Ocular implants and methods for delivering ocular implants into the eye

Information

  • Patent Grant
  • 9211213
  • Patent Number
    9,211,213
  • Date Filed
    Thursday, April 18, 2013
    11 years ago
  • Date Issued
    Tuesday, December 15, 2015
    9 years ago
Abstract
An ocular implant is provided. In some embodiments, the ocular implant includes a body that is curved about a longitudinal central axis and a distal body portion that defines a longitudinal channel including a channel opening. The implant is sized and configured such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal. Methods for delivering ocular implants into Schlemm's canal are also provided. Some methods include covering openings in the ocular implant, advancing the implant into Schlemm's canal while at least some of the openings are covered, and uncovering the openings while the distal portion of the implant is disposed in Schlemm's canal.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

The present invention relates generally to devices that are implanted within the eye. More particularly, the present invention relates to systems, devices and methods for delivering ocular implants into the eye.


BACKGROUND OF THE INVENTION

According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.


The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid know as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.


Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.


Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm's canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm's canal and is carried along with the venous blood leaving the eye.


When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.


In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extraocular vein (Lee and Scheppens, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a sub-conjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm's canal (Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. No. 6,450,984; U.S. Pat. No. 6,450,984).


SUMMARY OF THE DISCLOSURE

The invention pertains to aspects of ocular implants, ocular implant delivery systems, and methods for delivering ocular implants. One aspect of the invention an ocular implant adapted to reside at least partially in a portion of Schlemm's canal of an eye. In some embodiments, the ocular implant includes a body having a first major surface and a second major surface, the body being curved about a longitudinal central axis so that the first major surface comprises a concave surface and the second major surface comprises a convex surface, a distal portion of the body defining a longitudinal channel including a channel opening, the channel opening being disposed diametrically opposite a central portion of the concave surface, and the body being adapted and configured such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal. The channel may opens away from the pupil of the when the channel opening is adjacent an outer major side of Schlemm's canal.


In some embodiments, the channel has a width and a depth and an aspect ratio of the width to the depth is such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about one. In some particularly useful embodiments, the aspect ratio of channel width WD to channel depth DP is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about two.


In some embodiments, the body has a first lateral extent, a second lateral extent, and a longitudinal length and an aspect ratio of the first lateral extent to the second lateral extent is such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal. In some useful embodiments, an aspect ratio of first lateral extent EF to second lateral extent ES is greater than about one. In some particularly useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is about two. In some useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is greater than about two.


In some embodiments, a distal portion of the body of the ocular implant extends across an angular span of less than 180 degrees as the body curves about the longitudinal central axis. In some embodiments, the body defines additional openings fluidly communicating with the channel and the body of the implant is more than 50% open due to the openings defined by the body. In some embodiments, the body of the ocular implant has a diameter of between about 0.005 inches and about 0.04 inches.


In some embodiments, the ocular implant comprises a therapeutic agent deposited on the body. In some of these embodiments, a therapeutic agent comprises an anti-glaucoma drug. The anti-glaucoma drug comprises a prostaglandin analog in some embodiments. The prostaglandin analog comprises latanprost in some embodiments.


In some embodiments, the body of the ocular implant has a thickness extending between the concave surface and the convex surface. The thickness of the body is substantially uniform along a length of the body in some embodiments. In some embodiments, the thickness of the body is substantially uniform along a circumference of the body.


In some embodiments, the body is curved about a lateral central axis so that a longitudinal axis of the body defines a plane. When this is the case, the body has a lateral radius of curvature extending between the lateral central axis and an outer extent of the body. The lateral radius of curvature is substantially constant in some embodiments. In other embodiments, the lateral radius of curvature varies along a length of the body.


Another aspect of the invention provides an ocular implant system for treating an eye. In some embodiments, the ocular implant system comprises a delivery cannula comprising a tubular member defining a distal opening, a proximal opening, and a passageway extending between the proximal opening and the distal opening. In some embodiments, the delivery cannula includes a curved portion disposed between the distal opening and the proximal opening, the delivery cannula being adapted and configured such that the distal opening can be placed in fluid communication with Schlemm's canal when the cannula is extending through the cornea of the eye and the curved portion of the cannula is at least partially disposed in the anterior chamber of the eye. In some embodiments, the implant system includes an ocular implant disposed in the passageway defined by the delivery cannula, the ocular implant comprising a body having a first major surface and a second major surface, the body being curved about a longitudinal central axis so that the first major surface comprises a concave surface and the second major surface comprises a convex surface, a distal portion of the body defining a longitudinal channel including a channel opening. In some useful embodiments, the ocular implant is oriented relative to the delivery cannula such that the channel of the ocular implant opens in a radially outward direction when the ocular implant passes through the curved portion of the delivery cannula.


An additional aspect of the invention provides another ocular implant system for treating an eye. In some embodiments, the ocular implant system comprises an ocular implant defining a plurality of openings and a sheath disposed about the body of the ocular implant. In some embodiments, the sheath covers at least some of the openings and the sheath is adapted and configured such that the sheath can be selectively removed from the body for uncovering the openings.


In some embodiments, the sheath comprises a proximal portion defining a lumen and a distal portion defining a distal aperture, the lumen having a lumen width and the distal aperture having an aperture width. The aperture width is smaller than the lumen width in some embodiments. The distal portion provides a transition from the lumen width to the aperture width in some embodiments. In some embodiments, the lumen width is equal to or greater than a width of the implant and the aperture width is smaller than the width of the implant.


In some embodiments, the distal portion of the sheath comprises a first region, a second region, and a slit disposed between the first region and the second region. The sheath includes a frangible connection between the first region and the second region in some embodiments. In some embodiments, the frangible connection comprises a bridge extending across the slit. The aperture width of the distal aperture may become larger when the frangible connection is broken.


In some embodiments, the distal portion of the sheath has a first hoop strength, the proximal portion of the sheath has a second hoop strength, and the second hoop strength is greater than the first hoop strength. The hoop strength of the distal portion is limited by the frangible connection in some embodiments.


In some embodiments, the distal portion of the sheath extends beyond a distal end of the implant. The frangible connection breaks when the sheath is moved in a proximal direction relative to the implant in some embodiments. The distal portion of the sheath has a tapered shape in some embodiments. In other embodiments, the distal portion of the sheath has a blunt shape.


In some embodiments, the ocular implant system may include a core resting in the longitudinal channel of the implant and a push tube contacting a proximal end of the implant. The core, the push tube, and the sheath extend into a lumen defined by a cannula in some embodiments. The implant may be disposed in a lumen defined by the cannula.


Yet another aspect of the invention provides a method of deploying an ocular implant into Schlemm's canal of a human eye. In some embodiments, the method includes providing an ocular implant comprising a body having a first major surface and a second major surface, the body being curved about a longitudinal central axis so that the first major surface comprises a concave surface and the second major surface comprises a convex surface, a distal portion of the body defining a longitudinal channel including a channel opening, the body defining additional openings fluidly communicating with the channel. The method may include the following steps: covering at least some of the openings; advancing at least a distal portion of the implant into Schlemm's canal while at least some of the openings are covered; and uncovering at least some of the openings while the distal portion of the implant is disposed in Schlemm's canal. In some embodiments, the method includes orienting the ocular implant so that the channel opening is adjacent an outer major side of Schlemm's canal.


In some embodiments, covering at least some of the apertures comprises positioning a sheath over at least a portion of the implant and uncovering at least some of the apertures comprises moving the sheath in a proximal direction relative to the implant. Uncovering at least some of the apertures comprises breaking a frangible portion of the sheath in some embodiments. The frangible portion of the sheath may be broken, for example, when the sheath is moved in a proximal direction relative to the implant. Moving the sheath in a proximal direction relative to the implant may be accomplished by, for example, applying a proximal directed force to the sheath while applying a distally directed reaction force on the implant. Applying a distally directed reaction force on the implant may be accomplished by, for example, pushing on a proximal end of the implant with a push tube.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a stylized representation of a medical procedure in accordance with this detailed description.



FIG. 2A is a perspective view further illustrating a delivery system 100 used in the medical procedure shown in the previous Figure. FIG. 2B is an enlarged detail view further illustrating a cannula of the delivery system shown in the previous Figure.



FIG. 3 is a stylized perspective view illustrating the anatomy of an eye.



FIG. 4 is a stylized perspective view showing Schlemm's canal and an iris of the eye shown in the previous Figure.



FIG. 5 is an enlarged cross-sectional view further illustrating Schlemm's canal SC shown in the previous Figure.



FIG. 6 is a perspective view showing an ocular implant in accordance with this detailed description.



FIG. 7A and FIG. 7B are section views showing an ocular implant disposed in Schlemm's canal of an eye.



FIG. 8A, FIG. 8B and FIG. 8C are multiple plan views illustrating an implant in accordance with the present detailed description.



FIG. 9 is a lateral cross-sectional view of an ocular implant taken along section line A-A shown in the previous Figure.



FIG. 10A is a perspective view of an ocular implant and FIG. 10B is a stylized perspective view showing Schlemm's canal SC encircling an iris.



FIG. 11A is a perspective view showing a delivery system 100 that may be used to advance an ocular implant into Schlemm's canal of an eye. FIG. 11B is an enlarged detail view illustrating a cannula portion of the delivery system.



FIG. 12 is an enlarged perspective view of an assembly including a cannula, an ocular implant, and a sheath.



FIG. 13 is an additional perspective view of the assembly shown in the previous Figure.



FIG. 14 is another perspective view of an assembly including a cannula, an ocular implant, and a sheath.



