1. Field of the Invention
This invention relates to bulk bins, and particularly to a self-locking bottom flap construction for octagonal bulk bins.
2. The Prior Art
Bulk bins are used in the industry for storing and shipping numerous products, and typically hold 2,000 pounds or more of the product, including flowable or semi-liquid products such as, e.g., comminuted poultry. When flowable products are to be contained in the bin, a bag normally is placed in the bin for receiving the product. The outward force exerted on the sidewalls by flowable products, in particular, is substantial, and tends to bulge the sidewalls outwardly. The bins are commonly made of corrugated cardboard and comprise a plurality of sidewalls joined together along vertical folds. The bottoms of the bins preferably are closed or partially closed by inwardly folded bottom flaps joined to bottom edges of the side walls along horizontal folds. The flaps are separated from one another by slots or cuts extending from an outer edge of the flaps to a point at or near the intersection of the vertical and horizontal folds. This structure creates a weak point where tearing of the vertical fold can initiate. Tearing of the vertical fold can propagate rapidly upwardly, resulting in bursting of the sidewall and failure of the bin, with consequent loss of the stored product.
At least partially to minimize the outward bulge of the sidewalls, the industry has adopted bulk bins having an octagonal shape, wherein diagonal corner panels are interposed between adjacent edges of the opposed sidewalls and opposed end walls. In conventional octagonal bins the diagonal corner panels are of less width than either the sidewalls or the end walls of the bin, and although the octagonal configuration reduces the width of the sidewalls and/or end walls in a bin having a comparable capacity and size to a corresponding four-sided bin, thus reducing the extent of outward bulge of the sidewalls and/or end walls, the sidewalls and/or end walls still have substantial width.
Bulk bins made of corrugated material are typically manufactured from a single blank that is scored to delineate the sidewalls, end walls, diagonal corner panels, and bottom flaps. The blank is folded and secured at a manufacturer's joint by the manufacturer, and shipped to the user in a flattened condition. The user then sets the flattened bin on end and opens it up into an expanded tubular configuration. The bottom flaps are then folded inwardly and secured to hold the bin in its set-up condition. Self-locking bottom flaps have been developed to facilitate setting up the bin from its flattened condition to its fully open usable condition.
Octagonal bulk bins normally have eight bottom flaps, including two major flaps, two minor flaps, and four diagonal flaps. Conventional octagonal bulk bins with or without self-locking bottom flaps are cumbersome to assemble, and as a result users often seek alternative packaging. Further, the sequence of inward folding of the bottom flaps on a conventional octagonal bulk bin frequently results in creating extra pinch points in the bottom of the bin, e.g., by the diagonal flaps extending into the interior of the box bottom, which can damage the bag and cause it to rupture, thus contaminating the stored product.
It would be desirable to have a bulk bin that has all the advantages of an octagonal bulk bin, but that is free of the problems associated with conventional bulk bins, and particularly to have an octagonal bulk bin with bottom flaps, especially self-locking bottom flaps, that is relatively easy to erect into its operative position, is constructed to avoid the formation of weak points where tearing of the vertical fold can initiate and to avoid the formation of pinch points in the bottom.
The present invention comprises a bulk bin with self-locking bottom flaps constructed so that the bin is relatively easy to erect, and which avoids the formation of weak points where tearing of the vertical fold can initiate, and avoids the formation of pinch points in the bottom.
More particularly, the present invention comprises an octagonal bulk bin having self-locking bottom flaps with gusset panels or web panels connected between adjacent edges of the diagonal flaps and the respective adjacent major and minor bottom flaps, whereby the user has to fold only four bottom flaps inwardly, in contrast to the requirement to fold eight bottom flaps inwardly on conventional octagonal bins, and wherein the cuts or slits separating the bottom flaps from one another terminate in spaced relationship to the vertical folds, thereby eliminating the weak points where tearing of the vertical folds can initiate. The construction and sequence of folding of the bottom flaps also avoids the formation of pinch points.
