All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present disclosure pertains generally, but not by way of limitation, to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to devices that are implanted within the eye. Additionally, the present disclosure relates to systems, devices and methods for delivering ocular implants into the eye.
According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.
The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid know as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.
Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm's canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm's canal and is carried along with the venous blood leaving the eye.
When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.
In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Opthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. Nos. 4,968,296 and 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm's canal (Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. Nos. 6,450,984; 6,450,984).
The invention provides design, material, and manufacturing method alternatives for medical devices. In a first example, an ocular implant delivery system may comprise a cannula defining a passageway extending from a proximal end to a distal end, the cannula having a distal opening extending through a side wall and the distal end of the cannula to form a trough, a curved distal portion, a curved intermediate portion, and a proximal portion, an ocular implant disposed within the passageway of the cannula, and a delivery tool having a distal interlocking portion engaging a complementary interlocking portion of the ocular implant, and wherein the intermediate portion of the cannula has a first radius of curvature and the distal portion has a second radius of curvature.
Alternatively or additionally to the above example, in another example, the intermediate portion of the cannula extends distally from a first point distal to the proximal end to a second point proximal to the distal end and the distal portion extends distally from the second point to the distal end.
Alternatively or additionally to any of the examples above, in another example the first radius of curvature is greater than the second radius of curvature.
Alternatively or additionally to any of the examples above, in another example, the distal interlocking portion of the delivery tool and the complementary interlocking portion of the ocular implant form a mechanically interlocking connection when the interlocking portion of the delivery tool is proximal to the trough portion of the cannula.
Alternatively or additionally to any of the examples above, in another example, the distal interlocking portion of the delivery tool has an at-rest shape different from the shape of the cannula, the cannula side wall preventing the delivery tool from assuming its at-rest shape when the interlocking portion of the delivery tool is proximal to the trough of the cannula.
Alternatively or additionally to any of the examples above, in another example, the delivery tool at-rest shape is a curve having a smaller radius of curvature than the second radius of curvature of the cannula.
Alternatively or additionally to any of the examples above, in another example, an angle between a line tangential to the distal end of the cannula and a central axis of the proximal portion of the cannula is in the range of 90° to 165°.
In another example, a cannula for deploying an ocular implant into an eye may comprise a tubular member having a side wall and extending from a proximal end to a distal end, the tubular member comprising a passageway extending from the proximal end to the distal end of the tubular member, a generally straight proximal portion extending distally from the proximal end to a first point, a curved intermediate portion extending distally from the first point to a second point proximal to the distal end, a curved distal portion extending distally from the second point to the distal end, and a distal opening extending through the side wall and the distal end of the cannula to form a trough, and wherein the intermediate portion of the cannula has a first radius of curvature and the distal portion has a second radius of curvature and the first radius of curvature is greater than the second radius of curvature.
Alternatively or additionally to any of the examples above, in another example, the passageway is configured to receive an ocular implant.
In another example, a method of deploying an ocular implant into Schlemm's canal of an eye may comprise inserting a distal end of a cannula through a cornea of the eye and into an anterior chamber of the eye, the cannula comprising a passageway extending from a proximal end to a distal end, the cannula further comprising a distal opening extending through a side wall and the distal end of the cannula to form a trough, a curved distal portion, a curved intermediate portion, and a proximal portion, wherein the curved intermediate portion of the cannula has a first radius of curvature and the distal curved portion has a second radius of curvature, placing the distal opening of the cannula into fluid communication with Schlemm's canal, advancing an ocular implant distally through the cannula with a delivery tool engaged with the ocular implant, a proximal portion of the ocular implant engaging the delivery tool proximal to a distal portion of the delivery tool, and disengaging the ocular implant and the delivery tool when the proximal portion of the ocular implant reaches distal opening of the cannula.
Alternatively or additionally to the above example, in another example, the intermediate portion of the cannula extends distally from a first point distal to the proximal end to a second point proximal to the distal end and the distal portion extends distally from the second point to the distal end.
Alternatively or additionally to any of the examples above, in another example, the first radius of curvature is greater than the second radius of curvature.
Alternatively or additionally to any of the examples above, in another example, the disengaging step comprises separating the distal portion of the delivery tool and the ocular implant from each other when the distal portion of the delivery tool passes through the distal opening of the cannula.
Alternatively or additionally to any of the examples above, in another example, the separating step is performed before the distal portion of the delivery tool reaches the distal end of the cannula.
Alternatively or additionally to any of the examples above, in another example, the separating step comprises maintaining contact between the ocular implant and the cannula and moving the distal portion of the delivery tool away from the cannula.
Alternatively or additionally to any of the examples above, in another example, the distal portion of the delivery tool has an at-rest shape, the separating step further comprising permitting the distal portion of the delivery tool to assume its at-rest shape.
Alternatively or additionally to any of the examples above, in another example, the at-rest shape is a curve having a smaller radius of curvature than the second radius of curvature of the cannula.
In another example, a method of deploying an ocular implant into Schlemm's canal of an eye may comprise inserting a distal end of a cannula through an incision in the eye and into an anterior chamber of the eye, wherein a location of the incision is optimized for a cataract surgery, the cannula comprising a passageway extending from a proximal end to a distal end, the cannula further comprising a distal opening extending through a side wall and the distal end of the cannula to form a trough, a curved distal portion, a curved intermediate portion, and a proximal portion, wherein the curved intermediate portion of the cannula has a first radius of curvature and the distal curved portion has a second radius of curvature, placing the distal opening of the cannula into fluid communication with Schlemm's canal such that the cannula enters Schlemm's canal in a substantially tangential orientation, advancing an ocular implant distally through the cannula with a delivery tool engaged with the ocular implant, a proximal portion of the ocular implant engaging the delivery tool proximal to a distal portion of the delivery tool, and disengaging the ocular implant and the delivery tool when the proximal portion of the ocular implant reaches distal opening of the cannula.
Alternatively or additionally to the above example, in another example, the intermediate portion of the cannula extends distally from a first point distal to the proximal end to a second point proximal to the distal end and the distal portion extends distally from the second point to the distal end.
Alternatively or additionally to any of the examples above, in another example, the first radius of curvature is greater than the second radius of curvature.
Alternatively or additionally to any of the examples above, in another example, the disengaging step comprises separating the distal portion of the delivery tool and the ocular implant from each other when the distal portion of the delivery tool passes through the distal opening of the cannula.