FIG. 15 is an additional perspective view of the assembly shown in the previous Figure.



FIG. 16A and FIG. 16B are perspective views showing a sheath in accordance with the present detailed description.



FIG. 17 is a perspective view of an assembly including the sheath shown in the previous Figure.



FIG. 18A and FIG. 18B are simplified plan views showing a sheath in accordance with the present detailed description.



FIG. 19A, FIG. 19B and FIG. 19C are plan views showing an implant in accordance with the present detailed description.



FIG. 20 is a lateral cross-sectional view of an ocular implant taken along section line A-A shown in the previous Figure.



FIG. 21 is a plan view showing an implant in accordance with the present detailed description.



FIG. 22A, FIG. 22B and FIG. 22C are plan views showing an additional implant in accordance with the present detailed description.



FIG. 23 is a lateral cross-sectional view of an ocular implant taken along section line B-B shown in the previous Figure.



FIG. 24 is a plan view showing an implant in accordance with the present detailed description.



FIG. 25A through FIG. 25D are a series of plan views illustrating a method in accordance with the present detailed description.



FIG. 26A through FIG. 26D are a series of section views illustrating a method in accordance with the present detailed description.



FIG. 27A and FIG. 27B are simplified plan views showing a sheath in accordance with the present detailed description.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.



FIG. 1 is a stylized representation of a medical procedure in accordance with this detailed description. In the procedure of FIG. 1, a physician is treating an eye 20 of a patient P. In the procedure of FIG. 1, the physician is holding a delivery system 100 in his or her right hand RH. The physician's left hand (not shown) may be used to hold the handle H of a gonio lens 23. It will be appreciated that some physician's may prefer holding the delivery system handle in the left hand and the gonio lens handle H in the right hand RH.


During the procedure illustrated in FIG. 1, the physician may view the interior of the anterior chamber using gonio lens 23 and a microscope 25. Detail A of FIG. 1 is a stylized simulation of the image viewed by the physician. A distal portion of a cannula 102 is visible in Detail A. A shadow-like line indicates the location of Schlemm's canal SC which is lying under various tissue (e.g., the trabecular meshwork) that surround the anterior chamber. A distal opening 104 of cannula 102 is positioned near Schlemm's canal SC of eye 20. In some methods in accordance with this detailed description, distal opening 104 of cannula 102 is placed in fluid communication with Schlemm's canal SC. When this is the case, an ocular implant may be advanced through distal opening 104 and into Schlemm's canal SC.



FIG. 2A is a perspective view further illustrating delivery system 100 and eye 20 shown in the previous Figure. In FIG. 2A, cannula 102 of delivery system 100 is shown extending through a cornea 40 of eye 20. A distal portion of cannula 102 is disposed inside the anterior chamber defined by cornea 40 of eye 20. In the embodiment of FIG. 2A, cannula 102 is configured so that a distal opening 104 of cannula 102 can be placed in fluid communication with Schlemm's canal.


In the embodiment of FIG. 2A, an ocular implant is disposed in a lumen defined by cannula 102. Delivery system 100 includes a mechanism that is capable of advancing and retracting the ocular implant along the length of cannula 102. The ocular implant may be placed in Schlemm's canal of eye 20 by advancing the ocular implant through distal opening 104 of cannula 102 while distal opening 104 is in fluid communication with Schlemm's canal.



FIG. 2B is an enlarged detail view further illustrating cannula 102 of delivery system 100. In the illustrative embodiment of FIG. 2B, an ocular implant 126 has been advanced through distal opening 104 of cannula 102. Cannula 102 of FIG. 2B defines a passageway 124 that fluidly communicates with distal opening 104. Ocular implant 126 may be moved along passageway 124 and through distal opening by delivery system 100. Delivery system 100 includes a mechanism capable of performing this function.



FIG. 3 is a stylized perspective view illustrating a portion of eye 20 discussed above. Eye 20 includes an iris 30 defining a pupil 32. In FIG. 3, eye 20 is shown as a cross-sectional view created by a cutting plane passing through the center of pupil 32. Eye 20 can be conceptualized as a fluid filled ball having two chambers. Sclera 34 of eye 20 surrounds a posterior chamber PC filled with a viscous fluid known as vitreous humor. Cornea 36 of eye 20 encloses an anterior chamber AC that is filled with a fluid known as aqueous humor. The cornea 36 meets the sclera 34 at a limbus 38 of eye 20. A lens 40 of eye 20 is located between anterior chamber AC and posterior chamber PC. Lens 40 is held in place by a number of ciliary zonules 42.


Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.


Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.


Schlemm's canal SC is a tube-like structure that encircles iris 30. Two laterally cut ends of Schlemm's canal SC are visible in the cross-sectional view of FIG. 3. In a healthy eye, aqueous humor flows out of anterior chamber AC and into Schlemm's canal SC. Aqueous humor exits Schlemm's canal SC and flows into a number of collector channels. After leaving Schlemm's canal SC, aqueous humor is absorbed into the venous blood stream and carried out of the eye.



FIG. 4 is a stylized perspective view showing Schlemm's canal SC and iris 30 of eye 20 shown in the previous Figure. In FIG. 4, Schlemm's canal SC is shown encircling iris 30. With reference to FIG. 4, it will be appreciated that Schlemm's canal SC may overhang iris 30 slightly. Iris 30 defines a pupil 32. In the embodiment of FIG. 4, Schlemm's canal SC and iris 30 are shown in cross-section, with a cutting plane passing through the center of pupil 32.


The shape of Schlemm's canal SC is somewhat irregular, and can vary from patient to patient. The shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. With reference to FIG. 4, it will be appreciated that Schlemm's canal SC has a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56.


Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. With reference to FIG. 4, it will be appreciated that first major side 50 is on the outside of the ring formed by Schlemm's canal SC and second major side 52 is on the inside of the ring formed by Schlemm's canal SC. Accordingly, first major side 50 may be referred to as an outer major side of Schlemm's canal SC and second major side 52 may be referred to as an inner major side of Schlemm's canal SC. With reference to FIG. 4, it will be appreciated that first major side 50 is further from pupil 32 than second major side 52.



FIG. 5 is an enlarged cross-sectional view further illustrating Schlemm's canal SC shown in the previous Figure. With reference to FIG. 5, it will be appreciated that Schlemm's canal SC comprises a wall W defining a lumen 58. The shape of Schlemm's canal SC is somewhat irregular, and can vary from patient to patient. The shape of Schlemm's canal SC may be conceptualized as a cylindrical-tube that has been partially flattened. The cross-sectional shape of lumen 58 may be compared to the shape of an ellipse. A major axis 60 and a minor axis 62 of lumen 58 are illustrated with dashed lines in FIG. 5.


The length of major axis 60 and minor axis 62 can vary from patient to patient. The length of minor axis 62 is between one and thirty micrometers in most patients. The length of major axis 60 is between one hundred and fifty micrometers and three hundred and fifty micrometers in most patients.


With reference to FIG. 5, it will be appreciated that Schlemm's canal SC comprises a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56. In the embodiment of FIG. 5, first major side 50 is longer than both first minor side 54 and second minor side 56. Also in the embodiment of FIG. 5, second major side 52 is longer than both first minor side 54 and second minor side 56.



FIG. 6 is a perspective view showing an ocular implant in accordance with this detailed description. Ocular implant 126 of FIG. 6 comprises a body 128 that extends along a generally curved longitudinal central axis 148. In the embodiment of FIG. 6, body 128 has a radius of curvature R that is represented with an arrow extending between a lateral central axis 176 and body 128.


Body 128 of ocular implant 126 has a first major surface 130 and a second major surface 132. With reference to FIG. 6, it will be appreciated that body 128 is curved about longitudinal central axis 148 so that first major surface 130 comprises a concave surface 136 and second major surface 132 comprises a convex surface 134. The curvature of body 128 can be pre-sized and configured to align with the curvature of Schlemm's canal in a patient's eye.


A distal portion of body 128 defines a longitudinal channel 138 including a channel opening 139. Channel opening 139 is disposed diametrically opposite a central portion 135 of concave surface 136. Because of the curvature of the body 128, an outer diameter of the implant defined by the channel opening 139 will be greater than an inner diameter of the implant defined by surface 132. In some embodiments, the body is pre-biased to assume a configuration in which the channel opening 139 is disposed along an outer diameter of the body, ensuring that the channel opening can be positioned adjacent to the first major side 50 of Schlemm's canal.


In the embodiment of FIG. 6, central portion 135 of concave surface 136 defines a plurality of apertures 137. Each aperture 137 fluidly communicates with channel 138. In some useful embodiments, body 128 is adapted and configured such that ocular implant 126 assumes an orientation in which channel opening 139 is adjacent a major side of Schlemm's canal when ocular implant 126 is disposed in Schlemm's canal. Ocular implant 126 can be made, for example, by laser cutting body 128 from a length of metal or a shape memory material (e.g., nitinol or stainless steel) tubing.



FIG. 7A and FIG. 7B are section views showing an ocular implant 126 disposed in Schlemm's canal SC of an eye. FIG. 7A and FIG. 7B may be collectively referred to as FIG. 7. The eye of FIG. 7 includes an iris 30. A central portion of iris 30 defines a pupil 32. Schlemm's canal SC is disposed near an outer edge of iris 30. The trabecular meshwork TM extends up from the iris of overlays Schlemm's canal SC. The picture plane of FIG. 7 extends laterally across Schlemm's canal SC and the trabecular meshwork TM.


Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. Schlemm's canal SC has a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56. With reference to FIG. 7, it will be appreciated that first major side 50 is further from pupil 32 than second major side 52. In the embodiment of FIG. 7, first major side 50 is an outer major side of Schlemm's canal SC and second major side 52 is an inner major side of Schlemm's canal SC.


In the embodiment of FIG. 7A, a distal portion of ocular implant 126 is shown resting in Schlemm's canal SC. A proximal portion of ocular implant 126 is shown extending out of Schlemm's canal SC, through trebecular meshwork TM and into anterior chamber AC. Ocular implant 126 of FIG. 7 comprises a body having a first major surface 130 and a second major surface 132. With reference to FIG. 6, it will be appreciated that the body of ocular implant 126 is curved about a longitudinal central axis so that first major surface 130 comprises a concave surface and second major surface 132 comprises a convex surface.


A distal portion of ocular implant 126 defines a longitudinal channel 138 including a channel opening 139. Channel opening 139 is disposed diametrically opposite a central portion 135 of first major surface 130. In the embodiment of FIG. 7A, ocular implant 126 is assuming an orientation in which channel opening 139 is adjacent and open to first major side 50 of Schlemm's canal. In the embodiment of FIG. 7B, ocular implant 126 is assuming an orientation in which channel opening 139 is adjacent and open to second major side 52 of Schlemm's canal.



FIG. 8A, FIG. 8B and FIG. 8C illustrate multiple plan views of an implant 126 in accordance with the present detailed description. FIG. 8A, FIG. 8B and FIG. 8C may be referred to collectively as FIG. 8. It is customary to refer to multi-view projections using terms such as front view, top view, and side view. In accordance with this convention, FIG. 8A may be referred to as a top view of implant 126, FIG. 8B may be referred to as a side view of implant 126, and FIG. 8C may be referred to as a bottom view of implant 126. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 8. It will be appreciated that the implant shown in FIG. 8 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims.


Ocular implant 126 of FIG. 8 comprises a body 128 that extends along a longitudinal central axis 148. Body 128 of ocular implant 126 has a first major surface 130 and a second major surface 132. In the embodiment of FIG. 8, body 128 is curved about longitudinal central axis 148 so that first major surface 130 comprises a concave surface 136 and second major surface 132 comprises a convex surface 134.


A distal portion of body 128 defines a longitudinal channel 138 including a channel opening 139. Channel opening 139 is disposed diametrically opposite a central portion 135 of concave surface 136. In the embodiment of FIG. 8, central portion 135 of concave surface 136 defines a plurality of apertures 137. Each aperture 137 fluidly communicates with channel 138. In some useful embodiments, body 128 is adapted and configured such that ocular implant 126 assumes an orientation in which channel opening 139 is adjacent a major side of Schlemm's canal when ocular implant 126 is disposed in Schlemm's canal.



FIG. 9 is a lateral cross-sectional view of ocular implant 126 taken along section line A-A shown in the previous Figure. Ocular implant 126 comprises a body 128 having a first major surface 130 and a second major surface 132. With reference to FIG. 9, it will be appreciated that body 128 curves around a longitudinal central axis 148 so that first major surface 130 comprises a concave surface 136 and second major surface 132 comprises a convex surface 134. The concave surface 136 of body 128 defines a longitudinal channel 138 having a channel opening 139.


As shown in FIG. 9, channel 138 has a width WD and a depth DP. Body 128 of ocular implant 126 has a first lateral extent EF and a second lateral extent ES. In some cases, body 128 is adapted and configured such that ocular implant 126 automatically assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when ocular implant 126 is disposed in Schlemm's canal. In some useful embodiments, an aspect ratio of first lateral extent EF to second lateral extent ES is greater than about one. In some particularly useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is about two. In some useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is greater than about two. In some useful embodiments, an aspect ratio of channel width WD to channel depth DP is greater than about one. In some particularly useful embodiments, the aspect ratio of channel width WD to channel depth DP is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about two.



FIG. 10A is a perspective view of an ocular implant 126 and FIG. 10B is a stylized perspective view showing Schlemm's canal SC encircling an iris 30. FIG. 10A and FIG. 10B may be collectively referred to as FIG. 10. With reference to FIG. 10B, it will be appreciated that Schlemm's canal SC may overhang iris 30 slightly. Iris 30 defines a pupil 32. Schlemm's canal SC forms a ring around iris 30 with pupil 32 disposed in the center of that ring. With reference to FIG. 10B, it will be appreciated that Schlemm's canal SC has a first major side 50, a second major side 52, a first minor side 54, and a second minor side 56. With reference to FIG. 10B, it will be appreciated that first major side 50 is further from pupil 32 than second major side 52. In the embodiment of FIG. 10B, first major side 50 is an outer major side of Schlemm's canal SC and second major side 52 is an inner major side of Schlemm's canal SC.


For purposes of illustration, a window 70 is cut through first major side 50 of Schlemm's canal SC in FIG. 10B. Through window 70, an ocular implant 126 can be seen residing in a lumen defined by Schlemm's canal. Ocular implant 126 of FIG. 10 comprises a body 128 having a first major surface 130. First major surface 130 of body 128 comprises a concave surface 136. Body 128 defines a longitudinal channel 138 including a channel opening 139. Channel opening 139 is disposed diametrically opposite a central portion 135 of concave surface 136. In the embodiment of FIG. 10B, ocular implant 126 is assuming an orientation in which channel opening 139 is adjacent first major side 50 of Schlemm's canal.



FIG. 11A is a perspective view showing a delivery system 100 that may be used to advance an ocular implant 126 into Schlemm's canal of an eye. Delivery system 100 includes a cannula 102 that is coupled to a handle H. Cannula 102 defines a distal opening 104. The distal portion of cannula 102 of delivery system 100 is configured and adapted to be inserted into the anterior chamber of a human subject's eye so that distal opening 104 is positioned near Schlemm's canal of the eye. Cannula 102 is sized and configured so that the distal end of cannula 102 can be advanced through the trabecular meshwork of the eye and into Schlemm's canal. Positioning cannula 102 in this way places distal opening 104 in fluid communication with Schlemm's canal.


In the embodiment of FIG. 11A, an ocular implant is disposed in a passageway defined by cannula 102. Delivery system 100 includes a mechanism that is capable of advancing and retracting the ocular implant along the length of cannula 102. The ocular implant may be placed in Schlemm's canal of eye 20 by advancing the ocular implant through distal opening 104 of cannula 102 while distal opening 104 is in fluid communication with Schlemm's canal.



FIG. 11B is an enlarged detail view further illustrating cannula 102 of delivery system 100. With reference to FIG. 11B, it will be appreciated that cannula 102 comprises a tubular member defining a distal opening 104, a proximal opening 105, and a passageway 124 extending between proximal opening 105 and distal opening 104. With reference to FIG. 11B, it will be appreciated that cannula 102 includes a curved portion 107 disposed between distal opening 104 and proximal opening 105.


In the embodiment of FIG. 11B, an ocular implant 126 is disposed in passageway 124 defined by cannula 102. Ocular implant 126 of FIG. 11 B comprises a body 128 that extends along a generally curved longitudinal central axis 148. Body 128 of ocular implant 126 has a first major surface 130 and a second major surface 132. With reference to FIG. 11B, it will be appreciated that body 128 is curved about longitudinal central axis 148 so that first major surface 130 defines a longitudinal channel 138 and second major surface 132 comprises a convex surface 134. Longitudinal channel 138 includes a channel opening 139. Ocular implant 126 is orient relative to delivery cannula 102 such that longitudinal channel 138 of ocular implant 126 opens in a radially outward direction RD when ocular implant 126 is disposed in curved portion 107. Radially outward direction RD is illustrated using an arrow in FIG. 11B. Distal opening 104 of cannula 102 may be placed in fluid communication with Schlemm's canal of an eye. Implant 126 may be advanced through distal opening 104 and into Schlemm's canal while assuming the orientation shown in FIG. 11B. When this is the case, ocular implant 126 may be oriented such that channel opening 139 is adjacent an outer major side of Schlemm's canal when ocular implant 126 is disposed in Schlemm's canal.



FIG. 12 is an enlarged perspective view of an assembly 106 including an ocular implant 126, a sheath 120, and a cannula 102. For purposes of illustration, cannula 102 is cross-sectionally illustrated in FIG. 12. In the embodiment of FIG. 12, a sheath 120 is shown extending into a passageway 124 defined by cannula 102. In FIG. 12, sheath 120 is illustrated in a transparent manner with a pattern of dots indicating the presence of sheath 120.


With reference to FIG. 12, it will be appreciated that an implant 126 is disposed in a lumen 122 defined by sheath 120. Implant 126 comprises a body 128 having a first major surface 130 and a second major surface 132. In the embodiment of FIG. 12, body 128 curves around a longitudinal central axis so that first major surface 130 comprises a concave surface and second major surface 132 comprises a convex surface 134. The concave surface of body 128 defines a longitudinal channel 138. In FIG. 12, a core 166 is shown extending through longitudinal channel 138.


Body 128 of ocular implant 126 defines a plurality of openings 140. In the embodiment of FIG. 12, sheath 120 is covering openings 140. With reference to FIG. 12, it will be appreciated that sheath 120 comprises a proximal portion 150 defining a lumen 122 and a distal portion 152 defining a distal aperture 154. Core 166 is shown extending through distal aperture 154 in FIG. 12. In the embodiment of FIG. 12, distal portion 152 of sheath 120 has a generally tapered shape.



