1. Field of the Disclosure
The present disclosure relates generally to wireless communication and, more particularly, to wireless communication in unlicensed frequency bands.
2. Description of the Related Art
Unlicensed frequency bands are portions of the radiofrequency spectrum that do not require a license for use and may therefore be used by any device to transmit or receive radiofrequency signals. For example, the Unlicensed National Information Infrastructure (UNII) is formed of portions of the radio spectrum that include frequency bands in the range of 5.15 gigahertz (GHz) to 5.825 GHz. For another example, the industrial, scientific, and medical (ISM) radio bands are portions of the radio spectrum that are reserved internationally for unlicensed communication. The ISM radio bands include bands with a center frequency of 2.4 GHz and a bandwidth of 100 megahertz (MHz), a center frequency of 5.8 GHz and a bandwidth of 150 MHz, and a center frequency of 24.125 GHz and a bandwidth of 250 MHz, among other frequency bands. Unlicensed frequency bands can be contrasted to licensed frequency bands that are licensed to a particular service provider and can only be used for wireless communication that is authorized by the service provider.
Wireless communication devices that transmit or receive signals in licensed or unlicensed frequency bands are typically referred to as nodes, which may include Wi-Fi access points that operate according to 802.11 standards defined by the Institute of Electrical and Electronics Engineers (IEEE) for the unlicensed spectrum or base stations that operate in the licensed spectrum according to standards such as Long Term Evolution (LTE) standards defined by the Third Generation Partnership Project (3GPP). Base stations that operate according to LTE may also implement supplementary downlink (SDL) channels in the unlicensed spectrum to provide additional bandwidth for downlink communications to user equipment that are also communicating with the base station using channels in a licensed frequency band.
The channels of the unlicensed frequency band used by Wi-Fi access points are divided into primary channels and secondary channels. The secondary channels may be bound to the primary channel to create a larger bandwidth channel. For example, Wi-Fi access points that operate according to the 802.11n standards in the 5 GHz band may define a 40 MHz channel that includes a 20 MHz primary channel that is bound to an adjacent 20 MHz secondary channel that is either one channel number before or after the primary channel number. Wi-Fi access points that operate according to the 802.11 ac standards may define larger channel bandwidths such as an 80 MHz channel that includes a 20 MHz primary channel that is bound to three 20 MHz secondary channels or a 160 megahertz channel that includes a 20 MHz primary channel that is bound to seven 20 MHz secondary channels.
Wi-Fi access points transmit beacon signals to notify other Wi-Fi access points that they are transmitting signals in one or more channels. For example, a Wi-Fi access point may transmit a beacon signal on its primary channel that conveys information identifying the access point, the primary channel, and, in some instances, the secondary channel. Other Wi-Fi access points may use the information in the beacon signal, as well as the frequency of the channel used to convey the beacon signal and the received signal strength of the beacon signal, to select primary or secondary channels for downlink transmissions. For example, other nodes may select primary or secondary channels that are different than the primary or secondary channels indicated in the beacon signal. For another example, the other nodes may decide to share the primary or secondary channels indicated in the beacon signal. Wi-Fi access points may also use the information identifying the primary channels in its channel selection algorithm. For example, if the Wi-Fi access point determines that too many other Wi-Fi access points are already using a channel as their primary channels, the Wi-Fi access point may choose some other channel.
Wi-Fi access points detect nodes that operate according to other radio access technologies (RATs) using indirect measurements. For example, a Wi-Fi access point that is transmitting on a first channel may measure the received signal strength on a second channel to determine whether the second channel is occupied by other nodes such as an LTE base station that is transmitting in the unlicensed frequency band. The occupancy measurement may be able to detect a noise rise in the second channel caused by downlink transmissions on the second channel by the LTE base station, but the Wi-Fi access point may not be able to distinguish this noise rise from other sources of noise. Moreover, the Wi-Fi access point must interrupt downlink transmissions to other nodes on the first channel to perform the occupancy measurements on the second channel, thereby reducing the available bandwidth for downlink transmissions.
The following presents a summary of the disclosed subject matter in order to provide a basic understanding of some aspects of the disclosed subject matter. This summary is not an exhaustive overview of the disclosed subject matter. It is not intended to identify key or critical elements of the disclosed subject matter or to delineate the scope of the disclosed subject matter. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
In some embodiments, a method is provided for transmitting occupancy notifications for channels in an unlicensed frequency band. The method includes identifying at least one first channel of an unlicensed frequency band that is occupied by a first node that operates according to a first radio access technology (RAT). The method also includes transmitting a signal on a second channel of the unlicensed frequency band. The signal is formed according to a second RAT used for transmission on the second channel and the signal includes information identifying the one or more first channels of the unlicensed frequency band.
