The present invention generally relates to a removable intraocular plug used to temporarily close the punctal or canalicular opening of the human eye. The plug can be utilized, for example, in the treatment of keratoconjunctivitis sicca (dry eye). Specifically, the present invention relates to a method for occluding ocular channels by using a plug, made from hydrogel materials, that can adapt to the size and shape of an individual's punctum or canaliculus after insertion.
The human eye includes a complex composition in the form of a tear film. Tears include three basic components: (1) lipids; (2) an aqueous component; and (3) mucin. The absence of any one of these components causes discomfort in the eye and can lead to a temporary or permanent condition known as keratitis sicca (or keratoconjunctivitis sicca), often referred to as dry eye. Dry eye can have a variety of causes but is generally attributed to one or two basic malfunctions. First, the tear ducts leading from the lacrimal glands can be clogged or malfunctioning so that an insufficient amount of tears reaches the eye. For many years, this was generally thought to be the main reason for dry eye. Artificial tears were developed in response to this need. However, the relief to patients using these artificial tears is short-lived and treatment must be readministered several times each hour.
More recently, it has been discovered that, with increasing age, dry eye can also be caused by either the formation of an insufficient or inadequate amount of tears and/or tear components or the inability to maintain effective tear films in the eye. Accordingly, recent therapies have proceeded on the basis that tear production may be inadequate in some individuals and that a significant percentage of dry eye syndrome can be alleviated by slowing down the drainage of the tears through the lacrimal ducts.
Tears are removed from the eye (1) by draining through the upper (2) and lower (3) punctal openings which lead into the canalicular canals (4,5), and ultimately to the lacrimal sac (6) (see
One means of temporarily blocking the punctum and canaliculus for the treatment of dry eye is through the use of intracanalicular gelatin implants. “Intracanalicular Gelatin Implants in the Treatment of Keratoconjunctivitis Sicca,” Wallace S. Foulds, Brit. J. Ophthal. (1961) 45:625-7. In this article, Foulds describes how the occlusion of the lacrimal puncta can be performed by the use of and insertion of a fine, water-soluble gelatin rod into the punctal openings. The gelatin rod is formed from a pure powdered gelatin to which a small quantity of distilled water has been added and is heated in a water bath until the gelatin dissolves and a thick gel results. By dipping a cold glass rod into this prepared gelatin, and withdrawing it from the thick gel, fine solid rods of gelatin can be formed. These gelatin rods may be inserted into the canaliculi to provide a temporary blockage. Gelatin rod implants, although very fragile, provide an alternative means for temporarily blocking the canaliculus.
Water-insoluble plugs which can be placed in the punctal openings and into vertical sections of the canalicular canals are disclosed in U.S. Pat. No. 3,949,750, Freeman, issued Apr. 13, 1976. The punctum plug (10) of Freeman is a rod-like plug formed with an oversized lip (11) that dilates and blocks the vertical canaliculus (see
An improvement on the Freeman plugs is disclosed in U.S. Pat. No. 4,959,048, Seder et al., issued Sep. 25, 1990. The Seder et al. patent discloses a preformed plug or channel occluder which is somewhat conical in shape, making it possible to insert the occluder into the opening of the punctum more easily than the devices disclosed by Freeman. Further, the Seder et al. patent discloses that variations in the anatomy of individuals make it desirable to provide a series of occluders having different lengths and/or widths in order to accommodate these differences. Using this approach, ophthalmologists need to measure the actual size of the punctal opening to determine the best size for the punctum plug to be used for each patient and manufacturers must then provide five or more different sizes of punctum plug to meet the ophthalmologist's needs.
Using these prior art plugs, doctors must follow a number of procedures that are not only time consuming but also require a high level of skill. First, doctors need to measure each patient's punctal diameter since this size will vary from patient to patient, and for some patients, there will even be variances in punctum size between the left eye and the right eye (see
In an effort to meet this need, U.S. Pat. No. 6,234,175, Zhou and Wilcox, issued May 22, 2001, discloses a smart ocular plug design and method for insertion which achieves a one-size-fits-all device for blocking the punctum or canaliculus of a patient. This is accomplished by using specifically defined materials having narrowly-defined glass transition temperature and/or melting temperature properties for fabricating the plug.
The present invention provides punctal and intracanalicular plugs for occluding punctal openings of an eye to preserve tears for the treatment of dry eye syndrome. The present invention does this using a one-size-fits-all plug design. This eliminates the need for gauging the punctum size in a patent thereby saving time for the doctors. In addition, the one-size-fits-all design requires a much smaller inventory for both manufacturers and service providers.