FIG. 13 is an additional perspective view of assembly 106 shown in the previous Figure. In FIG. 13, core 166, sheath 120, and implant 126 are shown extending through a distal port 104 of cannula 102. Core 166, sheath 120, and implant 126 have been moved in a distal direction relative to the position of those elements shown in the previous Figure.


A push tube 180 is visible in FIG. 13. In FIG. 13, a distal end of push tube 180 is shown contacting a proximal end of implant 126. In the embodiment of FIG. 13, push tube 180 is disposed in a lumen 122 defined by sheath 120. Sheath 120 comprises a proximal portion 150 defining a passageway 124 and a distal portion 152 defining a distal aperture 154. Implant 126 is disposed in lumen 122 defined by sheath 120. In FIG. 13, core 166 is shown extending through a channel 138 defined by implant 126 and a distal aperture 154 defined by distal portion 152 of sheath 120.



FIG. 14 is an additional perspective view showing assembly 106 shown in the previous Figure. With reference to FIG. 14, it will be appreciated that implant 126 is disposed outside of cannula 102. In the embodiment of FIG. 14, core 166, sheath 120, and push tube 180 have been advanced further so that implant 126 is in a position outside of cannula 102.


Methods in accordance with the present invention can be used to deliver an implant into Schlemm's canal of an eye. In these methods, a distal portion of core 166 and sheath 120 may be advanced out of the distal port of cannula 102 and into Schlemm's canal. Ocular implant 126 may be disposed inside sheath 120 while the distal portion of the sheath 120 is advanced into Schlemm's canal. Sheath 120 and core 166 may then be retracted while push tube 180 prevents implant 126 from being pulled proximally.



FIG. 15 is an additional perspective view showing the assembly 106 shown in the previous Figure. In the embodiment of FIG. 15, core 166 and sheath 120 have been moved in a proximal direction relative to implant 126. With reference to FIG. 15, it will be appreciated that implant 126 is now disposed outside of sheath 120. Some methods in accordance with the present detailed description include the step of applying a proximally directed force to sheath 120 and core 166 while providing a distally directed reactionary force on implant 126 to prevent implant 126 from moving proximally. When this is the case, implant 126 may pass through distal aperture 154 of sheath 120 as sheath 120 is retracted over implant 126.


In the embodiment of FIG. 15, distal portion 152 of sheath 120 comprises a first region 156 and a second region 158. The frangible connection between first region 156 and second region 158 has been broken in the embodiment of FIG. 15. This frangible connection may be selectively broken, for example, when sheath 120 is moved in a proximal direction relative to implant 126 due to the larger diameter of implant 126 with respect to the diameters of distal portion 152 and opening 154 of sheath 120. With reference to FIG. 15, it will be appreciated that the width of distal aperture 154 becomes larger when the frangible connection is broken.


With reference to the Figures described above, it will be appreciated that methods in accordance with the present detailed description may be used to position a distal portion of an implant in Schlemm's canal of an eye. A method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm's canal, for example, by piercing the wall of Schlemm's canal with a distal portion of the cannula. A distal portion of a sheath may be advanced out of a distal port of the cannula and into Schlemm's canal. An ocular implant may be disposed inside the sheath while the distal portion of the sheath is advanced into Schlemm's canal.


In some useful methods, the ocular implant comprises a body defining a plurality of apertures and the method includes the step of covering the apertures with a sheath. When this is the case, the distal portion of the implant may be advanced into Schlemm's canal while the apertures are covered by the sheath. Covering the apertures as the implant is advanced into Schlemm's canal may reduce the trauma inflicted on Schlemm's canal by the procedure. The apertures may be uncovered, for example, after the implant has reached a desired location (e.g., inside Schlemm's canal).


The apertures of the implant may be uncovered, for example, by moving the sheath in a proximal direction relative to the implant. In some applications, this may be accomplished by applying a proximal directed force to the sheath while holding the implant stationary. The implant may be held stationary, for example, by applying a distally directed reaction force on the implant. In one embodiment, a distally directed reaction force is provided by pushing on a proximal end of the implant with a push tube.


Some methods include the step of ceasing advancement of the sheath into Schlemm's canal when a proximal portion of the implant remains in an anterior chamber of the eye and a distal portion of the implant lies in Schlemm's canal. When this is the case, only a distal portion of the implant is advanced into Schlemm's canal. The portion of the implant extending out of Schlemm's canal and into the anterior chamber may provide a path for fluid flow between the anterior chamber and Schlemm's canal.


An assembly may be created by placing a core in a channel defined by the ocular implant. A sheath may be placed around the implant and the core. For example, the core and the implant may then be inserted into the lumen of a sheath. By way of another example, the sheath may be slipped over the implant and the core. The core may be withdrawn from the channel defined by the ocular implant, for example, after the implant has been delivered to a desired location.


The core may be withdrawn from the channel, for example, by moving the core in a proximal direction relative to the implant. In some applications, this may be accomplished by applying a proximal directed force to the core while holding the implant stationary. The implant may be held stationary, for example, by applying a distally directed reaction force on the implant. In one embodiment, a distally directed reaction force is provided by pushing on a proximal end of the implant with a push tube.


The core, the implant, and the sheath may be advanced into Schlemm's canal together. Once the implant is in a desired location, the core and the sheath may be withdrawn from the Schlemm's canal leaving the implant in the desired location. In some methods, the core and the sheath are withdrawn from Schlemm's canal simultaneously.



FIG. 16A and FIG. 16B are perspective views showing a sheath 120 in accordance with the present detailed description. FIG. 16A and FIG. 16B may be referred to collectively as FIG. 16. Sheath 120 of FIG. 16 comprises a proximal portion 150 defining a lumen 122 and a distal portion 152 defining a distal aperture 154. With reference to FIG. 16, it will be appreciated that lumen 122 is generally larger than distal aperture 154.


In the embodiment of FIG. 16A, distal portion 152 of sheath 120 comprises a first region 156, a second region 158, and a frangible connection 160 between first region 156 and second region 158. In FIG. 16A, a slit 164 defined by distal portion 152 is shown disposed between first region 156 and second region 158. In the embodiment of FIG. 16A, frangible connection 160 comprises a bridge 162 extending across slit 164.


In the embodiment of FIG. 16B, frangible connection 160 has been broken. Frangible connection 160 may be selectively broken, for example, by moving sheath 120 in a proximal direction relative to an implant disposed in lumen 122 having a diameter larger than the diameters of distal opening 154 and distal portion 152 of sheath 120. With reference to FIG. 16, it will be appreciated that distal aperture 154 becomes larger when frangible connection 160 is broken.


In the embodiment of FIG. 16, the presence of slit 164 creates a localized line of weakness in distal portion 152 of sheath 120. This localized line of weakness causes distal portion 152 to selectively tear in the manner shown in FIG. 16. It is to be appreciated that distal portion 152 may comprise various elements that create a localized line of weakness without deviating from the spirit and scope of the present detailed description. Examples of possible elements include: a skive cut extending partially through the wall of distal portion 120, a series of holes extending through the wall of distal portion 120, a perf cut, a crease, and a score cut.



FIG. 17 is a perspective view of an assembly including sheath 120 shown in the previous Figure. In the embodiment of FIG. 17, an implant 126 is shown extending through distal aperture 154 defined by distal portion 152 of sheath 120. Implant 126 defines a channel 138. In FIG. 17, a core 166 can be seen resting in channel 138. Implant 126 and core 166 extend proximally into lumen 122 defined by sheath 120. Distal portion 152 of sheath 120 comprises a first region 156 and a second region 158.



FIG. 18A and FIG. 18B are simplified plan views showing a sheath 120 in accordance with the present detailed description. Sheath 120 comprises a distal portion 152 including a first region 156, a second region 158 and a frangible connection between first region 156 and second region 158. In the embodiment of FIG. 18A, frangible connection 160 is intact. In the embodiment of FIG. 18B, frangible connection 160 is broken. FIG. 18A and FIG. 18B may be referred to collectively as FIG. 18.


Sheath 120 of FIG. 18 comprises a proximal portion 150 defining a lumen 122. In the embodiment of FIG. 18, an implant 126 is disposed in lumen 122. Lumen 122 fluidly communicates with a distal aperture 154 defined by distal portion 152 of sheath 120. Distal portion 152 includes a slit 164 disposed between first region 156 and second region 158. In FIG. 18A, a bridge 162 can be seen spanning slit 164. In some useful embodiments, distal portion 152 of sheath 120 has a first hoop strength and proximal portion 150 sheath 120 has a second hoop strength. The first hoop strength may be limited by the frangible connection in the embodiment of FIG. 18A. When this is the case, the second hoop strength is greater than the first hoop strength.


Sheath 120 of FIG. 18 comprises a proximal portion 150 defining a lumen 122 and a distal portion 152 defining a distal aperture 154. Lumen 122 has a lumen width LW. Distal aperture has an aperture width AW when frangible connection 160 is intact. With reference to FIG. 18B, it will be appreciated that the distal aperture 154 is free to open further when frangible connection 160 is broken.


In some useful embodiments, lumen width LW of lumen 122 is equal to or greater than the width of an implant 126 disposed in lumen 122. In some of these useful embodiments, aperture width AW is smaller than the width of the implant 126. When this is the case, frangible connection 160 can be selectively broken by moving sheath 120 in a proximal direction relative to the implant 126.



