The present invention relates generally to heating, ventilating, and air conditioning (HVAC) control systems, and more particularly to HVAC zoning control systems that regulate the temperature of different zones throughout a dwelling or commercial structure.
In most residential dwellings and many commercial structures a single thermostat is used to control the heating, ventilating, and air conditioning (HVAC) system to regulate the temperature within the dwelling. While this solution performs adequately for many consumers, it does not actually regulate the temperature in each of the different rooms or areas of the dwelling or structure particularly well. This is a result of many factors including the layout of the dwelling, how many floors are occupied, and where the thermostat is located within the dwelling or structure.
In a typical dwelling or structure, the thermostat is located in a hallway or other central area of the house. The thermostat senses the temperature at its location and controls the HVAC system to maintain the desired temperature at that location. Unfortunately, while the temperature regulation provided by the thermostat is typically very good at that location, often the occupants of the dwelling are not in the same room or location with the thermostat. Therefore, these occupants may experience wide temperature variations at their location despite the fact that the temperature is well maintained at the point of installation of the thermostat itself. This problem is particularly acute in two story dwellings where the thermostat is located on the ground floor. Since hot air rises, many consumers in such a dwelling with a typical thermostat installation complain of high temperatures on the second floor, despite the fact that at the point of installation of the thermostat the temperature is well regulated to the desired set point.
To overcome this problem, many HVAC systems now include a remote temperature sensor that may be installed in a room that is most typically occupied by the residents. In this way, the temperature in this “occupied” room can now be regulated based on the temperature sensed by the remote sensor even though the thermostat may be located in a different area of the dwelling. The thermostat in such a system is programmed to use the temperature sensed by the remote sensor rather than the temperature sensed by its internal sensor to control the HVAC system. In such a system, the temperature in the “occupied” room is now well regulated to the desired temperature set point. Unfortunately, this type of control system has significant drawbacks. For one, the residents might very well be in a room other than the one that is most typically occupied at that particular time of the day. If this occurs, then the supposedly “occupied” room is well controlled with regard to the set point while the room that is actually occupied by occupants is not.
There exists therefore, a need in the art for a HVAC control system that is capable of regulating the temperature in various areas of a dwelling based on the sensed or detected occupancy of those areas during different times of the day.
The invention provides such a sensed occupancy zoning climate control system and method. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
The present invention provides a new and improved HVAC control system that overcomes the above-described and other problems existing in the art. More particularly, the present invention provides a new and improved HVAC control system that provides occupancy zoning control to better regulate the temperature of the zone in which occupants are at different times of the day to improve overall occupant comfort throughout the dwelling or structure. Even more particularly, the present invention provides a new and improved occupancy zoning control system that provides increased comfort to the occupants and that improves energy efficiency of the HVAC system.
In one embodiment of the invention, a control system that employs one or more occupancy sensors and a programmable thermostat to sense a state of occupancy of one or more rooms is provided. Depending on the sensed state, the control system operates to regulate the temperature of that room for comfort or efficiency. If the thermostat determines that there is no one home by monitoring the inputs from the occupancy sensors, the thermostat sets back the temperature control to a more energy efficient mode of operation to conserve energy. To provide temperature sensing, one or more remote temperature sensors may be used to provide the thermostat with an accurate temperature reading in the occupied areas of the dwelling.
In another embodiment of the present invention, the system includes motor or solenoid controlled dampers that are controlled by the thermostat. These dampers may be wired, or preferably in wireless communication with the thermostat. Through the use of such dampers, micro-zones may be created in the dwelling to better regulate the temperature and therefore the comfort of the occupants. Such dampers may also be controlled by the thermostat for time of day zoning to achieve the same goals without utilizing occupancy sensors.