In some embodiments, a method is provided for transmitting occupancy information. The method includes providing, from a first node that operates according to a first radio access technology (RAT) to a second node that operates according to a second RAT, information identifying one or more first channels of an unlicensed frequency band that is occupied by the first node. The second node transmits a signal formed according to a second RAT that includes the information identifying the one or more first channels.
In some embodiments, a method is provided for receiving occupancy information. The method includes receiving, at a first node that operates according to a first radio access technology (RAT), a signal on a first channel of an unlicensed frequency band comprising information identifying one or more second channels of the unlicensed frequency band that are occupied by a second node that operates according to a second RAT. The method also includes performing channel selection in the unlicensed frequency band at the first node based on the information identifying the one or more second channels.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference symbols in different drawings indicates similar or identical items.
Downlink transmissions in an unlicensed frequency band by a first node that operates according to a first radio access technology (RAT) and one or more second nodes that operate according to a second RAT may be coordinated by transmitting a signal that is formed according to the second RAT and indicates one or more channels of the unlicensed frequency band that are occupied by the first node. For example, a Wi-Fi beacon signal may be broadcast to notify neighboring Wi-Fi access points that an LTE base station is occupying the one or more channels. The beacon signal may be broadcast by a node that operates according to the second RAT and has a trusted relationship with the first node. The node may therefore receive information from the first node indicating the one or more channels that are occupied by the first node and broadcast the beacon signal on behalf of the first node. The beacon signal may also be relayed by user equipment that are connected to the first node. For example, the user equipment may connect to the first node and store information identifying the one or more channels of the unlicensed frequency band that are occupied by the first node. The user equipment may subsequently receive a request signal from one of the second nodes that requests measurement information from the user equipment, e.g., measurement requests conveyed according to the IEEE 802.11k protocol.
The access point 105 may transmit or receive signals or messages over an air interface in an unlicensed frequency band. For example, the access point 105 may transmit or receive messages using the Unlicensed National Information Infrastructure (UNII), which is formed of portions of the radio spectrum that include frequency bands in the range of 5.15 GHz to 5.825 GHz. The access point 105 may transmit signals or messages to user equipment (not shown in
The base station 110 may support wireless connectivity to other nodes such as user equipment (not shown in
The base station 110 and the access point 115 may have a trusted relationship that allows the base station 110 and the access point 115 to exchange information securely. For example, the access point 115 may be built into the same physical device or structure as the base station 110 so that the access point 115 and the base station 110 can exchange information securely over a wired connection within the physical device or structure. Alternatively, the base station 110 and the access point 115 may be implemented in separate physical devices or structures and may establish a trusted relationship over a wired or wireless communication link 120. The trusted relationship in this scenario may be established using a handshaking protocol or an authentication protocol such as a challenge/response protocol based on a shared secret key that is known to the base station 110 and the access point 115.
The base station 110 includes a transceiver 130 that is coupled to an antenna 131. The transceiver 130 may transmit messages or signals over downlink channels in the licensed frequency band or the supplementary downlink channel in the unlicensed band. The transceiver 130 may also receive signals over the uplink channels. Some embodiments of the transceiver 130 may also transmit or receive information over the communication link 120 to the access point 115. The base station 110 includes memory 135 for storing information such as processor instructions, data for transmission, received data, and the like. In the illustrated embodiment, the memory 135 includes a table 140 (or other data structure) that is used to store information identifying the channels of the unlicensed frequency band that are occupied by the base station 110. For example, the table 140 indicates that channels 157 and 161 are currently occupied by the base station 110 for downlink transmissions in the unlicensed frequency band. A processor 145 may be used to process information for transmission, process received information, or perform other operations as discussed herein, e.g., by executing instructions stored in the memory 135. For example, the processor 145 may generate messages including information identifying the occupied channels (as well as other occupancy information, as discussed herein) and instruct the transceiver 130 to provide the messages to the access point 115.
The access point 105 includes a transceiver 150 that is coupled to an antenna 151. The transceiver 150 may transmit signals or receive signals over one or more channels in the unlicensed frequency band. The access point 105 also includes a processor 155 and a memory 160. The processor 155 may be used to process information for transmission, process received information, or perform other operations as discussed herein, e.g., by executing instructions stored in the memory 160. Results of the operations may then be stored in the memory 160. For example, the transceiver 150 may receive messages including information identifying the channels occupied by the base station 110 (as well as other occupancy information, as discussed herein) that are broadcast over the air interface 125 by the access point 115. In some embodiments, the messages may be beacon signals that are broadcast by the access point 115.