FIG. 19A, FIG. 19B and FIG. 19C are multiple plan views of an implant 326 in accordance with the present detailed description. FIG. 19A, FIG. 19B and FIG. 19C may be referred to collectively as FIG. 19. FIG. 19A may be referred to as a top view of implant 326, FIG. 19B may be referred to as a side view of implant 326, and FIG. 19C may be referred to as a bottom view of implant 326. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 19. It will be appreciated that the implant shown in FIG. 19 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims.


Ocular implant 326 of FIG. 19 comprises a body 328 that extends along a longitudinal central axis 348. Body 328 of ocular implant 326 has a first major surface 330 and a second major surface 332. In the embodiment of FIG. 19, body 328 is curved about longitudinal central axis 348 so that first major surface 330 comprises a concave surface 336 and second major surface 332 comprises a convex surface 334.


A distal portion of body 328 defines a longitudinal channel 338 including a channel opening 339. Channel opening 339 is disposed diametrically opposite a central portion 335 of concave surface 336. In the embodiment of FIG. 19, central portion 335 of concave surface 336 defines a plurality of apertures 337. Each aperture 337 fluidly communicates with channel 338.



FIG. 20 is a lateral cross-sectional view of ocular implant 326 taken along section line B-B shown in the previous Figure. Ocular implant 326 comprises a body 328 having a first major surface 330 and a second major surface 332. With reference to FIG. 20, it will be appreciated that body 328 curves around a longitudinal central axis 348 so that first major surface 330 comprises a concave, surface 336 and second major surface 332 comprises a convex surface 334. The concave surface 336 of body 328 defines a longitudinal channel 338 having a channel opening 339. As shown in FIG. 20, body 328 has a circumferential extent that spans an angle W. In the embodiment of FIG. 20, angle W has a magnitude that is greater than one hundred eighty degrees.



FIG. 21 is a cross-sectional view showing an implant 326 in accordance with the present detailed description. Ocular implant 326 of FIG. 21 comprises a body 328 that extends along a generally curved longitudinal central axis 348. In the embodiment of FIG. 21, body 328 has a distal radius of curvature RD and a proximal radius of curvature RP. Each radius of curvature is represented with an arrow in FIG. 21. Distal radius of curvature RD is represented by an arrow extending between a first lateral central axis 376 and a distal portion of longitudinal central axis 348. Proximal radius of curvature RP is represented by an arrow extending between a second lateral central axis 378 and a proximal portion of longitudinal central axis 348. In the embodiment of FIG. 21, body 328 of ocular implant 326 has an at rest shape that is generally curved. This at rest shape can be established, for example, using a heat-setting process. The rest shape of the implant can be generally aligned with the radius of curvature of Schlemm's canal in a human eye.



FIG. 22A, FIG. 22B and FIG. 22C are multiple plan views of an implant 526 in accordance with the present detailed description. FIG. 22A, FIG. 22B and FIG. 22C may be referred to collectively as FIG. 22. FIG. 22A may be referred to as a top view of implant 526, FIG. 22B may be referred to as a side view of implant 526, and FIG. 22C may be referred to as a bottom view of implant 526. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 22. It will be appreciated that the implant shown in FIG. 22 may assume various orientations without deviating from the spirit and scope of this detailed description.


Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims.


Ocular implant 526 of FIG. 22 comprises a body 528 that extends along a longitudinal central axis 548. Body 528 of ocular implant 526 has a first major surface 530 and a second major surface 532. In the embodiment of FIG. 22, body 528 is curved about longitudinal central axis 548 so that first major surface 530 comprises a concave surface 536 and second major surface 532 comprises a convex surface 534.


A distal portion of body 528 defines a longitudinal channel 538 including a channel opening 539. Channel opening 539 is disposed diametrically opposite a central portion 535 of concave surface 536. In the embodiment of FIG. 22, central portion 535 of concave surface 536 defines a plurality of apertures 537. Each aperture 537 fluidly communicates with channel 538.



FIG. 23 is a lateral cross-sectional view of ocular implant 526 taken along section line C-C shown in the previous Figure. Ocular implant 526 comprises a body having a first major side 530 and a second major side 532. With reference to FIG. 23, it will be appreciated that body 528 curves around a longitudinal central axis 548 so that first major side 530 comprises a concave surface 536 and second major side 532 comprises a convex surface 534. The concave surface 536 of body 528 defines a longitudinal channel 538 having a channel opening 539. As shown in FIG. 23, body 528 has a circumferential extent that spans an angle C. In the embodiment of FIG. 23, angle C has a magnitude that is about one hundred eighty degrees. Some useful implants in accordance with the present detailed description comprise a body having a circumferential extend that spans an angle that is about one hundred eighty degrees. Some particularly useful implants in accordance with the present detailed description comprise a body having a circumferential extend that spans an angle that is equal to or less than one hundred eighty degrees.



FIG. 24 is a plan view showing an implant 526 in accordance with the present detailed description. Ocular implant 526 of FIG. 24 comprises a body 528 that extends along a generally curved longitudinal central axis 548. In the embodiment of FIG. 24, body 528 has a distal radius of curvature RD and a proximal radius of curvature RP. Each radius of curvature is represented with an arrow in FIG. 24. Distal radius of curvature RD is represented by an arrow extending between a first lateral central axis 576 and a distal portion of longitudinal central axis 548. Proximal radius of curvature RP is represented by an arrow extending between a second lateral central axis 578 and a proximal portion of longitudinal central axis 548. In the embodiment of FIG. 24, body 528 of ocular implant 526 has an at rest shape that is generally curved. This at rest shape can be established, for example, using a heat-setting process.



FIG. 25A through FIG. 25D are a series of plan views illustrating a method in accordance with the present detailed description. FIG. 25A is a plan view showing an implant 426. Implant 426 comprises a body 428 defining a plurality of openings 440. Openings 440 include a first opening 442 and a second opening 444.



FIG. 25B is a plan view showing an assembly 408 including implant 426. Assembly 408 of FIG. 25B may be created by placing a core 406 in a channel 438 defined by implant 426. A sheath 420 may be placed around implant 426 and core 406. For example, core 406 and implant 426 may be inserted into a lumen defined by sheath 420. By way of another example, sheath 420 may be slipped over implant 426 and core 406.



FIG. 25C is a plan view showing assembly 408 disposed in Schlemm's canal SC. The wall W of Schlemm's canal SC comprises a plurality of cells 90. With reference to FIG. 25C, it will be appreciated that sheath 420 is disposed between implant 426 and cells 90. A method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm's canal, for example, by piercing the wall of Schlemm's canal with a distal portion of the cannula. A distal portion of sheath 420 may be advanced out of a distal port of the cannula and into Schlemm's canal SC. Ocular implant 426 may be disposed inside sheath 420 while the distal portion of sheath 420 is advance into Schlemm's canal SC.


In the embodiment of FIG. 25C, ocular implant 426 comprises a body defining a plurality of openings 440. With reference to FIG. 25C, it will be appreciated that openings 440 are covered by sheath 420 and that a distal portion of implant 426 may be advanced into Schlemm's canal while openings 440 are covered by sheath 420. Covering openings 440 as implant 426 is advanced into Schlemm's canal SC may reduce the trauma inflicted on cells 90 by the procedure.


In some useful embodiments, sheath 420 comprises a coating disposed on an outer surface thereof. The properties of the coating may be selected to further reduce the trauma inflicted on cells 90 by the procedure. The coating may comprise, for example, a hydrophilic material. The coating may also comprise, for example, a lubricious polymer. Examples of hydrophilic materials that may be suitable in some applications include: polyalkylene glycols, alkoxy polyalkylene glycols, copolymers of methylvinyl ether and maleic acid poly(vinylpyrrolidone), poly(N-alkylacrylamide), poly(acrylic acid), poly(vinyl alcohol), poly(ethyleneimine), methyl cellulose, carboxymethyl cellulose, polyvinyl sulfonic acid, heparin, dextran, modified dextran and chondroitin sulphate.


In FIG. 25C, the distal portion of sheath 420 is shown extending between a smaller, distal diameter and a larger, proximal diameter. In the embodiment of FIG. 25C, the distal portion of sheath 420 has a generally tapered shape. The tapered transition of the distal portion of sheath 420 may create a non traumatic transition that dilates Schlemm's canal SC as sheath 420 is advanced into Schlemm's canal SC. This arrangement may reduce the likelihood that skiving of wall W occurs as sheath 420 is advanced into Schlemm's canal SC.



FIG. 25D is a plan view showing implant 426 disposed in Schlemm's canal SC. In the embodiment of FIG. 25D, openings 440 defined by body 428 have been uncovered. Openings 440 may be uncovered, for example, by moving sheath 420 in a proximal direction relative to implant 426. In some applications, this may be accomplished by applying a proximal directed force to sheath 420 while holding implant 426 stationary. Implant 426 may be held stationary, for example, by applying a distally directed reaction force on implant 426. In the embodiment of FIG. 25, a distally directed reaction force may be provided by pushing on a proximal end of implant 426 with a push tube.


In the embodiment of FIG. 25D, core 406 has been removed channel 438 defined by implant 426. Core 406 may be withdrawn from channel 438, for example, by moving core 406 in a proximal direction relative to implant 426. In some applications, this may be accomplished by applying a proximal directed force to core 406 while holding implant 426 stationary. Implant 426 may be held stationary, for example, by applying a distally directed reaction force on implant 426.