Alternatively or additionally to any of the examples above, in another example, the separating step is performed before the distal portion of the delivery tool reaches the distal end of the cannula.
Alternatively or additionally to any of the examples above, in another example, the separating step comprises maintaining contact between the ocular implant and the cannula and moving the distal portion of the delivery tool away from the cannula.
Alternatively or additionally to any of the examples above, in another example, the distal portion of the delivery tool has an at-rest shape, the separating step further comprising permitting the distal portion of the delivery tool to assume its at-rest shape.
Alternatively or additionally to any of the examples above, in another example, the at-rest shape is a curve having a smaller radius of curvature than the second radius of curvature of the cannula.
The above summary of some examples and embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Brief Description of the Drawings, and Detailed Description, which follow, more particularly exemplify these embodiments, but are also intended as exemplary and not limiting.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention.
Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same or substantially the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or able to be arranged with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.
The following detailed description should be read with reference to the drawings, in which similar elements in different drawings are identified with the same reference numbers. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
During the procedure illustrated in
Methods in accordance with this detailed description may include the step of advancing the distal end of cannula 72 through the cornea of eye 20 so that a distal portion of cannula 72 is disposed in the anterior chamber of the eye. Cannula 72 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end of cannula 72. Distal opening 74 of cannula 72 may be placed in fluid communication with a lumen defined by Schlemm's canal. The ocular implant may be advanced out of distal opening 74 and into Schlemm's canal. Insertion of the ocular implant into Schlemm's canal may facilitate the flow of aqueous humor out of the anterior chamber of the eye.
In the embodiment of
Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.
Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.
Schlemm's canal SC is a tube-like structure that encircles iris 30. Two laterally cut ends of Schlemm's canal SC are visible in the cross-sectional view of
The shape of Schlemm's canal SC is somewhat irregular, and can vary from patient to patient. The shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. With reference to
Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. With reference to
The length of major axis 60 and minor axis 62 can vary from patient to patient. The length of minor axis 62 is between one and thirty micrometers in most patients. The length of major axis 60 is between one hundred and fifty micrometers and three hundred and fifty micrometers in most patients.
With reference to
Delivery system 100 of
Delivery system 100 of
In the embodiment of
Delivery system 100 includes a mechanism 166 that controls the movement of delivery tool subassembly 170. Mechanism 166 includes a number of components that are located inside housing 102, including tracking wheel 106, an idler gear 122, and the rotating rack gear 120. In the embodiment of
In the embodiment of
In the embodiment of
In some embodiments, delivery tool 152 is formed from shape memory material (such as, e.g., nitinol), and at least a portion of delivery tool 152 assumes a curved at-rest shape when no external forces are acting on it. Delivery tool 152 can be urged to assume a straightened shape, for example, by inserting delivery tool 152 through a straight portion of the passageway defined by cannula 108. When the delivery tool is confined, such as within cannula 108, the interlocking portion can engage the complementary interlocking portion to join the delivery tool and ocular implant together, and allow the delivery tool and ocular implant to move together through the cannula 108, as described in more detail below.
Delivery system 100 also includes an O-ring 126 disposed between sleeve 104 and housing 102. O-ring 126 can provide friction and/or resistance between sleeve 104 and housing 102. This friction and/or resistance may be useful, for example, to hold the sleeve 104 in a desired orientation. A noseplug 105 snaps into the distal end of the delivery system.
Extension tube 174 includes a shaped portion 175 that is dimensioned and shaped to fit within a shaped through hole defined by rotating rack gear 120, as shown below in
Cannula subassembly 180 includes cannula 108, a hub 172, and an extension tube 174. Extension tube 174 is disposed about cannula 108. Extension tube 174 and cannula 108 may be fixed to one another, for example, using a laser spot welding process. Hub 172 is fixed to an outer surface portion of extension tube 174 in the embodiment of
In
In the embodiment of
A method in accordance with this detailed description may include the step of advancing the distal end 134 of cannula 108 through the cornea of a human eye so that distal end 134 is disposed in the anterior chamber of the eye. Cannula 108 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end 134 of cannula 108. The beveled edge 165 may be inserted into Schlemm's canal to place at least part of distal opening 132 of cannula 108 in communication with Schlemm's canal, as discussed in more detail below. The ocular implant may be advanced out of a distal port of the cannula and into Schlemm's canal.
In the embodiment of
For purposes of illustration, a hypothetical window W is cut through the wall of cannula 108 in
As shown in
In some useful embodiments, the delivery tool may be colored to provide visual differentiation from the implant. After the disengaging from the ocular implant, cannula 108 and delivery tool 152 can be withdrawn from Schlemm's canal SC leaving the ocular implant 150 in the fully deployed position shown in
In the embodiment of
In the embodiment of
With reference to the figures described above, it will be appreciated that methods in accordance with the present detailed description may be used to position at least a distal portion of an implant in Schlemm's canal of an eye. In some cases, a proximal inlet portion of the ocular implant may be left in the anterior chamber. An exemplary method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm's canal, for example, by cutting and/or piercing the wall of Schlemm's canal with a distal portion of the cannula. A distal opening of the cannula may be placed in fluid communication with Schlemm's canal. The distal end of the ocular implant may be advanced through the distal opening of the cannula and into Schlemm's canal.
After delivering an ocular implant into Schlemm's canal, a physician may visually inspect the present location of the ocular implant to determine whether that location is acceptable. If the physician determines that the present location is unacceptable, the physician may use the systems and methods described herein to recapture and redeliver the ocular implant. Recapturing and redelivering the ocular implant may include the steps of forming a second connection between the delivery tool and the ocular implant and moving the delivery tool and the ocular implant in a proximal direction so that at least a portion of the ocular implant is withdrawn from Schlemm's canal. A distal part of the ocular implant may be advanced into Schlemm's canal while the ocular implant is coupled to the delivery tool at the second connection. The second connection may be selectively broken to release the ocular implant from the delivery system while the distal part of the ocular implant is disposed in Schlemm's canal.
In
In
In some instances, it may be desirable to deliver an ocular implant to Schlemm's canal in conjunction with another corrective surgery, such as, but not limited to, cataract surgery. When the ocular implant is placed during another surgical procedure, it may be desirable to insert the ocular implant through the same incision used for the other procedure.