In yet a further embodiment of the present invention, the thermostat includes special programming scripts or programmed control schemes that account for different sensed conditions to increase the comfort of the occupants. These scripts or control schemes differ from the regular hold or programmed mode of operation of the thermostat.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
An embodiment of a thermostat constructed in accordance with the teachings of the present invention to incorporate the time of day zoning control of the HVAC system of the invention is illustrated in
In addition to the soft keys 104, 106, this embodiment of the thermostat 100 of the present invention also includes adjustment keys 108, 110. These adjustment keys 108, 110 may serve to adjust a currently selected parameter up or down, such as in the case of setting the control temperature at which the thermostat will maintain the ambient environment. Additionally, these keys 108, 110 may scroll through the available data for a selected parameter, such as scrolling through alphanumeric data that may be selected for a given parameter. These keys 108, 110 may also function as soft keys depending on the programmatic state in which the thermostat is operating. When this functionality is provided, the function that will be instituted by selection of key 108 will be provided generally in the upper right hand corner of display 102, while the functionality that will be instituted by selection of key 110 will be displayed generally in the lower right hand corner of user display 102. In addition to the above, other use input means, such as an alphanumeric keypad, user rotatable knob, a touch screen, etc. may be utilized instead of the buttons 104-110 illustrated in the embodiment of
In this embodiment, the thermostat 100 also includes operating mode visual indicators 112, 114, 116. These indicators 112-116 provide a visual indication of the current operating mode of the thermostat. In the embodiment illustrated in
In embodiments of the present invention that do not utilize automated switching control between the heating and cooling modes of operation, these indicators 112-116 may operate as user selectable switches to allow the consumer to select the operating mode of the thermostat 100. For example, during the summer months the consumer may select the cooling mode by depressing indicator 112. In this mode, the furnace will not be turned on even if the interior ambient temperature drops below the set point. To switch from the cooling to the heating mode of operation, the consumer, in this alternate embodiment, would need to select indicator 116 to allow the thermostat 100 to operate the furnace. Consumer selection in this embodiment of indicator 114 would operate the fan continuously, as opposed to its normal automatic operation based upon a call for cooling or heat by the thermostat 100. In a still further embodiment of the present invention, the indicators 112-116 may also be utilized to provide a visual indication of system trouble, or that there is a system reminder message being displayed on user screen 102.
Having discussed the physical structure of one embodiment of a thermostat 100 constructed in accordance with the teachings of the present invention, the discussion will now focus on the time of day zoning control of the HVAC system which forms an aspect of the present invention. Indeed, while the following discussion will utilize the structure of the thermostat 100 illustrated in
The time of day zoning provided by the thermostat 100 of the present invention may be better understood with reference to the simplified dwelling illustration of
In this simplified
The second floor 124 of the exemplary dwelling 120 shown in
In the exemplary dwelling 120 shown in
The temperature regulated area 130 of the second floor 124 may be, for example, a bedroom or sleeping area where the occupants spend a significant period of time, typically during the nighttime hours. The un-temperature-regulated areas 134 may be, for example, a bathroom or other area that the consumer is not so concerned with specific temperature regulation therein. However, as discussed above, the system of the present invention would allow for the installation of a remote temperature sensor in these currently unregulated areas 134. The communication of temperature information from the remote temperature sensor 132 to the thermostat 100 may be via wired connection or wireless communication as is known in the art.