The present invention also provides a rigid slender plug (20) which is used for insertion into punctal openings (2). By having this configuration, the need for dilating the punctum prior to insertion is eliminated. The insertion of the plug of the present invention is relatively easy. Because the plug of the present invention is a rigid slender rod, it does not need special tools or inserters. Instead, it only requires simple forceps for holding the plug and its insertion into the punctal opening. Finally, the plug of the present invention, when positioned in the punctum or canaliculus, becomes flexible and soft, having a softness and pliability which is similar to that of human eyelid tissue (see
Specifically, the present invention relates to an ocular occluder for blocking lacrimal flow through the punctum or canaliculus of the human eye, wherein said occluder:
This ocular plug of the present invention (20) is a slender rod-like device, generally a cylinder of appropriate diameter, suitable for insertion into the punctum of most patients. It is optionally tapered at the front end for easy insertion into the punctum. It is prepared from a hydrophilic polymeric material which forms a hydrogel upon absorption of water, that has been prestretched and frozen in the stretched form. Once inserted into the ocular channel, the plug absorbs water from its surrounding environment, thereby becoming soft and subsequently starting to recover its initial prestretched shape. The absorption of water by the dry material will cause the plug to increase its dimensions in all directions in proportion to the content of water in the fully hydrated material. This shape deformation, shape recovery and adaptation are illustrated in
In general terms, the present invention comprises a rod, generally cylindrical, made from a hydrophilic polymeric material which is capable of forming a hydrogel in water, and preferably which is capable of absorbing at least about 10% of its own weight of water to form a hydrogel. Preferred polymers are those which absorb from about 35% to about 60% of their own weight of water, thereby becoming a hydrogel, and which have balanced properties in terms of hardness and elasticity. Generally speaking, hydrogels are defined as water-containing gels characterized by hydrophilicity and insolubility in water. In water, hydrogel-forming polymers swell to an equilibrium volume, while preserving their shape. Examples of such polymeric materials which are suitable for use in the present invention can be found in “Hydrogels in Medicine and Pharmacy,” by Nikolaos A. Peppas, CRC Press, Inc., Boca Raton, Fla., 1986, incorporated herein by reference. Examples of such materials include the polymers and copolymers of: (1) acrylic polymers with hydrophilic substituted pendant groups, such as poly(hydroxyethyl methacrylate), poly(acrylic acid), poly(methacrylic acid); (2) polyethylene backbone polymers having pendant hydrophilic groups, such as poly(vinyl alcohol), poly(N-vinyl-2 pyrrolidone), and poly(vinyl acetate); (3) polymers having hydrophilic groups which are a part of the polymer backbone structure, such as poly(ethylene oxide) and poly(ethylene imine); and (4) polymers having hydrophilic groups being both part of the polymer backbone and also as pendant groups, such as xanthan gum, heparin, hydroxypropylmethyl cellulose, and hyaluronic acid. In addition, these polymers and copolymers can be crosslinked with appropriate crosslinkers to modify their mechanical and physical properties. Particularly preferred materials include the polymers and copolymers of hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, methacrylic acid, acrylic acid, N-vinyl-2-pyrrolidone, vinyl alcohol, ethylene oxide, ethylene imine, hydroxypropylmethyl cellulose, methacrylamide, and mixtures of these materials. These hydrogel-forming polymers can be further modified with monomers of less hydrophilicity, such as methyl methacrylate, methyl acrylate, and N,N-dimethyl methacrylamide.