Delivery system 400 of
Delivery system 400 of
In the embodiment of
In some instances, it may be desirable to place the ocular implant 450 during another ocular procedure, such as, but not limited to cataract surgery. It is contemplated that the optimal position for an incision for cataract surgery may not be the same as the optimal position of an incision for solely placing an ocular implant, such as implant 450, into Schlemm's canal. With previous ocular implant delivery system designs, in order to allow for substantially tangential entry of the cannula into Schlemm's canal two separate incisions may be required when the implant is placed in combination with another ocular procedure. The curved configuration of both the distal portion 444 may be configured to allow for substantially tangential entry of the cannula 408 into Schlemm's canal. It is further contemplated that the curved configuration of the intermediate portion 445 may allow the cannula 408 to be advanced through typical incisions associated with and/or optimized for cataract surgery, such as, but not limited to, a sclerocorneal tunnel incision, while still allowing for substantially tangential entry of the cannula 408 into Schlemm's canal. This may allow for two or more ocular procedures to be performed using a single incision. It is further contemplated that performing multiple procedures through a single incision may reduce patient discomfort and recovery time.
In the embodiment of
Delivery system 400 includes a mechanism 466 that controls the movement of delivery tool subassembly 470. Mechanism 466 includes a number of components that are located inside housing 402, including tracking wheel 406, an idler gear 422, and the rotating rack gear 420. In the embodiment of
In the embodiment of
In the embodiment of
In some embodiments, delivery tool 452 is formed from shape memory material (such as, e.g., nitinol), and at least a portion of delivery tool 452 assumes a curved at-rest shape when no external forces are acting on it. Delivery tool 452 can be urged to assume a straightened shape, for example, by inserting delivery tool 452 through a straight portion of the passageway defined by cannula 408. When the delivery tool 452 is confined, such as within cannula 408, the interlocking portion can engage the complementary interlocking portion to join the delivery tool and ocular implant together, and allow the delivery tool and ocular implant to move together through the cannula 408, as described in more detail below.
Delivery system 400 also includes an O-ring 426 disposed between sleeve 404 and housing 402. O-ring 426 can provide friction and/or resistance between sleeve 404 and housing 402. This friction and/or resistance may be useful, for example, to hold the sleeve 404 in a desired orientation. A noseplug 405 snaps into the distal end of the delivery system.
A distal opening surface 442 surrounds a distal opening 432 extending through the distal end 434 and through a side wall of cannula 408. A beveled edge 465 is disposed at the distal end of distal opening surface 442, extending from the distal end 434 to a proximal extent 467 of beveled edge 465. Tubular member 498 defines distal opening 432, a proximal opening 436, and a passageway 438 extending between proximal opening 436 and distal opening 432.
Proximal portion 440 of cannula 408 is substantially straight while intermediate portion 445 and distal portion 444 of cannula 408 may be curved. In the embodiment of
where Larc is the length of the arc, θ is the angle measure of the arc (in degrees), and r is the radius of the circle. In some instances, the angle measure of intermediate portion 445 may be in the range of 10° to 25°, although other angles are possible. Distal portion 444 may define a curve having a second radius R2 and defining a second radius of curvature. The length of distal portion 444 along central axis 496 may be determined by the measure of the arc (in degrees) and the radius of the curve using Equation 1 above. In some instances, the angle measure of distal portion 444 may be in the range of 90° to 110°, although other angles are possible. It is contemplated that the first radius R1 may be larger than the second radius R2 such that the distal portion 444 has a higher curvature than the intermediate portion 445. This configuration may advance the ocular implant at the correct trajectory relative to Schlemm's canal or other anatomy in the eye into which the ocular implant is to be implanted. For example, the configuration may allow the cannula 408 to be advanced through an incision generally along a major axis of the visible eye and allowing for substantially tangential entry of cannula 408 into Schlemm's canal. It is contemplated that first radius R1 and second radius R2 may be selected to facilitate delivery of implant 450 to other anatomical locations.
A method in accordance with this detailed description may include the step of advancing the distal end 434 of cannula 408 through the cornea of a human eye so that distal end 434 is disposed in the anterior chamber of the eye. Cannula 408 may then be used to access Schlemm's canal of the eye, for example, by piercing the wall of Schlemm's canal with the distal end 434 of cannula 408. The beveled edge 465 may be inserted into Schlemm's canal to place at least part of distal opening 432 of cannula 408 in communication with Schlemm's canal. For example, cannula 408 may be advanced until the distal tip 434 and beveled edge 465 of cannula 408 have been inserted into Schlemm's canal up to the proximal extent 467 of beveled edge 465. With the passageway of the cannula 408 placed in fluid communication with the lumen of Schlemm's canal, the ocular implant may be advanced out of a distal port of the cannula 408 and into Schlemm's canal.
In the embodiment of
Referring briefly to
Once cannula 408 has been positioned in the desired location, ocular implant 450 may be advanced distally while cannula 408 is held stationary. Elongate opening 432 may provide direct visualization of ocular implant 450 as it is advanced into Schlemm's canal. A configuration allowing direct visualization of the ocular implant has a number of clinical advantages. During a medical procedure, it is often difficult to monitor the progress of the implant by viewing the implant through the trabecular meshwork. For example, blood reflux may push blood into Schlemm's canal obstructing a physician's view the portion of the implant that has entered Schlemm's canal. Ocular implant 450 tracks along trough 454 as it is advanced distally along cannula 408. The trough opening allows the physician to monitor the progress of the implant by viewing the implant structures as they advance through the trough prior to entering Schlemm's canal. The trough opening also allows the physician to identify the position of the proximal end of the ocular implant with respect to the incision made by the cannula to access Schlemm's canal.