Notches cut in the ends of the minor bottom flaps form a pair of locking tabs on each minor bottom flap, and angled slots cut in the major bottom flaps adjacent their outer edge form openings for receiving the locking tabs. The two major bottom flaps are first folded inwardly to square up the bin, followed by inward folding of the minor bottom flaps. Since the diagonal flaps are connected by gussets to adjacent edges of the major and minor bottom flaps, inward folding of the major flaps initiates inward movement of the minor flaps and diagonal flaps, and subsequent inward folding of the minor bottom flaps into their operative inwardly folded position also causes the diagonal flaps to fold inwardly, with the diagonal flaps essentially sandwiched between the major and minor flaps. By pressing the inwardly folded minor flaps downwardly against the previously inwardly folded major flaps, the locking tabs on the minor bottom flaps engage in the slots in the major bottom flaps to lock the bottom flaps in position and thus hold the bin in its setup condition.
Further, in a preferred embodiment of the present invention, the diagonal corner panels have the same or substantially the same width as the end walls, thus reducing the width of the sidewalls and end walls in a bin having a comparable capacity, and thereby reducing outward bulge of the sidewalls and/or end walls.
The bulk bin of the invention can be of single wall, double wall or triple wall construction, with or without sesame tape or strap reinforcing, and stretch wrap can be easily applied.
The gusset panels not only serve to facilitate setup of the bin and to space the ends of the flap slits from the bottom ends of the vertical folds, but also close the corners of the bin bottom.
The bulk bin of the invention can be used with a conventional wooden pallet, or a slip sheet, or can be set directly on a floor surface. Further, applicant has developed a plastic pallet tray for use with octagonal bulk bins, and especially when this pallet tray is used with the bulk bin of the invention it is contemplated that the bins can be stacked on top of one another, something that cannot be done with conventional octagonal bulk bins. Moreover, the plastic pallet tray serves as a jig to facilitate setup of the octagonal bulk bin, and prevents contact between the top of the bin and a floor surface, thereby reducing or eliminating contamination issues. The pallet tray is lightweight and nestable for economy in storage and shipping, is reusable, and has two-way accessibility for a hand jack and four-way accessibility for a fork lift. Although shown and described herein as used with the octagonal bulk bin of the invention, it should be understood that the plastic pallet tray has equal utility with conventional octagonal bulk bins, and with appropriate modification can be used with four-sided bins.
The foregoing, as well as other objects and advantages of the invention, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like reference characters designate like parts throughout the several views, and wherein:
An octagonal bin in accordance with the invention is indicated generally at 10 in the drawings, and with particular reference to
It should be noted that as depicted in
In either form the minor bottom flaps are connected to the diagonal bottom flaps at their respective adjacent side edges by first gusset panels or webs 40, and the major bottom flaps are connected to the respective opposite side edges of the diagonal bottom flaps by second gusset panels or webs 41, whereby the slits or cuts 42 separating the major bottom flaps from adjacent diagonal bottom flaps do not extend to the horizontal folds joining these flaps to the respective sidewalls and diagonal panels. Further, the cuts 42 delimit the angled side edges 43 and 44 of the wings 33 and 34 and terminate in J- or hook-shapes 45 pointing away from both the horizontal and vertical folds, thereby redirecting stress away from the lower end of the vertical folds to avoid initiation of a tear in the vertical fold.
The gusset panels or webs 40 and 41 are seen best in
The second gusset panel or web 41 is defined by a first fold score 55 substantially collinear with the angled side edge 43 and extending from the base of the hook-shaped cut 45 to adjacent the closest intersection of a vertical and horizontal fold 20 and 26, respectively, and a second fold score 56 oriented at about a 300 angle relative to the first fold score and extending from the nose of the hook 45 to converge with the first fold score adjacent said closest intersection.
With regard to the gusset panels 40 and 41 and cuts 42 and 45, it should be noted that the shape of cut 45 need not be limited to a J-shape but can have any shape that redirects stress away from the end of cut 42 and avoids initiation of tearing along one of the gusset panel fold scores 55, 56 or along one of the vertical folds 20. For example, the cut could be shaped as a modified Greek letter psi, or an inverted modified Greek letter psi, or a T, L, U, V, etc as described in applicant's copending prior U.S. application Ser. No. 10/316,966, filed Dec. 11, 2002. Moreover, the point where the gusset panel fold scores 46, 47 or 55, 56 intersect can be located at the horizontal fold score 23, 26 or 31 or spaced a short distance therefrom.
