Ocular pressure regulation

Information

  • Patent Grant
  • 8808220
  • Patent Number
    8,808,220
  • Date Filed
    Thursday, October 14, 2010
    14 years ago
  • Date Issued
    Tuesday, August 19, 2014
    10 years ago
Abstract
Disclosed are devices and methods of treating an ocular disorder including forming a self-sealing incision in a cornea into an anterior chamber of an eye; introducing through the incision a fluid drainage tube having a distal end, a proximal end and a longitudinal, internal lumen extending through the fluid drainage tube, wherein at least the proximal end passes through the anterior chamber; and implanting the distal end of the fluid drainage tube in fluid communication with the suprachoroidal space such that the proximal end of the fluid drainage tube remains in fluid communication with the anterior chamber.
Description
FIELD OF THE INVENTION

This invention is directed to therapeutic methods and devices for the treatment of glaucoma. In particular, this invention is concerned with the use of a shunt or drain for the treatment of glaucoma. In another aspect this invention is concerned with ocular pressure spike shunts and use of the same in ocular surgery.


BACKGROUND OF THE INVENTION

The glaucomas are a common group of blinding conditions usually associated with elevated intraocular pressure. This elevated pressure in the eye may be regarded as a disorder of the drainage system of the eye which gives rise to the glaucomas.


Aqueous humor of the eye (“aqueous”) is a flowing liquid fluid (composed of sodium, chloride, bicarb, amino acids, glucose, ascorbic acid, and water) that is actively secreted by the ciliary body and flows out past the iris into the anterior chamber (are between the lens/iris and the cornea). The aqueous drains out through angle formed by the iris and the sclera into a meshwork call the trabeculum, and from there into the canal of Schlemm and then into the episcleral veins. Uveosclera drainage also occurs. Normal intraocular pressure (IOP) of aqueous in anterior chamber is between 10 and 20 mm Hg. Prolonged IOPs of greater than 21 mm Hg are associated with damage to optic nerve fibers.


In some cases of glaucoma the cause can be found: the trabecular meshwork becomes blocked by pigment or membrane. In other cases, blockage is due to a closure of the angle between the iris and the cornea. This angle type of glaucoma is referred to as “angle-closure glaucoma”. In the majority of glaucoma cases, however, called “open angle glaucoma”, the cause is unknown.


Elevated intraocular pressure results in the death of retinal ganglion cells (which convey retinal information to the brain) resulting in a characteristic pattern of loss of the field of vision, progressing to tunnel vision and blindness if left untreated.


Treatment of glaucoma consists predominantly of methods to lower the intraocular pressure (pharmacological, trabecular meshwork laser and surgery to drain fluid from the eye). More recently protection of the retinal ganglion cells by neuroprotective agents has been attempted.


Although pharmacological treatments of glaucoma have improved, they have important implications for the patient's quality of life, have compliance issues which are important in the elderly (in whom glaucoma is prevalent), expose the patient of glaucoma to side effects, and over a lifetime are costly.


Surgery for glaucoma treatment is usually a trabeculectomy in which a fistula is created to drain fluid from the anterior chamber to the subconjunctival space near the limbus, creating a bulge in the conjunctiva known as a bleb. Frequently scarring occurs and attempts to counter this with antimetabolites such as Mitomycin C have met with some success. In recalcitrant cases, glaucoma implants, drainage, shunt or valve devices have been developed e.g. Molteno (U.S. Pat. No. 4,457,757), Krupin (U.S. Pat. No. 5,454,746) and Baerveldt (U.S. Pat. No. 5,178,604). These suffer from similar problems of scarring (Classen L, Kivela T, Tarkkanen “A Histopathologic and immunohistochemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation” Am J Opthalmol, 1996; 122:205-12) around the external opening of the tube devices in the subconjunctival space—the development of a large number of these devices is testament to the fact that many fail in the longer term. In these devices a drainage tube is located in the anterior chamber and is in fluid communication with the sclera or a surgically created subconjunctival space.