In an embodiment of the present invention that utilizes the soft key menu driven thermostat 100 illustrated in
Once this select functionality 142 has been indicated by the depression of soft key 106 (see
If the user were to select the remote temperature sensor 148 for regulation of the HVAC system, the display 102 would return to the comfort settings menu 138 illustrated in
If, however, the user had selected the average selection 150 from the select sensor menu 144 of
Returning to the selection sensor menu 144 illustrated in
In one embodiment of the present invention, the user of thermostat 100 may change the programming through the main menu 158 illustrated in
Once this selection has been made, an embodiment of the present invention displays a schedule menu 164 such as that illustrated in
Once the program function 166 has been selected, and embodiment of the present invention displays a select program days menu 170 such as that illustrated in
Assuming for this discussion that the consumer has selected the Monday to Sunday programming option 172, the Monday to Sunday program screen 182 illustrated in
However, assuming that four events per day have been selected by the consumer as illustrated in
As illustrated in
Once the consumer has reached the desired sensor for that event, the consumer depresses soft key 106 in proximity to the accept functionality 192. If, however, the consumer wanted to change a previous option, the consumer would depress soft key 104 in proximity to the back functionality 194. Once each of the programmable settings for each of the events have been programmed, the screen of
As illustrated in
As discussed briefly above, one embodiment of present invention provides the thermostat 100 with an air distribution control capability. In that regard and referring to
In the illustrated embodiment, at least one of the occupancy sensors 304-312 is deployed in each one of the areas 126-134, 316. Preferably, at least one of the occupancy sensors 304-312 is present on the first 122 and second 124 floors, as well as in the basement 316 in the dwelling 120. The occupancy sensors 304-312 are able to sense a state of occupancy in their respective area 126-134, 316. In other words, each of the sensors 304-312 is able to determine if the particular area 126-134, 316 in the dwelling 120 where that sensor is located happens to be occupied or unoccupied by residents, guests, and the like.
Each one of the occupancy sensors 304-312 can be one of a variety of suitable sensors such as, for example, a passive infrared sensor, an audible sensor, an ultrasonic sensor, and a microwave emitter sensor. Depending on the particular type selected, the occupancy sensors 304-312 are configured to detect either heat, sound, movement, etc. which is indicative of occupancy. When such occupancy is detected, the occupancy sensor 304-312 transmits the information or a signal to the thermostat 100, via a wired or wireless communication channel. The thermostat 100 processes the received information to make a determination that the particular area or room is either occupied or unoccupied. e.g. as determined from a lack of receipt of a signal or information from the occupancy sensor.
In one embodiment, the occupancy sensors 304-312 include a temperature and/or humidity sensor such as, for example, the remote temperature sensor 132 depicted in
The thermostat 100 communicates with the occupancy sensors 304-312 such that the state of occupancy and other data sensed by each sensor is provided to the thermostat 100. The occupancy sensors 304-312 can transmit information to the thermostat 100 oil an immediate or real time basis, on a periodic basis, pursuant to a schedule, and the like. The thermostat 100 is able to collectively or individually consider and use the information received from the occupancy sensors 304-312. In other words, the thermostat 100 can rely on information from a lone sensor or from several of the sensors in controlling and managing the HVAC system 302. Therefore, when disposed in the air distribution and control system 300, the thermostat 100 controls the HVAC system 302 based on the state of occupancy reported by one or more of the occupancy sensors 304-312 (as well as any information provided by the temperature/humidity transducer). In one embodiment this occupancy control can augment or override the time of day zoning discussed above.
In a further embodiment of the present invention, the thermostat 100 includes special programming scripts or control schemes to accommodate circumstances outside those expected by the “normal” programming/mode settings of conventional thermostats. For example, if the thermostat 100 is informed by the occupancy sensors 304-312 that there has been no activity within any of the areas 128-134 of the dwelling for a predetermined amount of time (e.g., twenty-four hours, several days, etc.), the thermostat can transition to a set back or “vacation mode” and control the HVAC system 302 accordingly. On the other hand, if the thermostat 100 is informed that a significant amount of activity or occupancy is reported in the dwelling such as, for example, during a party, the thermostat can instruct the HVAC system 302 to deliver an increased amount of air conditioning to the area or areas 126-134, 316 where party guests have congregated.
In one embodiment a programming script is provided to handle a situation where, in the winter, one or more of the occupancy sensors 304-312 detects repeated activity in an area 126-134, 316 near a door (not shown) that leads out of the dwelling 120. Such activity might very well be the result of the door being opened a significant number of times or being opened for an extended period of time. This can be the result of, for example, numerous guests entering the dwelling 120, a smoker repeatedly escaping to the patio to satisfy a craving, several packages being moved into or out of the dwelling, and the like. Each time the door is opened or held open for a long time, a blast of cold air is allowed to enter the dwelling 120. That blast of cold air might, for example, quickly descend down a set of stairs 314 and into a basement area 316 (e.g., a den) and thereby avoid detection by the thermostat 100. As a result, the thermostat 100 is only able to detect and react to the cold air after that cold air has slowly diffused throughout the dwelling 120.