The punctal plugs of the present invention (20) (the terms “plug” and “occluder” are used interchangeably in this application) are generally rods made from the hydrophilic polymeric hydrogel-forming materials described above. These rods tend to be rigid when the polymer is in a nonhydrated form. The initial rigid rod (21) is then hydrated in water so that it become a hydrogel (22). The hydrogel rod is then stretched to at least about an additional 50% (preferably at least about an additional 60%) beyond its initial length (23). For example, if the initial length of the rod is 10 mm, it is stretched to at least 15 mm in length. The hydrogel rod is then dried while in its stretched state so that the rod becomes rigid (24) again, but this time in its stretched form having a smaller diameter than the diameter it had in its initial rigid form. This stretched rigid rod is then cut into appropriate lengths (25) such that when it is fully hydrated the final length will be from about 1 to about 3 mm. This slender rod is used as the plug for insertion into the punctum. Once it is inserted into the punctum, it absorbs water from the surrounding environment and becomes a soft, pliable hydrogel (26). At the same time, the hydrated plug starts to expand in diameter until it adapts to fill the patient's punctum in terms of both its size and shape, thereby plugging the patient's punctum. This result is achieved using the one-size-fits-all design of the present invention. The process of stretching, inserting and utilizing the punctal plugs of the present invention is illustrated in
Typically, the occluder of the present invention will be formed in a cylindrical rod shape, although other cross-sectional shapes may be used, as long as the length of the rod is greater than its cross-sectional diameter and, the hydrated rod will expand to fill up the punctum of the wearer. Typically, the occluder will have a diameter of no greater than about 0.7 mm in its stretched form, and preferably will have a diameter of from about 0.3 to about 0.5 mm in its stretched form. Upon absorption of water, the occluder will typically expand to a maximum diameter of from about 1 to about 2 mm, preferably about 1.5 mm. The occluder typically will have a length of from about 3 to about 15 mm in its stretched form and will shrink to a length from about 1 to about 5 mm, preferably from about 1 to about 3 mm when it is fully hydrated.
The occluder may be removed from the eye by injecting a small volume of water or saline solution into the ocular channel using a syringe. This procedure is know to ophthalmologists as the irrigation process.
In order to better understand the teachings of the present invention, the following examples are given for illustration purposes only, and not to limit the scope of the present invention. The dimensions used in the following experiments are not intended to be the most suitable ones for use in human lacrimal channels. Instead, they are used to demonstrate the basic concepts behind the present invention.
A mixture of 5 grams 2-hydroxyethyl methacrylate and 10 mg benzoyl peroxide is mixed, degassed and refilled with nitrogen gas three times. The mixture is then transferred to a polypropylene tube having one end thermally pre-sealed. The second end is sealed after the mixture is transferred into the tube. The tube is placed in a preheated oven at a temperature of about 90° C. for 15 hours, then at about 135° C. for 3 hours. The polypropylene tube is cut open and a transparent rigid rod is obtained.
The rod obtained above has a diameter of about 1.2 mm and a length of about 25 mm. The rod is heated on a heating plate until it is soft and elastic. The softened rod is manually stretched by holding both of its ends with forceps. The stretched rod is cooled to room temperature, whereby it became rigid and remains in the stretched form when the forceps were released. The cooling process may be accelerated by dipping the stretched rod into room temperature water. This “freezes” the rod in the stretched form in about 2 seconds.
Both ends of the stretched rod, having been deformed by the forceps during stretching, are removed. Thus, a uniform stretched rod of circular cross-section, with a diameter of about 0.7 mm and a length of about 35 mm is obtained. The stretched rod is cut into five pieces with a length of about 7 mm each. The resulting stretched rod with a diameter of about 0.7 mm and a length of about 7 mm may be used as an occluder for blocking lacrimal flow through the punctum or canaliculus of the human eye.
The occluder prepared above is placed in water at room temperature. When fully hydrated, the occluder has a diameter of about 1.4 mm and a length of about 3 mm. Thus, the rigid stretched rod with a diameter of about 0.7 mm and a length of about 7 mm is expanded by hydration into a soft occluder with a diameter of about 1.4 mm and a length of about 3 mm, i.e., the diameter increased and the length decreased.
During this hydration and expansion process in a patient whose ocular channel is smaller than about 1.4 mm (for example, about 1.2 mm), the expansion of the rod ceases when the resistance force from the surrounding tissue is equal to that of the expansion force of the rod. Therefore, the rod fits snugly with the surrounding tissue to provide long-term occlusion.
The elongation percentages may be measured, for example, using a standard Instron machine.
Examples 2-4 are prepared in the same manner as described in Example 1 except for the material compositions. Table 1 lists material composition as well as other properties.
*10 mg of benzoyl peroxide was used as an initiator in all compositions
HEMA: hydroxyethyl methacrylate
MA: methyl methacrylate
XL: ethylene glycol dimethacrylate used as a crosslinker
Composition percentage based on weight percentage
A composition of 70 wt. % hydroxyethyl methacrylate, 25 wt. % N-benzyl-N-methylacrylate and 5% N,N-dimethylacrylate is polymerized with 90.2 wt. % ethylene glycol dimethacrylate as a crosslinker, and 10 mg benzoyl peroxide as an initiator, under the same conditions as that in Example 1. The resulting material includes 20 wt. % water when fully hydrated and elongation of about 20%.
The compositions of Examples 2-5 may be formed into ocular occluders of the present invention using, for example, the procedure described in Example 1.