Whereas cataract surgery has been revolutionized in the last two decades, improvements in glaucoma surgery have been slower. Antifibrotic agents have improved the success rate of conventional filtration surgery (trabeculectomy), but with increased bleb leaks, blebitis, endophthalmitis and hypotensive maculopathy. Glaucoma shunts have had limited success in eyes that have “failed” multiple standard procedures. However complications with malpositioned tubes, erosion and strabismus persist. A considerable issue is the lack of reproducibility and predictability in achieving the desired target intraocular pressure (TOP). Final IOP is largely determined by healing which can be unpredictable—in view of vast biological variations, it is impossible to predict which eyes will rapidly scar causing failure and which will fail to heal resulting in prolonged post-operative hypotony. Scarring remains a significant problem in all these external drainage proposals, where aqueous drains into the conjunctiva, or surgical chambers in the sclera.


The introduction of a new class of antiglaucoma drugs, the prostaglandin analogues, has resulted in acknowledgment of the importance of the uveoscleral pathway in drainage of fluid form the eye (Hylton C, Robin A L “Update on prostaglandin analogs” Curr Opin Opthalmol, 2003; 14:65-9). Uveoscleral flow where aqueous humor flows through the interstitium of the ciliary muscle into the suprachoroidal space (a potential space between the choroids and sclera) and out through the sclera into the connective tissue of the orbit may account for 54% of outflow young healthy humans (Toris C B, Yablonski M E, Wang Y L, Camras C B “Aqueous humor dynamics in the aging human eye” Am J Opthalmol, 1999; 127:407-12).


Cyclodialysis, the separation of the ciliary body from the scleral spur and underlying sclera, creates free communication between the anterior chamber and the suprachoroidal space and enhances uveoscleral flow. It has long been known that cyclodialysis can cause a profound reduction of intraocular pressure—initially (Fuchs E. “Detachment of the choroid inadvertently during cataract surgery” [German] von Graefes Arch Opthalmol, 1900; 51:199-224) cyclodialysis was recognized as a complication of cataract surgery. Deliberate creation of a cyclodialysis cleft for treating elevated intraocular pressure in uncontrolled glaucoma was first described as a surgical procedure in 1905 (Heine I. “Cyclodialysis, a new glaucoma operation” [German]) Dtsch Med Wochenschr, 1905; 31:824-826). Since such clefts can heal and close spontaneously a number of devices have been used to keep them open, including platinum wire, horse hair, magnesium strips, tantalum foil, Supramid®, gelatin film, Teflon®, silicone and polymethylmethacrylate (Rosenberg L F, Krupin T. “Implants in glaucoma surgery” Chapter 88, The Glaucomas, Ritch R, Shields B M, Krupin T Eds. 2nd Edition Mosby St Louis 1986) and Hema (Mehta K R. “The suprachoroidal Hema wedge in glaucoma surgery” American Academy of Opthalmology meeting 1977, pp 144). However the success rate of such approaches has been low (as low as 15%, Rosenburg & Krupin ibid and Gross R L, Feldman R M, Spaeth G L, et al “Surgical therapy of chronic glaucoma in aphakia and pseudophakia” Opthalmology, 1988; 95:1195-201). Failure was due to uncontrolled low pressure (hypotony) with consequential macular edema, bleeding (hyphema) and inadequate pressure control.


The device and method of a first aspect of this invention takes advantage of the methods used in cataract surgery to develop a minimally invasive glaucoma procedure—thus small, self sealing incisions and materials that are biocompatible and foldable so that they fit through small openings will reduce surgical trauma and time. The controlled draining of aqueous into the suprachoroidal space according to this invention provides some predictability of outcome and overcomes scarring problems that have plagued glaucoma implants in the past.


The most frequent complication following modern cataract surgery with phacoemulsification, requiring specific treatment is elevated intraocular pressure (Cohen V M, Demetria H, Jordan K, Lamb R J, Vivian A J.: First day post-operative review following uncomplicated phacoemulsification” Eye, 1998; 12 (Pt 4):634-6, and Dinakaran S, Desai S P, Raj P S. “Is the first post-operative day review necessary following uncomplicated phacoemulsification surgery?” Eye, 2000 June; 14 (Pt 3A):364-6). The increase may be marked and typically peaks at 5 to 7 hours before returning to near normal levels in 1 to 3 days (Hildebrand G D, Wickremasinghe S S, Tranos P G, Harris M L, Little B C. “Efficacy of anterior chamber decompression in controlling early intraocular pressure spikes after uneventful phacoemulsification” J Cataract Refract Surg., 2003; 29:1087-92). Such pressure spikes can cause pain and may increase the risk of sight-threatening complications such as retinal vascular occlusion, increases loss of visual field in advanced glaucoma and ischemic optic neuropathy—effects in otherwise healthy eyes are unknown (Hildebrand G D et al, ibid).