A self-locking structure is defined by a pair of triangularly shaped notches 60 and 61 in the free edge of each of the minor bottom flaps, defining a pair of locking tabs 62 and 63 on the corners of the minor bottom flaps, and by a pair of angled slots 64 and 65 formed in the major bottom flaps near their free edge in a position to receive the locking tabs when the major and minor bottom flaps are folded inwardly over the bottom of the bin.
To erect the bin, it is placed in an inverted position with its bottom end up as seen in
The bin 10 is made from a single unitary blank B, as shown in
The major bottom flap forming panels 21 and 22 are separated from adjoining diagonal flap forming panels by cuts 42 extending at about a 45° angle from a side edge of the respective panel to a point spaced a substantial distance from a respective fold score 23 or 31. The cuts 42 define angled side edges 43 and 44 of the wings 33 and 34 and terminate in J- or hook-shapes 45 pointing away from the fold scores 23, 26 and 31. The second gussets 41 interconnect the major bottom forming flap panels and adjacent diagonal flap forming panels in the area between the J-shaped cuts 45 and the fold scores 23, 26 and 31.
The first gusset 40 comprises a triangular web delimited by a pair of fold scores 46 and 47 diverging at an angle of about 30° and extending from a point near but spaced from a respective fold score 23, 26 and 31 and its juncture with an adjacent fold score 20 to the free outer edge of a respective diagonal flap panel. Fold promoting cuts 48 and 49 are made along a short portion of the length of the fold scores 46 and 47, and short transverse cuts are made across the ends of the cuts 48 and 49 to prevent propagation of the cuts 48 and 49. The fold scores 46 are in general coaxial alignment with a respective adjacent fold score 20 and a side edge of a respective minor bottom flap panel.
The second gusset 41 comprises a triangular web delimited by a pair of fold scores 46 and 47 diverging at an angle of about 30° and extending from a point near but spaced from a respective fold score 23, 26 and 31 and its juncture with an adjacent fold score 20 to a respective J-shaped cut 45.
A pair of generally V-shaped notches 60 and 61 are formed in the free outer edges of each minor bottom flap panel 24 and 25, defining a pair of locking tabs 62 and 63 on the outer corners of the minor bottom flap panels.
Angled slots 64 and 65 are formed in an outer side edge portion of each major bottom flap panel 21 and 22.
The plastic pallet tray 100, when used with a bin, including the octagonal bin of the invention, facilitates set up of the bin, protects the top end of the bin from contamination, and also assists in resisting outward bulge of the sidewalls due to the outward pressure of the material stored therein. Moreover, it is contemplated that use of the pallet tray will enable the bins to be stacked on top of one another.
As seen best in
This application claims the benefit of U.S. provisional patent application Ser. No. 60/712,236, filed Aug. 29, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3261533 | Repking | Jul 1966 | A |
4428499 | Nauheimer | Jan 1984 | A |
4480748 | Wind | Nov 1984 | A |
4702408 | Powlenko | Oct 1987 | A |
5139196 | Fry et al. | Aug 1992 | A |
5628450 | Cromwell et al. | May 1997 | A |
5752648 | Quaintance | May 1998 | A |
5816483 | Gasper | Oct 1998 | A |
6074331 | Ruggiere et al. | Jun 2000 | A |
6132349 | Yokoyama | Oct 2000 | A |
6371363 | Franklin et al. | Apr 2002 | B1 |
6588651 | Quaintance | Jul 2003 | B2 |
6783058 | Quaintance | Aug 2004 | B2 |
20030116615 | Hyatt et al. | Jun 2003 | A1 |
4247021 | Jan 1981 |
Number | Date | Country |
---|---|---|
2818110 | Nov 1978 | DE |
1544117 | Jun 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20070051783 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60712236 | Aug 2005 | US |