The programming script associated with the blast or repeated blasts of cold air permits the thermostat 100 to temporarily ramp up the set point temperature for the HVAC system 302. This permits the HVAC system 302 to increase the average heat output and/or process the chilly air that entered the dwelling more rapidly. With the occupancy sensors 304-312 and programming script in place to recognize and handle this situation, the thermostat 100 is able to more quickly instruct the HVAC system 302 and respond to the change in load. The sooner the HVAC system 302 can respond to the change in load, the more comfortable the occupants of the dwelling 120 will feel.
In a further embodiment, a programming script is provided to accommodate relatively high levels of sensed activity or occupancy on the first floor 122 or in the basement 316 where cooler air tends to concentrate. In such a case, the script commands a “fan only” mode, where the fan in the HVAC system 302 runs intermittently, in lieu of an “air conditioning” mode which demands much more energy and is therefore more expensive. This is possible because the system can redistribute cooler air from unoccupied areas to the area of concentration of the occupants. In a further embodiment a script accommodates relatively high levels of sensed activity or occupancy on the second floor 124 where warmer air tends to concentrate. In such a case, the thermostat 100 provides a lower cooling set point and a longer HVAC system run time to provide better air conditioning to the second floor 124.
To ensure that the HVAC system 302 is able to handle the changing conditions in the dwelling 120, the thermostat 100 in one embodiment controls the HVAC system 302 to incrementally adjust the temperature of one or more of the areas 128-134. This incremental control by the thermostat 100 utilizes a series of stepped or tiered set points after the thermostat 100 has determined an occupied or unoccupied state of occupancy for a predetermined period of time. The series of stepped or tiered set points is programmable into the thermostat 100 by a control system user, installer, retailer, manufacturer, and the like. In this way, the occupied areas can be brought back to comfortable conditions more rapidly when the occupancy changes. For example, all because the downstairs 122 has been unoccupied for 12 hours during the night and early morning, the thermostat 100 will not set the downstairs settings to a vacation mode where the temperature may be allowed to drop to sixty degrees. Instead, the temperature may be lowed to a first stage in anticipation of re-occupancy in the near future. However, if the dwelling remains unoccupied for a much greater period of time, the thermostat 100 may go ahead and continue to lower the temperature set point to increase energy efficiency as it becomes clear the occupants have left for an extended period.
As discussed briefly above, in one embodiment of the invention the system 300 includes a number of damper mechanisms 318, 320, 322, 324, 326 for controlling air flow into the areas 126-134, 316 in the dwelling. The damper mechanisms 318-326 are generally motor or solenoid driven vanes, grates, louvers, bellows or the like. The damper mechanisms 318-326 permit an otherwise static HVAC system 302 to be more dynamic. While generally configured to communicate with the thermostat 100, in one embodiment the damper mechanisms 318-326 are equipped for wireless communication with the thermostat 100. In that regard, the damper mechanisms 318-326 can include, for example, a radio frequency transmitter and/or receiver. These dampers may be used with the time of day zoning embodiment of the present invention discussed above to further effectuate the zoning temperature regulation and to enhance energy savings by reducing conditioned airflow into unregulated areas. These dampers may also be used with other embodiments of the present invention as will be discussed more fully below.