A number of prophylactic treatments are used with limited success—these include intracameral carbachol or acetylcholine, topical timolol, dorzolamide, aproclonidine, latanoprost and systemic acetazolamide (see Hildebrand G D et al, ibid). This also exposes the patient to the risk of drug side effects, increased cost and it has been postulated that reducing the flow of aqueous humor post surgery prolongs the residence time of bacteria that frequently (46.3% of cases) contaminate the anterior chamber during surgery (Srinivasan R, Tiroumal S, Kanungo R, Natarajan M K. “Microbial contamination of the anterior chamber during phacoemulsification” J Cataract Refract Surg, 2002; 28:2173-6). This may increase the risk of endophthalmitis one of the most devastating sequelae of intraocular surgery, since the bacteria are not being “flushed out” of the eye by the normal production of aqueous humour, the secretion of which has been suppressed by the drugs. Another technique is to decompress the anterior chamber by applying pressure to the posterior lip of the paracentesis wound at the appropriate time. This requires surveillance and could increase the risk of infection. Another aspect of this invention hereinafter described overcomes these problems.


SUMMARY OF THE INVENTION

According to the present invention there is provided a flexible ocular device for implantation into the eye formed of a biocompatible elastomeric material, foldable to a diameter of 1.5 mm or less, comprising a fluid drainage tube having at one end a foldable plate adapted to locate the device on the inner surface of the sclera in a suprachoroidal space formed by cyclodialysis, said drainage tube opening onto the disc at one end and opening to the anterior chamber when implanted into the eye at its other end, so as to provide aqueous pressure regulation.


Preferably the fluid drainage tube has a diameter selected to provide predetermined resistance to aqueous humor flow, for example a pressure of 10 mm Hg or less. Alternatively said tube contains a valve so as to regulate pressure of the aqueous chamber at a predetermined level, for example, at no less than 10 mm Hg.


In accordance with another embodiment of this invention there is provided a method for treating glaucoma which comprises:

    • providing a flexible ocular device formed of a biocompatible elastomeric material foldable to a diameter of 1.5 mm or less, comprising a fluid drainage tube having at one end a foldable plate adapted to locate the device on the inner surface of the sclera and at its other end being open so as to allow fluid communication through said tube;
    • forming a small self-sealing incision at the juncture of the cornea and sclera of the eye opening into the anterior chamber;
    • filling the anterior chamber with a viscoelastic substance;
    • introducing the foldable ocular device into a suprachoroidal space formed by cyclodialysis via a hollow cannula, wherein said plate locates the device on the inner surface of the sclera in the suprachoroidal space, and said drainage tube is located in the anterior chamber of the eye so as to provide aqueous humor pressure regulation; and
    • thereafter removing said cannula and viscoelastic material from the eye.


In another aspect there is provided an ocular pressure spike shunt for insertion into an ocular paracentesis incision port following ocular surgery, comprising a flexible fluid transfer tube formed of biocompatible material, preferably biocompatible elastomeric material, so as to allow paracentesis incision closure around said tube, having an inner end and an outer end, a tubular lumen disposed between said inner end and said outer end to allow fluid communication through said tube, said lumen containing a valve for controlling pressure in the eye following ocular surgery, which valve opens permitting fluid flow through said tube when a predetermined pressure is exceeded, said shunt being configured such that on insertion into a paracentesis port said outer end is substantially flush with the surface of the cornea, and said inner end opens into the anterior chamber of the eye.


In another aspect there is provided a method for preventing ocular pressure spikes following ocular surgery wherein a paracentesis incision port is formed in the eye during said surgery, comprising introducing an ocular pressure spike shunt into said paracentesis port at the conclusion of ocular surgery, said shunt comprising a flexible fluid transfer tube formed of biocompatible material, preferably biocompatible elastomeric material, so as to allow paracentesis incision closure around said tube, having an inner end and an outer end, a tubular lumen disposed between said inner end and said outer end to allow fluid communication through said tube, said lumen containing a valve for controlling pressure in the eye following ocular surgery, which valve opens permitting fluid flow through said tube when a predetermined pressure is exceeded, said shunt being configured such that on insertion into a paracentesis port said outer end is substantially flush with the surface of the cornea, and said inner end protrudes into the anterior chamber of the eye.