The processor 155 may use information included in the messages to determine the channels used by the access point 115, a frequency of the channel used to transmit the message, the channels occupied by the base station 110, a received signal strength indicator (RSSI) for the message, or other measures of the channel quality such as a signal-to-noise ratio (SNR) or a signal-to-interference-plus-noise ratio (SINR). This information may then be stored in a table 165 (or other data structure) in the memory 160. In some embodiments, the measured properties of the received message may be used to estimate parameters of channels used by the access point 115 and the base station 110. For example, the processor 155 may estimate the RSSI for the primary channel 36 of the access point 115, the secondary channel 40 for the access point 115, the channel 157 for the base station 110, and the channel 161 for the base station 110 using the RSSI (−80 dBm) measured based on the received message. The processor 155 may use the stored information to perform channel selection for the access point 105.
The time interval 215 in the gating cycle 200, as well as the time interval 220 in the subsequent gating cycle in a series of repeating gating cycles, may be allocated to the base station for downlink transmissions on the first channel of the unlicensed frequency band. Thus, the first channel is occupied approximately 50% of the time. The time interval 225 in the gating cycle 200 may be allocated to the base station for downlink transmissions on the second channel of the unlicensed frequency band. Thus, the second channel is occupied approximately 50% of the time. As discussed herein, the allocations 205, 210 may be used to determine the percentage of time that the first and second channels, respectively, are occupied by the base station. This information may be signaled to other devices (such as the access point 105 shown in
The time interval 315 in the gating cycle 300, as well as the time interval 320 in the subsequent gating cycle in a series of repeating gating cycles, may be allocated to the base station for downlink transmissions on the first channel of the unlicensed frequency band. Thus, the first channel is occupied approximately 50% of the time. The time interval 325 in the gating cycle 200 may be allocated to the base station for downlink transmissions on the second channel of the unlicensed frequency band. Thus, the second channel is occupied approximately 100% of the time. As discussed herein, the allocations 305, 310 may be used to determine the percentage of time that the first and second channels, respectively, are occupied by the base station. This information may be signaled to other devices (such as the access point 105 shown in
Some embodiments of the beacon signal 400 may include additional occupancy information. For example, the beacon signal 400 may include additional fields to characterize traffic on the channels of the unlicensed frequency band. A first field (Allocated Traffic Self) may include information indicating the total quality of service (QoS) traffic and numbers of different types of active streams such as audio (AC_V0) and video (AC_V1) streams. A second field (Potential Traffic Self) may include information indicating the potential QoS traffic load expected by the device. A third field (Shared Traffic) may include information indicating a sum of the values in the first field. A fourth field (Overlap) includes information indicating the number of other access points (or other devices) that are sharing the same channel and whose beacons have been detected or obtained within a predetermined number of previous beacon periods or gating cycles. Some embodiments of the beacon signal 300 may include more or fewer fields for conveying other occupancy information for channels of the unlicensed frequency band.
The fields of the beacon signals 400, 500 shown in
At block 720, the trusted node transmits information indicating the channel list and, in some cases, the QLoad metrics associated with the channels indicated in the channel list. Some embodiments of the trusted node broadcast the channel list and, in some cases, the QLoad metrics at predetermined time intervals. In addition to or instead of broadcasting the information at predetermined time intervals, some embodiments of the trusted node may transmit the channel list and, in some cases, the QLoad metrics to one or more other nodes that operate according to the second RAT in response to receiving a request signal from the one or more other nodes. Transmitting the information may include transmitting one or more messages including the information indicating the channel list and, in some cases, the QLoad metrics associated with the channels indicated in the channel list. The signals or messages may be formed according to the second RAT.
The access point 905 may transmit or receive signals or messages over an air interface in an unlicensed frequency band. The base station 910 may communicate with other nodes (such as the user equipment 915) over one or more uplink channels and one or more downlink channels in a licensed frequency band. The base station 910 may also communicate with other nodes over a supplementary downlink channel in an unlicensed frequency band. However, the base station 910 is not able to directly signal information indicating its occupancy of channels in the unlicensed frequency band to the access point 905 since the base station 910 operates according to a different RAT than the access point 905. The user equipment 915 may therefore relay occupancy information from the base station 910 to the access point 905. For example, the user equipment 915 may acquire the occupancy information using a wireless communication link 920 established with the base station 910. The occupancy information may be stored and subsequently provided to the access point 905 over a channel 925 of the unlicensed frequency band in response to a request signal 930 received from the access point 905.