Delivery tool 452 may advance ocular implant 450 distally until delivery tool surface 461 and part of the reduced diameter portion 463 have now passed into opening 432, thereby permitting the delivery tool curved portion to move toward its curved at-rest shape so that the delivery tool engagement surface 460 disengages and moves away from its complementary engagement surface 462 on the ocular implant 450. After the disengaging from the ocular implant, cannula 408 and delivery tool 452 can be withdrawn from Schlemm's canal leaving the ocular implant 450 in the fully deployed position. After delivery of ocular implant 450 is complete, the delivery tool 452 and the cannula 408 may be removed from the eye, leaving at least a distal portion of the ocular implant 450 in Schlemm's canal. An inlet portion of ocular implant 450 may be positioned in the anterior chamber of the eye and the remainder of ocular implant 450 in Schlemm's canal. The presence of ocular implant 450 in Schlemm's canal may facilitate the flow of aqueous humor out of the anterior chamber. This flow may include axial flow along Schlemm's canal, flow from the anterior chamber into Schlemm's canal, and flow leaving Schlemm's canal via outlets communicating with Schlemm's canal. When in place within the eye, ocular implant 450 will support the trabecular meshwork and Schlemm's canal tissue and will provide for improved communication between the anterior chamber and Schlemm's canal (via the trabecular meshwork) and between pockets or compartments along Schlemm's canal.
Components of ocular device may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, utylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.
As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.
In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.
It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/040414 | 7/14/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/011056 | 1/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
703296 | Arnold | Jun 1902 | A |
1601709 | Windom | Oct 1926 | A |
2716983 | George et al. | Sep 1955 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3811442 | Maroth | May 1974 | A |
3858577 | Bass et al. | Jan 1975 | A |
3884236 | Krasnov | May 1975 | A |
3948271 | Akiyama | Apr 1976 | A |
3982541 | L'Esperance | Sep 1976 | A |
4037604 | Newkirk | Jul 1977 | A |
4134405 | Smit | Jan 1979 | A |
4273109 | Enderby | Jun 1981 | A |
4391275 | Fankhauser et al. | Jul 1983 | A |
4428746 | Mendez | Jan 1984 | A |
4457757 | Molteno | Jul 1984 | A |
4461294 | Baron | Jul 1984 | A |
4470407 | Hussein | Sep 1984 | A |
4497319 | Sekine et al. | Feb 1985 | A |
4501274 | Skjaerpe | Feb 1985 | A |
4517973 | Sunago et al. | May 1985 | A |
4538608 | L'Esperance | Sep 1985 | A |
4548205 | Armeniades et al. | Oct 1985 | A |
4551129 | Coleman et al. | Nov 1985 | A |
4558698 | O'Dell | Dec 1985 | A |
4559942 | Eisenberg | Dec 1985 | A |
4566438 | Liese et al. | Jan 1986 | A |
4580559 | L'Esperance | Apr 1986 | A |
4583539 | Karlin et al. | Apr 1986 | A |
4601713 | Fuquo | Jul 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4633866 | Peyman et al. | Jan 1987 | A |
4658816 | Ector | Apr 1987 | A |
4660546 | Herrick et al. | Apr 1987 | A |
4671273 | Lindsey | Jun 1987 | A |
4689040 | Thompson | Aug 1987 | A |
4699140 | Holmes et al. | Oct 1987 | A |
4706669 | Schlegel | Nov 1987 | A |
4722350 | Armeniades et al. | Feb 1988 | A |
4722724 | Schocket | Feb 1988 | A |
4729373 | Peyman | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4770654 | Rogers et al. | Sep 1988 | A |
4791927 | Menger | Dec 1988 | A |
4826478 | Schocket | May 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4876250 | Clark | Oct 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4886488 | White | Dec 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4925299 | Meisberger et al. | May 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4934809 | Volk | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4994060 | Rink et al. | Feb 1991 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5123902 | Muller et al. | Jun 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5129895 | Vassiliadis et al. | Jul 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5213569 | Davis | May 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5246452 | Sinnott | Sep 1993 | A |
5254112 | Sinofsky et al. | Oct 1993 | A |
5273056 | McLaughlin et al. | Dec 1993 | A |
5290267 | Zimmermann | Mar 1994 | A |
5300020 | L'Esperance | Apr 1994 | A |
5359685 | Waynant et al. | Oct 1994 | A |
5360399 | Stegmann | Nov 1994 | A |
5371078 | Clark et al. | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5445637 | Bretton | Aug 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5501274 | Nguyen et al. | Mar 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5591223 | Lock et al. | Jan 1997 | A |
5607966 | Hellberg et al. | Mar 1997 | A |
5613972 | Lee et al. | Mar 1997 | A |
5626558 | Suson | May 1997 | A |
5643250 | O'Donnell | Jul 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5676669 | Colvard | Oct 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5722970 | Colvard et al. | Mar 1998 | A |
5736491 | Patel et al. | Apr 1998 | A |
5738676 | Hammer et al. | Apr 1998 | A |
5738677 | Colvard et al. | Apr 1998 | A |
5785658 | Benaron et al. | Jul 1998 | A |
5792099 | DeCamp et al. | Aug 1998 | A |
5792103 | Schwartz et al. | Aug 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5811453 | Yanni et al. | Sep 1998 | A |
5865831 | Cozean et al. | Feb 1999 | A |
5868697 | Richter et al. | Feb 1999 | A |
5879319 | Pynson et al. | Mar 1999 | A |