DESCRIPTION OF THE FIGURES


FIG. 1 shows a diagrammatic representation of a side sectional view of suprachoroidal shunt insertion using an injector.



FIG. 2 shows a diagrammatic representation of a side sectional view of an eye showing the unfolded plate portion of the device and a cannula introducing said device across the anterior chamber at 180° to the site of insertion.



FIG. 3 shows a diagrammatic representation of an eye containing a pressure spike shunt inserted into a paracentesis port.



FIG. 4 shows a perspective view of another embodiment of an ocular device described herein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

The ocular device according to the present invention is implanted in a patient's eye using minimally invasive surgery techniques, adopted from modern cataract surgery.


The ocular device is formed from a biocompatible elastomeric material. Preferably, the device is made of soft surgical grade polymeric material, such as silicon or acrylic material such that the device is foldable and may be rolled up for insertion via a cannula. FIG. 1 shows a proximal end of a cannula forming a cyclodialysis. The folded device may be introduced via such a cannula. The elastomeric material is selected to be sufficiently soft that it does not erode delicate underlying choroid material when inserted into the eye. Such material and ocular lenses formed therefrom are well known and used in cataract surgery.


Sutures are not required to hold the device in place once surgically introduced into the eye, as the foldable plate is adapted to locate the device on the inner surface of the sclera in a suprachoroidal space formed by cyclodialysis (FIG. 2). Preferably, the plate is of a disc-like shape which matches the curvature of the eye once unfolded. FIG. 2 depicts an unfolded disc (connected tube not shown) after cannula introduction across the anterior chamber (transcameral). Alternatively, any plate-like configuration which locates the device on the inner surface of the sclera in the suprachoroidal space may be used, such as for example a rectangular foldable plate. Preferably the plate diameter is from 0.05 to 6 mm, and preferably the place thickness is from 12.5 μm to 250 μm. The fluid drainage tube of the ocular device is preferably integral with the plate, and is attached at one end to the plate, preferably at the periphery of the plate. Alternatively, the tube may be microwelded or otherwise fixed to the plate. Fabrication techniques well known in production of intraocular foldable lenses are preferably used in this invention. The tube has a hollow lumen, and is preferably of a length from about 1 mm to 4 mm. Preferred diameters of the tubing comprise an outer diameter of 400-1000 μm, and preferably the inner diameter is from 50 to 500 μm.


The diameter of the tube may be selected so as to provide a resistance to aqueous humor flow of predetermined pressure, preferably being a pressure less than 10 mm Hg. This enables the pressure of the aqueous to be regulated in a controlled manner, providing relief from excess ocular pressure associated with glaucoma, with avoidance of hypotony (uncontrolled low pressure). Alternatively, the tube may contain a valve, for example disposed at the end of the tube opening onto the disc so as to regulate ocular pressure at a predetermined level. Preferably, the valve prevents aqueous flow through the tube at a pressure of less than 10 mm Hg. Examples of valves which may be used include a slit valve. The drainage stops altogether if the pressure drops to a predetermined threshold level controlled by the valve.


The flexible foldable nature of the device according to the present invention enables well established techniques used in cataract surgery to be employed in the treatment of glaucoma. The device according to the present invention may be folded into a cannula and introduced for location into the eye.


Intraocular surgery techniques allow a paracentesis (opening onto the anterior chamber from without at the juncture of the cornea and sclera—the limbus) to be performed and the anterior chamber filled with viscoelastic substance. A cyclodialysis instrument is introduced via the paracentesis, with the paracentesis preferably being carried out 180° from the insertion site. A cyclodialysis is carried out, for example by advancing an instrument tip into the angle between the ciliary body and sclera so as to create a cyclodialysis. This is preferably carried out with direct visualisation via gonioscopy lens viewed through an operating microscope. A surgical gonioscopy lens is preferably placed on the cornea while the cyclodialysis is carried out.