FIG. 26A through FIG. 26D are a series of section views illustrating a method in accordance with the present detailed description. The picture plane of FIG. 26A extends laterally across Schlemm's canal SC and the trabecular meshwork 596 overlaying Schlemm's canal SC. In the embodiment of FIG. 26A, the distal end of a cannula 502 has been positioned proximate Schlemm's canal SC. A method in accordance with the present detailed description may include the step of advancing the distal end of cannula 502 through the cornea of an eye so that a distal portion of cannula 502 is disposed in the anterior chamber 594 of the eye.



FIG. 26B is an additional section view showing Schlemm's canal SC shown in the previous Figure. In FIG. 26, a distal portion of cannula 502 is shown extending through a wall W of Schlemm's canal SC and trabecular meshwork 596. A distal port 504 of cannula 502 fluidly communicates with Schlemm's canal in the embodiment of FIG. 26B.



FIG. 26C is an additional section view showing Schlemm's canal SC shown in the previous Figure. In the embodiment of FIG. 26C, a distal portion of a sheath 520 is shown extending through distal port 504 of cannula 502 and into Schlemm's canal SC. Methods in accordance with the present invention can be used to deliver an implant 526 into Schlemm's canal SC. In these methods, a distal portion of sheath 520 and a core 506 may be advanced out of distal port 504 of cannula 502 and into Schlemm's canal SC. Ocular implant 526 may be disposed inside sheath 520 while the distal portion of sheath 520 is advanced into Schlemm's canal SC.



FIG. 26D is an additional section view showing implant 526 shown in the previous Figure. In the embodiment of FIG. 26, sheath 520, core 506, and cannula 502 have all been withdrawn from the eye. Implant 526 is shown resting in Schlemm's canal SC in FIG. 26.



FIG. 26 is section view illustrating an additional embodiment in accordance with the present detailed description. The picture plane of FIG. 26 extends laterally across Schlemm's canal SC and the trabecular meshwork 596 overlaying Schlemm's canal SC. In the embodiment of FIG. 26, an implant 626 is disposed in Schlemm's canal.



FIG. 27A and FIG. 27B are simplified plan views showing a sheath 720 in accordance with the present detailed description. FIG. 27A and FIG. 27B may be referred to collectively as FIG. 27. Sheath 720 of FIG. 27 comprises a proximal portion 750 defining a lumen 722 and a distal portion 752 defining a distal aperture 754. With reference to FIG. 27, it will be appreciated that lumen 722 is generally larger than distal aperture 754.


In the embodiment of FIG. 27A, distal portion 752 of sheath 720 comprises a first region 756, a second region 758, and a frangible connection 760 between first region 756 and second region 758. In FIG. 27A, a first slit 764 defined by distal portion 752 is shown disposed between first region 756 and second region 758. In the embodiment of FIG. 27A, frangible connection 760 comprises a bridge 762 extending across first slit 764. With reference to FIG. 27A, it will be appreciated that distal portion 752 defines a number of slits in addition to first slit 764.


In the embodiment of FIG. 27B, frangible connection 760 has been broken. Frangible connection 760 may be selectively broken, for example, by moving sheath 720 in a proximal direction relative to an implant disposed in lumen 722 having a diameter larger than the diameters of distal opening 754 and distal portion 752 of sheath 720. With reference to FIG. 27, it will be appreciated that distal aperture 754 becomes larger when frangible connection 760 is broken.


In the embodiment of FIG. 27, the presence of slit 764 creates a localized line of weakness in distal portion 752 of sheath 720. This localized line of weakness causes distal portion 752 to selectively tear in the mariner shown in FIG. 27. It is to be appreciated that distal portion 752 may comprise various elements that create a localized line of weakness without deviating from the spirit and scope of the present detailed description. Examples of possible elements include: a skive cut extending partially through the wall of distal portion 720, a series of holes extending through the wall of distal portion 720, a perf cut, a crease, and a score cut.


In FIG. 27, distal portion 752 of sheath 720 is shown extending between distal opening 754 and lumen 722. In the embodiment of FIG. 27, distal portion 752 of sheath 720 has a blunt shape. The blunt shape of distal portion 752 of sheath 720 may create a non traumatic transition that dilates Schlemm's canal as sheath 720 is advanced into Schlemm's canal. This arrangement may reduce the likelihood that skiving of the canal wall occurs as sheath 720 is advanced into Schlemm's canal.


While embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

Claims
  • 1. An ocular implant adapted to reside at least partially in a portion of Schlemm's canal of an eye, the eye having an iris defining a pupil, the implant comprising: a longitudinally extending curved body including a proximal portion and a distal portion, the distal portion of the curved body having a central longitudinal axis defined by a radius of curvature and a lateral cross section having a first lateral extent and a second lateral extent, an aspect ratio of the first lateral extent to the second lateral extent being greater than or equal to about two;the distal portion of the curved body defining a longitudinal channel including a channel opening, the channel opening included in defining the first lateral extent; andthe curved body being adapted and configured such that the distal portion of the curved body resides in Schlemm's canal and the proximal portion extends into the anterior space of the eye while the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is implanted.
  • 2. The ocular implant of claim 1 wherein the channel opens away from the pupil when the channel opening is adjacent an outer major side of Schlemm's canal, the outer major side being further from the pupil than an inner major side of Schlemm's canal.
  • 3. The ocular implant of claim 1 wherein: the channel has a width and a depth; andan aspect ratio of the width to the depth is such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal.
  • 4. The ocular implant of claim 3 wherein the aspect ratio of the width to the depth is about two.
  • 5. The ocular implant of claim 1, wherein the body defines additional openings fluidly communicating with the channel and the body of the implant is more than 50% open due to the openings defined by the body.
  • 6. The ocular implant of claim 1, wherein the body is curved about a lateral central axis so that a longitudinal axis of the body defines a plane.
  • 7. The ocular implant of claim 6, wherein the body has a lateral radius of curvature extending between the lateral central axis and an outer extent of the body.
  • 8. The ocular implant of claim 7, wherein the lateral radius of curvature is substantially constant.
  • 9. The ocular implant of claim 7, wherein the lateral radius of curvature varies along a length of the body.
  • 10. An ocular implant adapted to reside at least partially in a portion of Schlemm's canal of an eye, the eye having an iris defining a pupil, the implant comprising: a longitudinally extending curved body including a proximal portion and a distal portion, the distal portion of the curved body having a central longitudinal axis defined by a radius of curvature and a lateral cross section having a first lateral extent and a second lateral extent, an aspect ratio of the first lateral extent to the second lateral extent being greater than or equal to about two, the lateral cross section further having a shape defining an inner concave surface and an outer convex surface, each extending over a substantial portion of the length of the distal section;the inner concave surface defining a longitudinal channel extending over a substantial portion of the length of the distal portion and including a channel opening, the channel opening being across from the inner concave surface; andthe body being adapted and configured such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in the eye.
  • 11. The ocular implant of claim 10 wherein the channel opens away from the pupil when the channel opening is adjacent an outer major side of Schlemm's canal, the outer major side being further from the pupil than an inner major side of Schlemm's canal.
  • 12. The ocular implant of claim 10 wherein: the channel has a width and a depth; andan aspect ratio of the width to the depth is such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal.
  • 13. The ocular implant of claim 12 wherein the aspect ratio of the width to the depth is about two.
  • 14. The ocular implant of claim 10, wherein the body defines additional openings fluidly communicating with the channel and the body of the implant is more than 50% open due to the openings defined by the body.
  • 15. The ocular implant of claim 10, wherein the body is curved about a lateral central axis so that a longitudinal axis of the body defines a plane.
  • 16. The ocular implant of claim 15, wherein the body has a lateral radius of curvature extending between the lateral central axis and an outer extent of the body.
  • 17. The ocular implant of claim 16, wherein the lateral radius of curvature is substantially constant.
  • 18. The ocular implant of claim 16, wherein the lateral radius of curvature varies along a length of the body.
  • 19. An ocular implant adapted to reside at least partially in a portion of Schlemm's canal of an eye, the eye having an iris defining a pupil, the implant comprising: a longitudinally extending body having a lateral cross section defining a first lateral extent and a second lateral extent, an aspect ratio of the first lateral extent to the second lateral extent being greater than or equal to two;the body being curved about a longitudinal central axis so that the lateral cross section further defines an inner concave surface and an outer convex surface;a distal portion of the body defining a longitudinal channel including a channel opening, the channel opening being across from the inner concave surface; andthe body being adapted and configured such that the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is disposed in Schlemm's canal.
  • 20. The ocular implant of claim 19 wherein the channel opens away from the pupil when the channel opening is adjacent an outer major side of Schlemm's canal, the outer major side being further from the pupil than an inner major side of Schlemm's canal.
  • 21. The ocular implant of claim 19, wherein the body defines additional openings fluidly communicating with the channel and the body of the implant is more than 50% open due to the openings defined by the body.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/833,863, filed Jul. 9, 2010, now U.S. Pat. No. 8,425,449, which application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Application No. 61/224,158, filed Jul. 9, 2009, titled “Sheathed Ocular Implant and Delivery System”. These applications are herein incorporated by reference in their entirety.