5885279 | Bretton | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5895831 | Brasier et al. | Apr 1999 | A |
5919171 | Kira et al. | Jul 1999 | A |
5948427 | Yamamoto et al. | Sep 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
5990099 | Clark | Nov 1999 | A |
5993438 | Juhasz et al. | Nov 1999 | A |
5997531 | Loeb et al. | Dec 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6050970 | Baerveldt | Apr 2000 | A |
6083193 | Kadziauskas et al. | Jul 2000 | A |
6099521 | Shadduck | Aug 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6146375 | Juhasz et al. | Nov 2000 | A |
6177544 | Kanai et al. | Jan 2001 | B1 |
6186974 | Allan et al. | Feb 2001 | B1 |
6217584 | Nun | Apr 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6238409 | Hojeibane | May 2001 | B1 |
6241721 | Cozean et al. | Jun 2001 | B1 |
D444874 | Haffner et al. | Jul 2001 | S |
6297228 | Clark | Oct 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6328747 | Nun | Dec 2001 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6398809 | Hoffmann et al. | Jun 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6508803 | Horikawa et al. | Jan 2003 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533764 | Haffner et al. | Mar 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6551289 | Higuchi et al. | Apr 2003 | B1 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6702790 | Ross | Mar 2004 | B1 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
D490152 | Myall et al. | May 2004 | S |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881198 | Brown | Apr 2005 | B2 |
6899717 | Weber et al. | May 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7018376 | Webb et al. | Mar 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7125119 | Farberov | Oct 2006 | B2 |
7133137 | Shimmick | Nov 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7207965 | Simon | Apr 2007 | B2 |
7207980 | Christian et al. | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7699882 | Stamper et al. | Apr 2010 | B2 |
7740604 | Schieber et al. | Jun 2010 | B2 |
7931596 | Rachlin et al. | Apr 2011 | B2 |
7967772 | McKenzie et al. | Jun 2011 | B2 |
8012115 | Karageozian | Sep 2011 | B2 |
8123729 | Yamamoto et al. | Feb 2012 | B2 |
8172899 | Silvestrini et al. | May 2012 | B2 |
8267882 | Euteneuer et al. | Sep 2012 | B2 |
8282592 | Schieber et al. | Oct 2012 | B2 |
8308701 | Horvath et al. | Nov 2012 | B2 |
8337509 | Schieber et al. | Dec 2012 | B2 |
8372026 | Schieber et al. | Feb 2013 | B2 |
8414518 | Schieber et al. | Apr 2013 | B2 |
8425449 | Wardle et al. | Apr 2013 | B2 |
8475374 | Irazoqui et al. | Jul 2013 | B2 |
8512404 | Frion et al. | Aug 2013 | B2 |
8529494 | Euteneuer et al. | Sep 2013 | B2 |
8540659 | Berlin | Sep 2013 | B2 |
8551166 | Schieber et al. | Oct 2013 | B2 |
8629161 | Mizuno et al. | Jan 2014 | B2 |
8636647 | Silvestrini et al. | Jan 2014 | B2 |
8647659 | Robinson et al. | Feb 2014 | B2 |
8657776 | Wardle et al. | Feb 2014 | B2 |
8663150 | Wardle et al. | Mar 2014 | B2 |
8663303 | Horvath et al. | Mar 2014 | B2 |
8734377 | Schieber et al. | May 2014 | B2 |
8808222 | Schieber et al. | Aug 2014 | B2 |
8939906 | Huang et al. | Jan 2015 | B2 |
8939948 | De Juan, Jr. et al. | Jan 2015 | B2 |
8945038 | Yablonski | Feb 2015 | B2 |
8951221 | Stegmann et al. | Feb 2015 | B2 |
8961447 | Schieber et al. | Feb 2015 | B2 |
8974511 | Horvath et al. | Mar 2015 | B2 |
9039650 | Schieber et al. | May 2015 | B2 |
9050169 | Schieber et al. | Jun 2015 | B2 |
9066750 | Wardle et al. | Jun 2015 | B2 |
9066783 | Euteneuer et al. | Jun 2015 | B2 |
9155655 | Wardle et al. | Oct 2015 | B2 |
9211213 | Wardle et al. | Dec 2015 | B2 |
9226852 | Schieber et al. | Jan 2016 | B2 |
9351874 | Schieber et al. | May 2016 | B2 |
9358156 | Wardle et al. | Jun 2016 | B2 |
9402767 | Schieber et al. | Aug 2016 | B2 |
9510973 | Wardle | Dec 2016 | B2 |
9579234 | Wardle et al. | Feb 2017 | B2 |
9636254 | Yu et al. | May 2017 | B2 |
9642746 | Berlin | May 2017 | B2 |
9693901 | Horvath et al. | Jul 2017 | B2 |
9730638 | Haffner et al. | Aug 2017 | B2 |
9757276 | Penhasi | Sep 2017 | B2 |
9775729 | McClain et al. | Oct 2017 | B2 |
9782293 | Doci | Oct 2017 | B2 |
9788999 | Schaller | Oct 2017 | B2 |
9795503 | Perez Grossmann | Oct 2017 | B2 |
9808373 | Horvath et al. | Nov 2017 | B2 |
9820883 | Berlin | Nov 2017 | B2 |
9833357 | Berlin | Dec 2017 | B2 |
10159601 | Berlin | Dec 2018 | B2 |
10335314 | Berlin | Jul 2019 | B2 |
20010002438 | Sepetka et al. | May 2001 | A1 |
20020003546 | Mochimaru et al. | Jan 2002 | A1 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020052653 | Durgin | May 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020082591 | Haefliger | Jun 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020165504 | Sharp et al. | Nov 2002 | A1 |
20020165522 | Holmen | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030004457 | Andersson | Jan 2003 | A1 |
20030014092 | Neuhann | Jan 2003 | A1 |
20030040754 | Mitchell et al. | Feb 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060748 | Baikoff | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030060784 | Hilgers et al. | Mar 2003 | A1 |
20030093084 | Nissan et al. | May 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030105456 | Lin | Jun 2003 | A1 |
20030125351 | Azuma et al. | Jul 2003 | A1 |
20030175324 | Robinson et al. | Sep 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030212387 | Kurtz et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040024453 | Castillejos | Feb 2004 | A1 |
20040030302 | Kamata et al. | Feb 2004 | A1 |
20040070761 | Horvath et al. | Apr 2004 | A1 |
20040082939 | Berlin | Apr 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040092856 | Dahan | May 2004 | A1 |