The rolled up ocular device is introduced through a cannula, for example using an introducer such as used in cataract surgery or other ocular surgery, from which the device can be detached by pressing a plunger into the introducer when the device has been inserted into the suprachoroidal space created by the cyclodialysis. The tubing of the device is positioned into the interior chamber, and the plate unfolds in the suprachoroidal space to locate the device in the eye. Because of its size, the device cannot fall through the opening through which it was introduced into the suprachoroidal space by the cyclodialysis. The plate therefore keeps the tube in the appropriate position in the anterior chamber allowing controlled aqueous drainage and providing an effective treatment for elevated ocular pressure.


The pressure spike shunt is designed to fit snugly in a paracentesis port that is routinely made during cataract or other ocular surgery. The tubing will not distort the port and there will be no leakage around the port. The outer end of the tube will sit flush on the surface of the cornea—the inner aspect of the tube will preferably just protrude into the anterior chamber—tube length will generally be 1-2 mm and tube diameter is preferably from 0.4-1.2 mm. The tube will contain the same valvular device as contained in the ocular device described above and will open when the intraocular pressure exceeds a predetermined level, preferably 10 mm Hg. At normal ocular pressure the valve will be closed, closing said tube to any fluid communication. FIG. 3 shows a shunt located in a paracentesis port. In most cases the shunt will be removed and discarded at the first post-operative dressing.


The shunt may be inserted into a paracentesis port, or one or more ports, using, for example, a punctum plug inserting instrument such as described in U.S. Pat. No. 5,741,292.


This invention will now be described with reference to the following examples.


Example 1

Fresh whole porcine eyes were taken and mounted in a temperature controlled) (37°) perfusion chamber. The eyes were perfused with Balanced Salt Solution via a 30 gauge needle inserted via a paracentesis into the anterior chamber. A peristaltic pump was used at a flow rate of 2 μl/min. Intraocular pressure was continuously monitored via a second paracentesis.


Typically intraocular pressures stabilized at 10-15 mm Hg and fell with time (the “washout effect”, as glycosan aminoglycans are washed out of the trabecular meshwork with time). Creation of a cyclodialysis (initially with a small spatula, then viscoelastic injection to enlarge the area of detachment of the ciliary body from the sclera) with or without insertion of the device in the cyclodialysis cleft (silicone tubing, length 3 mm, external diameter—1 mm, plate diameter 3 mm) resulted in lower intraocular pressures (below 10 mm Hg) on reperfusion at the same perfusion rate as control eyes.


Example 2

Adequate anesthesia is provided to the eye of a glaucoma patient prepared for intraocular surgery. A paracentesis (opening into anterior chamber from without at the junction of the cornea and sclera—the limbus) is performed and the anterior chamber is filled with a viscoelastic substance. A surgical gonioscopy lens is placed on the cornea (or anterior segment endoscope is used) and a cyclodialysis instrument is introduced via the paracentesis—the paracentesis is carried out 180° away from the planned implant insertion site. The cyclodialysis instrument tip is advanced into the angle and pushed into the space between the ciliary body and sclera creating a cyclodialysis—this is carried out with direct visualization via the gonioscopy lens viewed through an operating microscope. In order to minimize bleeding, the area in the angle (anterior ciliary body face and overlying trabecular meshwork) can be lasered either preoperatively or at the time of surgery to ablate surface blood vessels).


Through an opening at the tip of the cyclodialysis instrument viscoelastic is inserted to further create a space in the suprachoroidal space. The implant is then introduced—the device is rolled up in the same manner as an ultrathin intraocular lens. The ocular device is attached to an introducer from which it is detached by pushing a plunger in the introducer when the implant is inserted into the suprachoroidal space created by the cyclodialysis instrument and viscoelastic. The tubing is then positioned into the anterior chamber and may be cut to size. The plate unfolds in the suprachoroidal space and because of its size cannot fall through the opening through which it was introduced into the suprachoroidal space. The plate therefore keeps the tube in an appropriate position. The valve is then flushed (with a cannula inserted via the paracentesis) via the tube opening in the anterior chamber. Viscoelastic is then removed from the anterior chamber and antibiotics, steroids and a dressing applied to the eye.