US Referenced Citations (309)
Number Name Date Kind
703296 Arnold Jun 1902 A
1601709 Windom Oct 1926 A
2716983 George et al. Sep 1955 A
3071135 Baldwin et al. Jan 1963 A
3788327 Donowitz et al. Jan 1974 A
3811442 Maroth May 1974 A
3948271 Akiyama Apr 1976 A
4037604 Newkirk Jul 1977 A
4428746 Mendez Jan 1984 A
4457757 Molteno Jul 1984 A
4601713 Fuquo Jul 1986 A
4689040 Thompson Aug 1987 A
4699140 Holmes et al. Oct 1987 A
4706669 Schlegel Nov 1987 A
4722724 Schocket Feb 1988 A
4733665 Palmaz Mar 1988 A
4750901 Molteno Jun 1988 A
4826478 Schocket May 1989 A
4861341 Woodburn Aug 1989 A
4880000 Holmes et al. Nov 1989 A
4886488 White Dec 1989 A
4919130 Stoy et al. Apr 1990 A
4934363 Smith et al. Jun 1990 A
4934809 Volk Jun 1990 A
4936825 Ungerleider Jun 1990 A
4946436 Smith Aug 1990 A
4968296 Ritch et al. Nov 1990 A
5092837 Ritch et al. Mar 1992 A
5127901 Odrich Jul 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst Jan 1993 A
5190552 Kelman Mar 1993 A
5213569 Davis May 1993 A
5246452 Sinnott Sep 1993 A
5290267 Zimmermann Mar 1994 A
5360399 Stegmann Nov 1994 A
5372577 Ungerleider Dec 1994 A
5445637 Bretton Aug 1995 A
5454796 Krupin Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5536259 Utterberg Jul 1996 A
5575780 Saito Nov 1996 A
5591223 Lock et al. Jan 1997 A
5613972 Lee et al. Mar 1997 A
5626558 Suson May 1997 A
5653753 Brady et al. Aug 1997 A
5676669 Colvard Oct 1997 A
5792099 DeCamp et al. Aug 1998 A
5807302 Wandel Sep 1998 A
5865831 Cozean et al. Feb 1999 A
5868697 Richter et al. Feb 1999 A
5879319 Pynson et al. Mar 1999 A
5893837 Eagles et al. Apr 1999 A
5919171 Kira et al. Jul 1999 A
5948427 Yamamoto et al. Sep 1999 A
5968058 Richter et al. Oct 1999 A
6007511 Prywes Dec 1999 A
6050970 Baerveldt Apr 2000 A
6102045 Nordquist et al. Aug 2000 A
6186974 Allan et al. Feb 2001 B1
6217584 Nun Apr 2001 B1
6221078 Bylsma Apr 2001 B1
6238409 Hojeibane May 2001 B1
D444874 Haffner et al. Jul 2001 S
6328747 Nun Dec 2001 B1
6375642 Grieshaber et al. Apr 2002 B1
6409752 Boatman et al. Jun 2002 B1
6450984 Lynch et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6471666 Odrich Oct 2002 B1
6494857 Neuhann Dec 2002 B1
6508779 Suson Jan 2003 B1
6517523 Kaneko et al. Feb 2003 B1
6524275 Lynch et al. Feb 2003 B1
6533764 Haffner et al. Mar 2003 B1
6533768 Hill Mar 2003 B1
6544208 Ethier et al. Apr 2003 B2
6544249 Yu et al. Apr 2003 B1
6551289 Higuchi et al. Apr 2003 B1
6626858 Lynch et al. Sep 2003 B2
6638239 Bergheim et al. Oct 2003 B1
6666841 Gharib et al. Dec 2003 B2
6699210 Williams et al. Mar 2004 B2
6699211 Savage Mar 2004 B2
6726676 Stegmann et al. Apr 2004 B2
D490152 Myall et al. May 2004 S
6730056 Ghaem et al. May 2004 B1
6736791 Tu et al. May 2004 B1
6780164 Bergheim et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6827699 Lynch et al. Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6881198 Brown Apr 2005 B2
6899717 Weber et al. May 2005 B2
6939298 Brown et al. Sep 2005 B2
6955656 Bergheim et al. Oct 2005 B2
6962573 Wilcox Nov 2005 B1
6981958 Gharib et al. Jan 2006 B1
6989007 Shadduck Jan 2006 B2
7094225 Tu et al. Aug 2006 B2
7135009 Tu et al. Nov 2006 B2
7147650 Lee Dec 2006 B2
7163543 Smedley et al. Jan 2007 B2
7186232 Smedley et al. Mar 2007 B1
7192412 Zhou et al. Mar 2007 B1
7207965 Simon Apr 2007 B2
7207980 Christian et al. Apr 2007 B2
7220238 Lynch et al. May 2007 B2
7273475 Tu et al. Sep 2007 B2
7297130 Bergheim et al. Nov 2007 B2
7331984 Tu et al. Feb 2008 B2
7699882 Stamper et al. Apr 2010 B2
7740604 Schieber et al. Jun 2010 B2
7931596 Rachlin et al. Apr 2011 B2
7967772 McKenzie et al. Jun 2011 B2
8012115 Karageozian Sep 2011 B2
8034105 Stegmann et al. Oct 2011 B2
8123729 Yamamoto et al. Feb 2012 B2
8172899 Silvestrini et al. May 2012 B2
8267882 Euteneuer et al. Sep 2012 B2
8282592 Schieber et al. Oct 2012 B2
8337509 Schieber et al. Dec 2012 B2
8372026 Schieber et al. Feb 2013 B2
8414518 Schieber et al. Apr 2013 B2
8425449 Wardle et al. Apr 2013 B2
8512404 Frion et al. Aug 2013 B2
8636647 Silvestrini et al. Jan 2014 B2
8939948 De Juan, Jr. et al. Jan 2015 B2
8945038 Yablonski Feb 2015 B2
8951221 Stegmann et al. Feb 2015 B2
20010002438 Sepetka et al. May 2001 A1
20020003546 Mochimaru et al. Jan 2002 A1
20020013546 Grieshaber et al. Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020052653 Durgin May 2002 A1
20020072673 Yamamoto et al. Jun 2002 A1
20020133168 Smedley et al. Sep 2002 A1
20020143284 Tu et al. Oct 2002 A1
20020165504 Sharp et al. Nov 2002 A1
20020193805 Ott et al. Dec 2002 A1
20030004457 Andersson Jan 2003 A1
20030040754 Mitchell et al. Feb 2003 A1
20030055372 Lynch et al. Mar 2003 A1
20030060748 Baikoff Mar 2003 A1
20030060752 Bergheim et al. Mar 2003 A1
20030060784 Hilgers et al. Mar 2003 A1
20030093084 Nissan et al. May 2003 A1
20030097151 Smedley et al. May 2003 A1
20030181848 Bergheim et al. Sep 2003 A1
20030187384 Bergheim et al. Oct 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20030236483 Ren Dec 2003 A1
20030236484 Lynch et al. Dec 2003 A1
20040024345 Gharib et al. Feb 2004 A1
20040024453 Castillejos Feb 2004 A1
20040030302 Kamata et al. Feb 2004 A1
20040082939 Berlin Apr 2004 A1
20040088048 Richter et al. May 2004 A1
20040098124 Freeman et al. May 2004 A1
20040102729 Haffner et al. May 2004 A1
20040106975 Solovay et al. Jun 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040122380 Utterberg Jun 2004 A1
20040127843 Tu et al. Jul 2004 A1
20040147870 Burns et al. Jul 2004 A1
20040193095 Shadduck Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040199171 Akahoshi Oct 2004 A1
20040210181 Vass et al. Oct 2004 A1
20040210185 Tu et al. Oct 2004 A1
20040216749 Tu Nov 2004 A1
20040225357 Worst et al. Nov 2004 A1
20040249333 Bergheim et al. Dec 2004 A1
20040254517 Quiroz-Mercado et al. Dec 2004 A1
20040254519 Tu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040260228 Lynch et al. Dec 2004 A1
20050041200 Rich Feb 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050090806 Lynch et al. Apr 2005 A1
20050090807 Lynch et al. Apr 2005 A1
20050101967 Weber et al. May 2005 A1
20050107734 Coroneo May 2005 A1
20050119601 Lynch et al. Jun 2005 A9
20050119636 Haffner et al. Jun 2005 A1
20050125003 Pinchuk et al. Jun 2005 A1
20050131514 Hijlkema et al. Jun 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050154443 Linder et al. Jul 2005 A1
20050165385 Simon Jul 2005 A1
20050192527 Gharib et al. Sep 2005 A1
20050197667 Chan et al. Sep 2005 A1
20050203542 Weber et al. Sep 2005 A1
20050209549 Bergheim et al. Sep 2005 A1
20050209550 Bergheim et al. Sep 2005 A1
20050244464 Hughes Nov 2005 A1
20050250788 Tu et al. Nov 2005 A1
20050260186 Bookbinder et al. Nov 2005 A1
20050266047 Tu et al. Dec 2005 A1
20050271704 Tu et al. Dec 2005 A1
20050273033 Grahn et al. Dec 2005 A1
20050277864 Haffner et al. Dec 2005 A1
20050288619 Gharib et al. Dec 2005 A1
20050288745 Andersen et al. Dec 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060032507 Tu Feb 2006 A1
20060052879 Kolb Mar 2006 A1
20060069340 Simon Mar 2006 A1
20060074375 Bergheim et al. Apr 2006 A1
20060079828 Brown Apr 2006 A1
20060084907 Bergheim et al. Apr 2006 A1
20060106370 Baerveldt et al. May 2006 A1
20060116626 Smedley et al. Jun 2006 A1
20060149194 Conston et al. Jul 2006 A1
20060154981 Klimko et al. Jul 2006 A1
20060155238 Shields Jul 2006 A1
20060155300 Stamper et al. Jul 2006 A1
20060167421 Quinn Jul 2006 A1