20040098124 | Freeman et al. | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040106975 | Solovay et al. | Jun 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040116909 | Neuberger et al. | Jun 2004 | A1 |
20040122380 | Utterberg | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040199149 | Myers et al. | Oct 2004 | A1 |
20040199171 | Akahoshi | Oct 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225357 | Worst et al. | Nov 2004 | A1 |
20040228013 | Goldstein et al. | Nov 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050041200 | Rich | Feb 2005 | A1 |
20050043722 | Lin | Feb 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050101967 | Weber et al. | May 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050131514 | Hijlkema et al. | Jun 2005 | A1 |
20050149114 | Cartledge et al. | Jul 2005 | A1 |
20050154443 | Linder et al. | Jul 2005 | A1 |
20050165385 | Simon | Jul 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197667 | Chan et al. | Sep 2005 | A1 |
20050203542 | Weber et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050240168 | Neuberger et al. | Oct 2005 | A1 |
20050244464 | Hughes | Nov 2005 | A1 |
20050245916 | Connor | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050260186 | Bookbinder et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050279369 | Lin | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20050288745 | Andersen et al. | Dec 2005 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060021623 | Miller et al. | Feb 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060052879 | Kolb | Mar 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060079828 | Brown | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060084954 | Zadoyan et al. | Apr 2006 | A1 |
20060106370 | Baerveldt et al. | May 2006 | A1 |
20060110428 | deJuan et al. | May 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060129141 | Lin | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060154981 | Klimko et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060155265 | Juhasz et al. | Jul 2006 | A1 |
20060155300 | Stamper et al. | Jul 2006 | A1 |
20060167421 | Quinn | Jul 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060178674 | McIntyre | Aug 2006 | A1 |
20060189915 | Camras et al. | Aug 2006 | A1 |
20060189916 | Bas et al. | Aug 2006 | A1 |
20060189917 | Mayr et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060195187 | Stegmann et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060224146 | Lin | Oct 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20060259021 | Lin | Nov 2006 | A1 |
20060264971 | Akahoshi | Nov 2006 | A1 |
20060276759 | Kinast et al. | Dec 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070027452 | Varner et al. | Feb 2007 | A1 |
20070073275 | Conston et al. | Mar 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070093794 | Wang et al. | Apr 2007 | A1 |
20070093796 | Raksi et al. | Apr 2007 | A1 |
20070106200 | Levy | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070112292 | Tu et al. | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070121120 | Schachar | May 2007 | A1 |
20070135681 | Chin et al. | Jun 2007 | A1 |
20070173791 | Raksi | Jul 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070191863 | De Juan, Jr. et al. | Aug 2007 | A1 |
20070202186 | Yamamoto et al. | Aug 2007 | A1 |
20070208325 | Kurtz | Sep 2007 | A1 |
20070219509 | Tashiro et al. | Sep 2007 | A1 |
20070219541 | Kurtz | Sep 2007 | A1 |
20070235543 | Zadoyan et al. | Oct 2007 | A1 |
20070236771 | Zadoyan et al. | Oct 2007 | A1 |
20070265582 | Kaplan et al. | Nov 2007 | A1 |
20070270945 | Kobayashi et al. | Nov 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20070293872 | Peyman | Dec 2007 | A1 |
20070298068 | Badawi et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080027519 | Guerrero | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080058777 | Kurtz et al. | Mar 2008 | A1 |
20080082088 | Kurtz et al. | Apr 2008 | A1 |
20080091224 | Griffis et al. | Apr 2008 | A1 |
20080119827 | Kurtz et al. | May 2008 | A1 |
20080228127 | Burns et al. | Sep 2008 | A1 |
20080278687 | Somani | Nov 2008 | A1 |
20080288082 | Deal | Nov 2008 | A1 |
20080312661 | Downer et al. | Dec 2008 | A1 |
20090005852 | Gittings et al. | Jan 2009 | A1 |
20090028953 | Yamamoto et al. | Jan 2009 | A1 |
20090030363 | Gellman | Jan 2009 | A1 |
20090030381 | Lind et al. | Jan 2009 | A1 |
20090036843 | Erskine | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090069786 | Vesely et al. | Mar 2009 | A1 |
20090082862 | Schieber et al. | Mar 2009 | A1 |
20090104248 | Rapacki et al. | Apr 2009 | A1 |
20090118716 | Brownell | May 2009 | A1 |
20090118717 | Brownell et al. | May 2009 | A1 |
20090118718 | Raksi et al. | May 2009 | A1 |
20090131921 | Kurtz et al. | May 2009 | A1 |
20090137988 | Kurtz | May 2009 | A1 |
20090138081 | Bergheim et al. | May 2009 | A1 |
20090157062 | Hauger et al. | Jun 2009 | A1 |
20090171327 | Kurtz et al. | Jul 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090198248 | Yeung et al. | Aug 2009 | A1 |
20090204053 | Nissan et al. | Aug 2009 | A1 |
20090247955 | Yamamoto et al. | Oct 2009 | A1 |
20090259126 | Saal et al. | Oct 2009 | A1 |
20090281520 | Highley et al. | Nov 2009 | A1 |
20090281530 | Korn | Nov 2009 | A1 |
20100004580 | Lynch et al. | Jan 2010 | A1 |
20100036488 | de Juan et al. | Feb 2010 | A1 |
20100057072 | Roman et al. | Mar 2010 | A1 |
20100114309 | de Juan et al. | May 2010 | A1 |
20100121342 | Schieber | May 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100173866 | Hee et al. | Jul 2010 | A1 |
20100191176 | Ho et al. | Jul 2010 | A1 |
