1
20100256667 Ashby et al. Oct 2010 A1
20100268260 Riina et al. Oct 2010 A1
20100274276 Chow et al. Oct 2010 A1
20100312270 McGuckin, Jr. et al. Dec 2010 A1
20100331948 Turovskiy et al. Dec 2010 A1
20110022149 Cox et al. Jan 2011 A1
20110054519 Neuss Mar 2011 A1
20110082493 Samson et al. Apr 2011 A1
20110106234 Grandt May 2011 A1
20110130826 Cragg Jun 2011 A1
20110137405 Wilson et al. Jun 2011 A1
20110144669 Becking et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110184452 Huynh et al. Jul 2011 A1
20110184453 Levy et al. Jul 2011 A1
20110196415 Ujiie et al. Aug 2011 A1
20110202085 Loganathan et al. Aug 2011 A1
20110208227 Becking Aug 2011 A1
20110245862 Dieck et al. Oct 2011 A1
20110265943 Rosqueta et al. Nov 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110313447 Strauss et al. Dec 2011 A1
20110319926 Becking Dec 2011 A1
20120041470 Shrivastava et al. Feb 2012 A1
20120065720 Strauss et al. Mar 2012 A1
20120101561 Porter Apr 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143317 Cam et al. Jun 2012 A1
20120165803 Bencini et al. Jun 2012 A1
20120165919 Cox et al. Jun 2012 A1
20120197283 Marchand et al. Aug 2012 A1
20120226343 Vo et al. Sep 2012 A1
20120245674 Molaei et al. Sep 2012 A1
20120245675 Molaei et al. Sep 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120316598 Becking et al. Dec 2012 A1
20120316632 Gao Dec 2012 A1
20120330341 Becking et al. Dec 2012 A1
20120330347 Becking et al. Dec 2012 A1
20130018451 Grabowski et al. Jan 2013 A1
20130066357 Aboytes et al. Mar 2013 A1
20130066360 Becking et al. Mar 2013 A1
20130085522 Becking et al. Apr 2013 A1
20130092013 Thompson et al. Apr 2013 A1
20130123830 Becking et al. May 2013 A1
20130204351 Cox et al. Aug 2013 A1
20130211495 Halden et al. Aug 2013 A1
20130233160 Marchand et al. Sep 2013 A1
20130239790 Thompson et al. Sep 2013 A1
20130245667 Marchand et al. Sep 2013 A1
20130245670 Fan Sep 2013 A1
20130268053 Molaei et al. Oct 2013 A1
20130274862 Cox et al. Oct 2013 A1
20130274863 Cox et al. Oct 2013 A1
20130274866 Cox et al. Oct 2013 A1
20130274868 Cox et al. Oct 2013 A1
20130304179 Bialas et al. Nov 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005713 Bowman Jan 2014 A1
20140012307 Franano et al. Jan 2014 A1
20140058420 Hannes et al. Feb 2014 A1
20140074151 Tischler et al. Mar 2014 A1
20140128905 Molaei May 2014 A1
20140135810 Divino May 2014 A1
20140135817 Tischler May 2014 A1
20140172001 Becking et al. Jun 2014 A1
20140200648 Newell et al. Jul 2014 A1
20140243882 Ma Aug 2014 A1
20140277361 Farhat et al. Sep 2014 A1
20140277400 Wainwright et al. Sep 2014 A1
20140316012 Freyman et al. Oct 2014 A1
20140358178 Hewitt Dec 2014 A1
20140371734 Truckai Dec 2014 A1
20150133989 Lubock May 2015 A1
20150157331 Levy et al. Jun 2015 A1
20150173770 Warner et al. Jun 2015 A1
20150209050 Aboytes et al. Jul 2015 A1
20150216684 Enzmann et al. Aug 2015 A1
20150250628 Monstadt et al. Sep 2015 A1
20150313737 Tippett et al. Nov 2015 A1
20150327843 Garrison Nov 2015 A1
20160066921 Seifert et al. Mar 2016 A1
20160135984 Rudakov et al. May 2016 A1
20160206320 Connor Jul 2016 A1
20160206321 Connor Jul 2016 A1
20170150971 Hines Jun 2017 A1
20170156903 Shobayashi Jun 2017 A1
20170189035 Porter Jul 2017 A1
20170266023 Thomas Sep 2017 A1