20060167466 Dusek Jul 2006 A1
20060173397 Tu et al. Aug 2006 A1
20060178674 McIntyre Aug 2006 A1
20060189915 Camras et al. Aug 2006 A1
20060189916 Bas et al. Aug 2006 A1
20060189917 Mayr et al. Aug 2006 A1
20060195055 Bergheim et al. Aug 2006 A1
20060195056 Bergheim et al. Aug 2006 A1
20060195187 Stegmann et al. Aug 2006 A1
20060200113 Haffner et al. Sep 2006 A1
20060241749 Tu et al. Oct 2006 A1
20060264971 Akahoshi Nov 2006 A1
20060276759 Kinast et al. Dec 2006 A1
20070010827 Tu et al. Jan 2007 A1
20070027452 Varner et al. Feb 2007 A1
20070073275 Conston et al. Mar 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070106200 Levy May 2007 A1
20070106236 Coroneo May 2007 A1
20070112292 Tu et al. May 2007 A1
20070118147 Smedley et al. May 2007 A1
20070135681 Chin et al. Jun 2007 A1
20070179520 West Aug 2007 A1
20070191863 De Juan, Jr. et al. Aug 2007 A1
20070202186 Yamamoto et al. Aug 2007 A1
20070219509 Tashiro et al. Sep 2007 A1
20070265582 Kaplan et al. Nov 2007 A1
20070270945 Kobayashi et al. Nov 2007 A1
20070276315 Haffner et al. Nov 2007 A1
20070276316 Haffner et al. Nov 2007 A1
20070282244 Tu et al. Dec 2007 A1
20070282245 Tu et al. Dec 2007 A1
20070293807 Lynch et al. Dec 2007 A1
20070293872 Peyman Dec 2007 A1
20070298068 Badawi et al. Dec 2007 A1
20080015488 Tu et al. Jan 2008 A1
20080045878 Bergheim et al. Feb 2008 A1
20080058704 Hee et al. Mar 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080288082 Deal Nov 2008 A1
20080312661 Downer et al. Dec 2008 A1
20090005852 Gittings et al. Jan 2009 A1
20090028953 Yamamoto et al. Jan 2009 A1
20090030363 Gellman Jan 2009 A1
20090030381 Lind et al. Jan 2009 A1
20090036843 Erskine Feb 2009 A1
20090043321 Conston et al. Feb 2009 A1
20090054723 Khairkhahan et al. Feb 2009 A1
20090069786 Vesely et al. Mar 2009 A1
20090082860 Schieber et al. Mar 2009 A1
20090082862 Schieber et al. Mar 2009 A1
20090104248 Rapacki et al. Apr 2009 A1
20090138081 Bergheim et al. May 2009 A1
20090182421 Silvestrini et al. Jul 2009 A1
20090198248 Yeung et al. Aug 2009 A1
20090204053 Nissan et al. Aug 2009 A1
20090247955 Yamamoto et al. Oct 2009 A1
20090259126 Saal et al. Oct 2009 A1
20090281520 Highley et al. Nov 2009 A1
20100004580 Lynch et al. Jan 2010 A1
20100057072 Roman et al. Mar 2010 A1
20100114309 de Juan et al. May 2010 A1
20100137981 Silvestrini et al. Jun 2010 A1
20100173866 Hee et al. Jul 2010 A1
20100191176 Ho et al. Jul 2010 A1
20100191177 Chang et al. Jul 2010 A1
20100234726 Sirimanne et al. Sep 2010 A1
20100234790 Tu et al. Sep 2010 A1
20110009874 Wardle et al. Jan 2011 A1
20110098809 Wardle et al. Apr 2011 A1
20110196487 Badawi et al. Aug 2011 A1
20110218523 Robl Sep 2011 A1
20110319806 Wardle Dec 2011 A1
20120010702 Stegmann et al. Jan 2012 A1
20120022424 Yamamoto et al. Jan 2012 A1
20120035524 Silvestrini Feb 2012 A1
20120191064 Conston et al. Jul 2012 A1
20120323159 Wardle et al. Dec 2012 A1
20130006165 Euteneuer et al. Jan 2013 A1
20130079701 Schieber et al. Mar 2013 A1
20130150959 Schieber et al. Jun 2013 A1
20130158462 Wardle et al. Jun 2013 A1
20130172804 Schieber et al. Jul 2013 A1
20130182223 Wardle et al. Jul 2013 A1
20130331761 Euteneuer et al. Dec 2013 A1
20130338563 Schieber et al. Dec 2013 A1
20140066821 Friedland et al. Mar 2014 A1
20140066831 Silvestrini et al. Mar 2014 A1
20140249463 Wardle et al. Sep 2014 A1
20140323944 Schieber et al. Oct 2014 A1
20150119787 Wardle et al. Apr 2015 A1
Foreign Referenced Citations (41)
Number Date Country
199876197 Feb 1999 AU
1950091 Apr 2007 CN
4226476 Aug 1993 DE
1615604 Aug 2009 EP
2193821 Jun 2010 EP
1715827 Dec 2010 EP
2380622 Oct 2011 EP
2468327 Jun 2012 EP
2471563 Jul 2012 EP
1833440 Aug 2012 EP
H10-504978 May 1998 JP
11123205 May 1999 JP
2002542872 Dec 2002 JP
2006517848 Aug 2006 JP
2006289075 Oct 2006 JP
2010509003 Mar 2010 JP
2011502649 Jan 2011 JP
WO 0007525 Feb 2000 WO
WO 0064389 Nov 2000 WO
WO 0064393 Nov 2000 WO
WO 0197727 Dec 2001 WO
WO 0236052 May 2002 WO
WO 02074052 Sep 2002 WO
WO 02080811 Oct 2002 WO
WO 03015659 Feb 2003 WO
WO 03045290 Jun 2003 WO
WO 2004054643 Jul 2004 WO
WO 2004093761 Nov 2004 WO
WO 2005105197 Nov 2005 WO
WO 2006066103 Jun 2006 WO
WO 2007035356 Mar 2007 WO
WO 2007047744 Apr 2007 WO
WO 2007087061 Aug 2007 WO
WO 2008002377 Jan 2008 WO
WO 2008005873 Jan 2008 WO
WO 2009042596 Apr 2009 WO
WO 2009120960 Oct 2009 WO
WO 2011053512 May 2011 WO
WO 2011057283 May 2011 WO
WO 2011106781 Sep 2011 WO
WO 2011150045 Dec 2011 WO
Non-Patent Literature Citations (19)
Entry
Wardle et al.; U.S. Appl. No. 14/139,403 entitled “Ocular implants for delivery into the eye,” filed Dec. 23, 2013.
Wardle et al.; U.S. Appl. No. 14/146,587 entitled “Delivering Ocular Implants Into the Eye,” filed Jan. 2, 2014.
Bahler, et al.; Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments; Amer. Journal of Ophthalmology; vol. 138, No. 6; pp. 988-994.e2; Dec. 2004.
D'Ermo, et al.; Our results with the operation of ab externo trabeculotomy; Ophthalmologica; vol. 163; pp. 347-355; Feb. 1971.
Ellingsen et al.; Trabeculotomy and sinusotomy in enucleated human eyes; Investigative Ophthalmology; vol. 11; pp. 21-28; Jan. 1972.
Grant; Experimental aqueous perfusion in enucleated human eyes; Archives of Ophthalmology; vol. 69; pp. 783-801; Jun. 1963.
Johnstone et al.; “Microsurgery of Schlemm's Canal and the Human Aqueous Outflow System;” American Journal of Ophthalmology, vol. 76 (6): 906-917; Dec. 1973.
Lee et al.; Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies; Investigative Ophthalmology; vol. 5; No. 1; pp. 59-64; Feb. 1966.
Moses, Robert; The effect of intraocular pressure on resistance to outflow; Survey of Ophthalmology; vol. 22; No. 2; pp. 88-100; Sep.-Oct. 1977.
Mäepea et al.; The pressures in the episcleral veins, schlemm's canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure; Exp. Eye Res.; vol. 49; pp. 645-663; Oct. 1989.
Rosenquist et al.; Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy; Current Eye Res.; vol. 8, No. 12; p. 1233-1240; Dec. 1989.
Savage, James; Gonioscopy in the management of glaucoma; Am. Academy of Ophthalmology; Focal Points; vol. XXIV; No. 3; pp. 1-14; Mar. 2006.
Schultz, Jared; Canaloplasty procedure shows promise for open-angle glaucoma in European study; Ocular Surgery News; vol. 34; Mar. 1, 2007.
Smit et al.; Effects of viscoelastic injection into schlemm's canal in primate and human eyes; J. Am. Academy of Ophthalmology; vol. 109; No. 4; pp. 786-792; Apr. 2002.
Spiegel et al.; Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG?; Ophthalmic Surgery and Lasers; vol. 30; No. 6; pp. 492-494; Jun. 1999.
Schieber et al.; U.S. Appl. No. 14/691,267 entitled “Ocular implants with asymmetric flexibility,” filed Apr. 20, 2015.
Schieber et al.; U.S. Appl. No. 14/692,442 entitled “Methods and apparatus for delivering ocular implants into the eye,” filed Apr. 21, 2015.
Schieber et al.; U.S. Appl. No. 14/693,582 entitled “Methods and apparatus for delivering ocular implants into the eye,” filed Apr. 22, 2015.
Schiber et al.; U.S. Appl. No. 14/440,610 entitled “Apparatus for delivering ocular implants into an anterior chamber of the eye,” filed May 5, 2015.
Related Publications (1)
Number Date Country
20130231603 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61224158 Jul 2009 US
Continuations (1)
Number Date Country
Parent 12833863 Jul 2010 US
Child 13865770 US