20100191177 | Chang et al. | Jul 2010 | A1 |
20100234726 | Sirimanne et al. | Sep 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100262174 | Sretavan et al. | Oct 2010 | A1 |
20100324543 | Kurtz et al. | Dec 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110009874 | Wardle et al. | Jan 2011 | A1 |
20110028948 | Raksi et al. | Feb 2011 | A1 |
20110028949 | Raksi et al. | Feb 2011 | A1 |
20110028950 | Raksi et al. | Feb 2011 | A1 |
20110028951 | Raksi et al. | Feb 2011 | A1 |
20110028952 | Raksi et al. | Feb 2011 | A1 |
20110028953 | Raksi et al. | Feb 2011 | A1 |
20110028954 | Raksi et al. | Feb 2011 | A1 |
20110028955 | Raksi | Feb 2011 | A1 |
20110028957 | Raksi et al. | Feb 2011 | A1 |
20110028958 | Raksi et al. | Feb 2011 | A1 |
20110098809 | Wardle et al. | Apr 2011 | A1 |
20110196487 | Badawi et al. | Aug 2011 | A1 |
20110218523 | Robl | Sep 2011 | A1 |
20110224597 | Stegmann et al. | Sep 2011 | A1 |
20120010702 | Stegmann et al. | Jan 2012 | A1 |
20120022424 | Yamamoto et al. | Jan 2012 | A1 |
20120035524 | Silvestrini | Feb 2012 | A1 |
20120191064 | Conston et al. | Jul 2012 | A1 |
20120271272 | Hammack et al. | Oct 2012 | A1 |
20120283557 | Berlin | Nov 2012 | A1 |
20130023837 | Becker | Jan 2013 | A1 |
20130182223 | Wardle et al. | Jul 2013 | A1 |
20130184631 | Pinchuk | Jul 2013 | A1 |
20130253402 | Badawi et al. | Sep 2013 | A1 |
20130253403 | Badawi et al. | Sep 2013 | A1 |
20130253437 | Badawi et al. | Sep 2013 | A1 |
20130253438 | Badawi et al. | Sep 2013 | A1 |
20130253528 | Haffner et al. | Sep 2013 | A1 |
20130267887 | Kahook et al. | Oct 2013 | A1 |
20130281908 | Schaller et al. | Oct 2013 | A1 |
20140018720 | Horvath et al. | Jan 2014 | A1 |
20140066821 | Freidland et al. | Mar 2014 | A1 |
20140066831 | Silvestrini | Mar 2014 | A1 |
20140081195 | Clauson et al. | Mar 2014 | A1 |
20150018746 | Hattenbach | Jan 2015 | A1 |
20150022780 | John et al. | Jan 2015 | A1 |
20150038893 | Haffner et al. | Feb 2015 | A1 |
20150045714 | Horvath et al. | Feb 2015 | A1 |
20150057583 | Gunn et al. | Feb 2015 | A1 |
20150057591 | Horvath et al. | Feb 2015 | A1 |
20150065940 | Rangel-Friedman et al. | Mar 2015 | A1 |
20150080783 | Berlin | Mar 2015 | A1 |
20150119787 | Wardle et al. | Apr 2015 | A1 |
20150148836 | Heeren | May 2015 | A1 |
20150223983 | Schieber et al. | Aug 2015 | A1 |
20150250649 | Euteneuer et al. | Sep 2015 | A1 |
20150282982 | Schieber et al. | Oct 2015 | A1 |
20150290033 | Wardle et al. | Oct 2015 | A1 |
20150305939 | Vera et al. | Oct 2015 | A1 |
20150305940 | Vera et al. | Oct 2015 | A1 |
20150313759 | Vera et al. | Nov 2015 | A1 |
20150366710 | Schieber et al. | Dec 2015 | A1 |
20160051406 | Wardle et al. | Feb 2016 | A1 |
20160220417 | Schieber et al. | Aug 2016 | A1 |
20160250072 | Wardle et al. | Sep 2016 | A1 |
20170127941 | Ostermeier et al. | May 2017 | A1 |
20170143541 | Badawi et al. | May 2017 | A1 |
20170172794 | Varner et al. | Jun 2017 | A1 |
20170172795 | Lerner | Jun 2017 | A1 |
20170172797 | Horvath et al. | Jun 2017 | A1 |
20170172798 | Horvath et al. | Jun 2017 | A1 |
20170172799 | Horvath | Jun 2017 | A1 |
20170172800 | Romoda et al. | Jun 2017 | A1 |
20170202708 | Berlin | Jul 2017 | A1 |
20170239272 | Ambati et al. | Aug 2017 | A1 |
20170251921 | Phan et al. | Sep 2017 | A1 |
20170281409 | Haffner et al. | Oct 2017 | A1 |
20170290705 | Wardle et al. | Oct 2017 | A1 |
20180369017 | Schieber et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
199876197 | Feb 1999 | AU |
1950091 | Apr 2007 | CN |
4226476 | Aug 1993 | DE |
102012221350 | May 2014 | DE |
0168201 | Jun 1988 | EP |
0957949 | Nov 1996 | EP |
0766544 | May 1998 | EP |
1615604 | Aug 2009 | EP |
2193821 | Jun 2010 | EP |
1715827 | Dec 2010 | EP |
2380622 | Oct 2011 | EP |
2468327 | Jun 2012 | EP |
2471563 | Jul 2012 | EP |
1833440 | Aug 2012 | EP |
3164061 | May 2017 | EP |
2996648 | Jun 2017 | EP |
1732484 | Aug 2017 | EP |
1740153 | Aug 2017 | EP |
3076948 | Aug 2017 | EP |
3205333 | Aug 2017 | EP |
3060180 | Sep 2017 | EP |
3082570 | Sep 2017 | EP |
H10504978 | May 1998 | JP |
11123205 | May 1999 | JP |
2002542872 | Dec 2002 | JP |
2006517848 | Aug 2006 | JP |
2006289075 | Oct 2006 | JP |
2010509003 | Mar 2010 | JP |
2011502649 | Jan 2011 | JP |
WO9620742 | Jul 1996 | WO |
WO9901063 | Jan 1999 | WO |
WO9945868 | Sep 1999 | WO |
WO0007525 | Feb 2000 | WO |
WO0013627 | Mar 2000 | WO |
WO0064389 | Nov 2000 | WO |
WO0064393 | Nov 2000 | WO |
WO0067687 | Nov 2000 | WO |
WO0189437 | Nov 2001 | WO |
WO0197727 | Dec 2001 | WO |
WO0236052 | May 2002 | WO |
WO02074052 | Sep 2002 | WO |
WO02080811 | Oct 2002 | WO |
WO03015659 | Feb 2003 | WO |
WO03045290 | Jun 2003 | WO |
WO2004054643 | Jul 2004 | WO |
WO2004093761 | Nov 2004 | WO |
WO2005105197 | Nov 2005 | WO |
WO2006066103 | Jun 2006 | WO |
WO2007035356 | Mar 2007 | WO |
WO2007047744 | Apr 2007 | WO |
WO2007087061 | Aug 2007 | WO |
WO2008002377 | Jan 2008 | WO |
WO2008005873 | Jan 2008 | WO |
WO2009120960 | Oct 2009 | WO |
WO2011053512 | May 2011 | WO |
WO2011057283 | May 2011 | WO |
WO2011106781 | Sep 2011 | WO |
WO2011150045 | Dec 2011 | WO |
WO2012051575 | Apr 2012 | WO |
WO2012083143 | Jun 2012 | WO |
WO2013147978 | Oct 2013 | WO |
WO2016154066 | Sep 2016 | WO |
Entry |
---|
Kirkness et al.; The Use of Silicone Drainage Tubing to Control Post-Keratoplasty Glaucoma; Eye; 2 (pt 5); pp. 583-590; Apr. 1988. |
Molteno et al.; Long Tube Implants in the Management of Glaucoma; SA Medical Journal; 26; pp. 1062-1066; Jun. 1976. |
Molteno; New implant for drainage in glaucoma; Brit. J. Ophthal; 53; pp. 606-615; Sep. 1969. |
Schocket et al.; Anterior Chamber Tube Shunt to an Encircling Band in the Treatment of Neovascular Glaucoma and other Refractory Glaucomas; Ophthalmology; 92; pp. 553-562; Apr. 1985. |