The user equipment 915 includes a transceiver 935 that is coupled to an antenna 936. The transceiver 935 may operate according to the first RAT or the second RAT and therefore the transceiver 935 may transmit or receive messages or signals over channels in the licensed frequency band or the unlicensed band. For example, the transceiver 935 may be used to exchange messages or signals with the access point 905 according to the first RAT or the base station 910 according to the second RAT. The user equipment 915 includes memory 940 for storing information such as processor instructions, data for transmission, received data, and the like. In the illustrated embodiment, the memory 940 includes a table 945 (or other data structure) that is used to store information identifying the channels of the unlicensed frequency band that are occupied by the base station 910. For example, the table 945 indicates that channels 157 and 161 are currently occupied by the base station 910 for downlink transmissions in the unlicensed frequency band. The table 945 may also be used to store, in some cases, occupancy information such as QLoad metrics and other occupancy information described herein. A processor 950 may be used to process information for transmission, process received information, or perform other operations as discussed herein, e.g., by executing instructions stored in the memory 940. For example, the processor 950 may acquire the channel information and, in some cases, other occupancy information in response to the user equipment 915 establishing a wireless communication link 920 with the base station 910. This information may then be stored in the table 945. The processor 950 may subsequently generate messages (such as a radio measurement report) including information identifying the occupied channels (as well as other occupancy information, as discussed herein) and instruct the transceiver 935 to provide the messages to the access point 905.
At decision block 1020, the user equipment determines whether it has received a request signal from a node. If not, the user equipment continues to wait for request signal. If the user equipment receives a request signal from the node, the user equipment provides the storage channel occupancy information to the requesting node. For example, the user equipment may transmit a radio measurement report including information indicating the occupancy information at block 1025. The radio measurement report may be formed according to the second RAT. The stored occupancy information may become stale over time and so some embodiments of the user equipment may periodically repeat some or all of the method 1002 refresh the stored occupancy information. For example, the user equipment may periodically transmit requests for occupancy information to the base station at a predetermined time interval and store the newly acquired channel occupancy information. In some embodiments, the radio measurement report may be transmitted autonomously by the user equipment (e.g., as a beacon signal that is broadcast at predetermined time intervals) in addition to or instead of being transmitted in response to a request signal received from another node.
In some embodiments, certain aspects of the techniques described above may implemented by one or more processors of a processing system executing software. The software comprises one or more sets of executable instructions stored or otherwise tangibly embodied on a non-transitory computer readable storage medium. The software can include the instructions and certain data that, when executed by the one or more processors, manipulate the one or more processors to perform one or more aspects of the techniques described above. The non-transitory computer readable storage medium can include, for example, a magnetic or optical disk storage device, solid state storage devices such as Flash memory, a cache, random access memory (RAM) or other non-volatile memory device or devices, and the like. The executable instructions stored on the non-transitory computer readable storage medium may be in source code, assembly language code, object code, or other instruction format that is interpreted or otherwise executable by one or more processors.
A computer readable storage medium may include any storage medium, or combination of storage media, accessible by a computer system during use to provide instructions and/or data to the computer system. Such storage media can include, but is not limited to, optical media (e.g., compact disc (CD), digital versatile disc (DVD), Blu-Ray disc), magnetic media (e.g., floppy disc, magnetic tape, or magnetic hard drive), volatile memory (e.g., random access memory (RAM) or cache), non-volatile memory (e.g., read-only memory (ROM) or Flash memory), or microelectromechanical systems (MEMS)-based storage media. The computer readable storage medium may be embedded in the computing system (e.g., system RAM or ROM), fixedly attached to the computing system (e.g., a magnetic hard drive), removably attached to the computing system (e.g., an optical disc or Universal Serial Bus (USB)-based Flash memory), or coupled to the computer system via a wired or wireless network (e.g., network accessible storage (NAS)).
Note that not all of the activities or elements described above in the general description are required, that a portion of a specific activity or device may not be required, and that one or more further activities may be performed, or elements included, in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are performed. Also, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims. Moreover, the particular embodiments disclosed above are illustrative only, as the disclosed subject matter may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. No limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the disclosed subject matter. Accordingly, the protection sought herein is as set forth in the claims below.