20170340333 Badruddin et al. Nov 2017 A1
20170367708 Mayer et al. Dec 2017 A1
20180049859 Stoppenhagen et al. Feb 2018 A1
20180125686 Lu May 2018 A1
20180140305 Connor May 2018 A1
20180161185 Kresslein et al. Jun 2018 A1
20180193025 Walzman Jul 2018 A1
20180193026 Yang et al. Jul 2018 A1
20180206852 Moeller Jul 2018 A1
20190053811 Garza et al. Feb 2019 A1
Foreign Referenced Citations (85)
Number Date Country
2607529 Apr 2008 CA
101472537 Jul 2009 CN
1283434 Nov 1968 DE
102008028308 Apr 2009 DE
102010050569 May 2012 DE
102011011510 Aug 2012 DE
743047 Nov 1996 EP
775470 May 1997 EP
855170 Jul 1998 EP
1621148 Feb 2006 EP
1637176 Mar 2006 EP
1752112 Feb 2007 EP
1942972 Jul 2008 EP
1872742 May 2009 EP
2279023 Feb 2011 EP
2363075 Sep 2011 EP
2496299 Sep 2012 EP
2675402 Dec 2013 EP
2777640 Sep 2014 EP
2556210 Apr 1988 FR
2890306 Mar 2007 FR
11-506686 Jun 1999 JP
2003520103 Jul 2003 JP
2003-524434 Aug 2003 JP
2004-049585 Feb 2004 JP
2005-522266 Jul 2005 JP
2006-506201 Feb 2006 JP
2008513140 May 2008 JP
2008-541832 Nov 2008 JP
4673987 Apr 2011 JP
2011518023 Jun 2011 JP
2014533743 Dec 2014 JP
2015091416 May 2015 JP
20150084959 Jul 2015 KR
WO-8800813 Feb 1988 WO
WO-9601591 Jan 1996 WO
WO-9726939 Jul 1997 WO
WO-9903404 Jan 1999 WO
WO-9905977 Feb 1999 WO
WO-9908607 Feb 1999 WO
WO-9908743 Feb 1999 WO
WO-9940873 Aug 1999 WO
WO-9962432 Dec 1999 WO
WO-0057815 Oct 2000 WO
0174255 Oct 2001 WO
WO-01093782 Dec 2001 WO
WO-02000139 Jan 2002 WO
WO-02071977 Sep 2002 WO
WO-03037191 May 2003 WO
2004085590 Oct 2004 WO
WO-2005117718 Dec 2005 WO
2006034140 Mar 2006 WO
WO-2006026744 Mar 2006 WO
WO-2006034166 Mar 2006 WO
WO-2006052322 May 2006 WO
WO-2006091891 Aug 2006 WO
WO-2006119422 Nov 2006 WO
WO-2007047851 Apr 2007 WO
WO-2007076480 Jul 2007 WO
WO-2007095031 Aug 2007 WO
WO-2007121405 Oct 2007 WO
WO-2008022327 Feb 2008 WO
WO-20080109228 Sep 2008 WO
WO-2008157507 Dec 2008 WO
WO-2008151204 Dec 2008 WO
2009008868 Jan 2009 WO
WO-2009076515 Jun 2009 WO
2009132045 Oct 2009 WO
WO-2009132045 Oct 2009 WO
WO-2009134337 Nov 2009 WO
WO-2009135166 Nov 2009 WO
WO-2010028314 Mar 2010 WO
WO-2010030991 Mar 2010 WO
WO-2010147808 Dec 2010 WO
WO-2011057002 May 2011 WO
WO-2011057277 May 2011 WO
2011066962 Jun 2011 WO
WO-2011130081 Oct 2011 WO
WO-2011153304 Dec 2011 WO
WO-2012068175 May 2012 WO
WO-2012112749 Aug 2012 WO
WO-2012166804 Dec 2012 WO
2014085590 Jun 2014 WO
2017074411 May 2017 WO
2018051187 Mar 2018 WO
Non-Patent Literature Citations (7)
Entry
European Search Report dated Mar. 9, 2017; European Patent Application No. 16189394.6; 8 pages.
Hill, et al., “Initial Results of the AMPLATZER Vascular Plug in the Treatment of Congenital Heart Disease, Business Briefing,” US Cardiology 2004.
Ronnen, “AMPLATZER Vascular Plug Case Study, Closure of Arteriovenous Fistula Between Deep Femoral Artery and Superficial Femoral Vein,” AGA Medical Corporation, May 2007.
Thorell, et al., “Y-configured Dual Intracranial Stent-assisted Coil Embolization for the Treatment of Wide-necked Basilar Tip Aneurysms”, Neurosurgery, May 2005, vol. 56, Issue 5, pp. 1035-1040.
U.S. Appl. No. 14/791,941, filed Jul. 6, 2015.
U.S. Appl. No. 14/862,522, filed Sep. 23, 2015.
U.S. Appl. No. 14/932,330, filed Nov. 4, 2015.
Related Publications (1)
Number Date Country
20170079662 A1 Mar 2017 US