Wilcox et al.; Hypothesis for Improving Accessory Filtration by Using Geometry; Journal of Glaucoma; 3; pp. 244-247; Fall 1994. |
Berlin et al.; U.S. Appl. No. 15/868,904 entitled Methods and systems for OCT guided glaucoma surgery, filed Jan. 11, 2018. |
Cambridge Dictionary; Sensor (definition); 2 pages; retrived from the internet (http://dictionary.cambridge.org/define.asp?dict=CALD&key=71811 >) on Aug. 14, 2018. |
Dietlein et al.; Morphological variability of the trabecular meshwork in glaucoma patients: implications for non-perforating glaucoma surgery; British Journal of Ophthalmology; 84(12); pp. 1354-1359; Dec. 2000. |
Huang et al.; Optical coherence tomography; Science; 254(5035); pp. 1178-1181; 12 pages (Author Manuscript); Nov. 1991. |
Johnstone; Aqueous humor outflow system overview; Becker-Shaffer's Diagnosis and Therapy of the Glaucomas; Part 2 Aqueous Humor Dynamics; Chapter 3; pp. 25-46; Mosby Elseveir; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2009. |
Lee et al.; Short-pulsed neodymium-YAG laser trabeculotomy. An in vivo morphological study in the human eye; Investigative Ophthalmology and Visual Science; 29(11); pp. 1698-1707; Nov. 1988. |
Macmilla Online Dictionary; Detector (definition); Macmilla On Line Dictionary; 2 pages; retrived from the internet (https://www.macmillandictionary.com/dictionary/british/detector) on Aug. 14, 2018. |
Nakamura et al.; Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study; Investigative Ophthalmology and Visual Science; 50(3); pp. 1198-1204; Mar. 2009. |
Owen; A moving-mirror gonioscope for retinal surgery; British Journal of Ophthalmology; 61(3); pp. 246-247; Mar. 1977. |
Oxford Dictionaries; Detector (definition); 1 page; retrieved from the internet (https://en.oxforddictionaries.com/definition/detector) on Aug. 14, 2018. |
Oxford Dictionaries; Sensor (definition); 1 page; retrieved from te internet (http://www.askoxford.com/concise_oed/sensor?view=uk>) on Aug. 14, 2018. |
Radhakrishnan et al.; Real-time optical coherence tomography of the anterior segment at 1310 nm; Archives of Opthhalmology; 119(8); pp. 1179-1185; Aug. 2001. |
Toyran et al.; Femtosecond laser photodisruption of human trabecular meshwork: an in vitro study; Experimental Eye Research; 81(3); pp. 298-305; Sep. 2005. |
Van Meter et al.; U.S. Appl. No. 15/751,886 entitled “Ocular implant with pressure sensor and delivery system,” filed Feb. 12, 2018. |
Bahler, et al.; Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments; Amer. Journal of Ophthalmology; vol. 138, No. 6; pp. 988-994.e2; Dec. 2004. |
Camras et al.; A novel schlemm's canal scaffold increases outflow facility in a human anterior segment perfusion model; Invest. Opthalmol. Vis. Sci. ; 53(10); pp. 6115-6121; Sep. 1, 2012. |
D'Ermo, et al.; Our results with the operation of ab externo trabeculotomy; Ophthalmologica; vol. 163; pp. 347-355; Feb. 1971. |
Ellingsen et al.; Trabeculotomy and sinusotomy in enucleated human eyes; Investigative Ophthalmology; vol. 11; pp. 21-28; Jan. 1972. |
Grant; Experimental aqueous perfusion in enucleated human eyes; Archives of Ophthalmology; vol. 69; pp. 783-801; Jun. 1963. |
Gulati et al; A novel 8-mm schlemm's canal scaffold reduces outflow resistance in a human anterior segment perfusion model; Invest. Ophthalmol. Vis. Sci.; 54(3); pp. 1698-1704; Mar. 5, 2013. |
Hays et al.; Improvement in outflow facility by two novel microinvasive glaucoma surgery implants; Invest. Ophthalmol. Vis. Sci.; 55(3); pp. 1893-1900; Mar. 1, 2014. |
Johnstone et al.; Effects of a schlemm canal scaffold on collector channel ostia in human anterior segments; Exp. Eye. Res.; 119; pp. 70-76; Feb. 2014. |
Johnstone et al.; “Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System;” American Journal of Ophthalmology, vol. 76 (6): 906-917; Dec. 1973. |
Lee et al.; Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966. |
Lynch, Mary G.; U.S. Appl. No. 60/131,030 entitled “Devices and methods for treating glaucoma by enhancing aqueous outflow through schlemm's canal and anterior chamber angle,” filed Apr. 26, 1999. |
Moses, Robert; The effect of intraocular pressure on resistance to outflow; Survey of Ophthalmology; vol. 22; No. 2; pp. 88-100; Sep.-Oct. 1977. |
Mäepea et al.; The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663; Oct. 1989. |
Rosenquist et al.; Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy; Current Eye Res.; vol. 8; No. 12; pp. 1233-1240; Dec. 1989. |
Savage, James; Gonioscopy in the management of glaucoma; Am. Academy of Ophthalmology; Focal Points; vol. XXIV; No. 3; pp. 1-14; Mar. 2006. |
Schultz, Jared; Canaloplasty procedure shows promise for open-angle glaucoma in European study; Ocular Surgery News; vol. 34; Mar. 1, 2007. |
Smit et al.; Effects of viscoelastic injection into schlemm's canal in primate and human eyes; J. Am. Academy of Ophthalmology; vol. 109; No. 4; pp. 786-792; Apr. 2002. |
Spiegel et al.; Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?; Ophthalmic Surgery and Lasers; vol. 30; No. 6; pp. 492-494; Jun. 1999. |
Yuan et al.; Mathematical modeling of outflow facility increase with trabecular meshwork bypass and schlemm canal dilation; J. Glaucoma; 10 pgs.; Mar. 24, 2015 (Epub ahead of print). |
Euteneuer et al.; U.S. Appl. No. 15/601,756 entitled “Methods and apparatus for treating glaucoma,” filed May 22, 2017. |
Berlin; U.S. Appl. No. 16/404,530 entitled “Delivery system and method of use for the eye,” filed May 6, 2019. |
Number | Date | Country | |
---|---|---|---|
20170156848 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62024295 | Jul 2014 | US |