In one embodiment, each of the damper mechanisms 318-326 is associated with one of the occupancy sensors 304-312. For example, the damper mechanism 318 may be exclusively associated with the occupancy sensor 304 (because they are in the same area 134) and the damper mechanism 320 may be exclusively associated with the occupancy sensor 306 (because they are in the same area 130). By relating each of the occupancy sensors 304-312 to one of the damper mechanisms 318-326, the thermostat 100 can provide more targeted zone control of the HVAC system 302 to enhance energy efficiency while ensuring occupant comfort. This is accomplished by the thermostat 100 in one embodiment by opening or more fully opening dampers 318-326 in occupied areas and closing or more fully closing dampers 318-326 in unoccupied areas. In a preferred embodiment, the thermostat 100 does not completely close a damper 318-326 in any area that is likely to be or has been occupied in the past so that the environment in that area is not unduly uncomfortable if an occupant moves into that area.
In a further embodiment, at least one of the damper mechanisms 318-326 is assigned an operational profile related to one or more of a heating/cooling mode of the HVAC system 302, a time of day, and a time of year. The operational profile of each damper mechanism 318-326 dictates how the damper will be positioned during a particular mode, at a particular time of day or year, and the like. Also, at least one of the damper mechanisms 318-326 is assigned an identification or priority number. These operational profiles, identification numbers, and priority rankings are programmable into the thermostat 100 to assist the thermostat 100 in instructing and/or managing the HVAC system 302.
In one embodiment, zone or room names are assigned to one or more of the occupancy sensors 304-312 and/or the damper mechanisms 318-326 and programmed into the thermostat 100. For example, the occupancy sensor 304 and the damper mechanism 318 can be assigned to the bathroom (e.g., area 134), the occupancy sensor 306 and the damper mechanism 320 can be assigned to the bedroom (e.g., area 130), the occupancy sensor 308 and the damper mechanism 322 can be assigned to the kitchen (e.g., area 128), the occupancy sensor 310 and the damper mechanism 324 can be assigned to the living or television room (e.g., area 126), and the occupancy sensor 312 and the damper mechanism 326 can be assigned to the den or basement (e.g., area 316), etc. When these logical room assignments are programmed into the thermostat 100, specific temperature set points for each of the rooms can be stored in a memory within the thermostat 100. As such, whenever activity is sensed in one of the areas 126-134, 316, the thermostat 100 can access the stored set point for that particular area and instruct the HVAC system 302 accordingly. As an occupant of the dwelling migrates from area to area during the day and night, the thermostat 100 is able to automatically accommodate the occupied area for the comfort of the occupant.
In operation, the air distribution and control system 300 controls a temperature (or other environmental characteristic) of an area 126-134, 316 based on occupancy of that area, either by anticipating such occupancy based on time of day zoning, by actually sensing a state of occupancy of one or more of those areas, or a combination of these. Based on the sensed state of occupancy, the thermostat 100 instructs the HVAC system 302 to adjust the temperature of the area 126-134, 316 such that the temperature of the area within the dwelling 120 is controlled for comfort and/or energy efficiency. When damper mechanisms 318-326 are included in the dwelling 120, the thermostat 100 can further dynamically control the temperature of a particular area 126-134, 316 based on the state of occupancy by opening or closing one or more of the damper mechanisms. In other words, the damper mechanisms 318-326 can be selectively employed by the thermostat 100 to augment the adjustment of temperature within the dwelling 120 to enhance comfort and energy efficiency. The exchange of information between all components, including the sensed state of occupancy, can be accomplished via wired and/or wireless communication.
The thermostat 100 is further able to access at least one or more of the programmed operating, modes, scripts, and/or schemes to facilitate the adjustment of a temperature or other environmental condition within the dwelling 120. Therefore, during operation, should a sensed occupancy advise the thermostat 100 of an unusual condition or activity in one of the areas 126-134, 316, the thermostat can respond accordingly and ensure occupant comfort and/or energy efficiency.
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application is a continuation-in-part of co-pending U.S. patent application Ser. No. 11/215,927, filed Aug. 31, 2005, the teachings and disclosure of which are hereby incorporated in their entireties by reference thereto.
Number | Date | Country | |
---|---|---|---|
Parent | 11215927 | Aug 2005 | US |
Child | 11394581 | Mar 2006 | US |