Example 3

Fresh whole porcine eyes were taken and mounted in a temperature-controlled) (37°) perfusion chamber as in Example 1. The eyes were perfused with Balanced Salt Solution via a 30 gauge needle inserted via a paracentesis into the anterior chamber. A peristaltic pump was used at a flow rate of 2 μl/min. Intraocular pressure was continuously monitored via a second paracentesis.


Typically intraocular pressures stabilized at 10-15 mm Hg and fell with time (the “washout effect, as glycoaminoglycans are washed out of the trabecular meshwork with time). Silicone tubing (length 3 mm, external diameter 1 mm) was introduced into one paracentesis port. One end of the port (outer end) was flush with the cornea and the inner end of the port extended slightly into the anterior chamber. Intraocular pressure did not exceed 10 mm Hg.

Claims
  • 1. A method of treating an ocular disorder, comprising: forming a self-sealing incision in a cornea into an anterior chamber of an eye;introducing through the incision a fluid drainage device having a distal end, a proximal end and a longitudinal, internal lumen extending through the fluid drainage device, wherein at least the proximal end passes through the anterior chamber; andimplanting the distal end of the fluid drainage device in fluid communication with the suprachoroidal space such that the proximal end of the fluid drainage device remains in fluid communication with the anterior chamber.
  • 2. A method as in claim 1, wherein when the fluid drainage device is implanted, the proximal end of the fluid drainage device is located in the anterior chamber and the distal end of the fluid drainage device is located adjacent an inner surface of the sclera in fluid communication with the suprachoroidal space.
  • 3. A method as in claim 1, wherein introducing through the incision a fluid drainage device comprises sequentially passing the distal end and then the proximal end into the anterior chamber as the fluid drainage device is being introduced.
  • 4. A method as in claim 1, wherein the distal end and the proximal end of the fluid drainage device are sequentially passed such that the distal end and proximal end are concurrently located within the anterior chamber.
  • 5. A method as in claim 1, wherein the distal end of the fluid drainage device is introduced through the incision prior to the proximal end of the fluid drainage device.
  • 6. A method as in claim 1, further comprising passing the distal end and the proximal end of the fluid drainage device across the anterior chamber.
  • 7. A method as in claim 1, wherein introducing through the incision a fluid drainage device comprises introducing the entire fluid drainage device into the anterior chamber of the eye.
  • 8. A method as in claim 7, wherein introducing the entire fluid drainage device into the anterior chamber of the eye comprises passing the distal end and the proximal end of the fluid drainage device through the cornea.
  • 9. A method as in claim 1, further comprising separating at least a portion of the ciliary body from at least a portion of the sclera from within the anterior chamber.
  • 10. A method as in claim 9, wherein separating at least a portion of the ciliary body from at least a portion of the sclera comprises performing a cyclodialysis.
  • 11. A method as in claim 10, wherein the cyclodialysis is performed using an ocular instrument separate from the fluid drainage device.
  • 12. A method as in claim 1, wherein introducing through the incision a fluid drainage device comprises placing the fluid drainage device in the eye after separating at least a portion of the ciliary body from at least a portion of the sclera.
  • 13. A method as in claim 1, further comprising applying laser energy to the trabecular meshwork of the eye.
  • 14. A method as in claim 1, wherein forming a self-sealing incision is performed under direct visualization using a gonioscopy lens.
  • 15. A method as in claim 1, wherein forming a self-sealing incision comprises creating a self-sealing incision in the cornea 180 degrees away from a planned insertion site of the fluid drainage device in the eye.
  • 16. A method as in claim 1, wherein the incision is formed in the limbus of the cornea.
  • 17. A method as in claim 1, further comprising filling the anterior chamber with a viscoelastic substance.
  • 18. A method as in claim 1, further comprising injecting a viscoelastic substance into the anterior chamber of the eye prior to introducing the fluid drainage device through the self-sealing incision.
  • 19. A method as in claim 1, further comprising injecting a viscoelastic substance into the eye such that the substance extends into the suprachoroidal space.
  • 20. A method as in claim 1, further comprising using a viscoelastic substance to enlarge the suprachoroidal space.
  • 21. A method as in claim 1, further comprising injecting a viscoelastic substance through an attachment between the ciliary body and the sclera.
  • 22. A method as in claim 1, further comprising using a viscoelastic substance to enlarge an area of detachment of the ciliary body from the sclera.
  • 23. A method as in claim 1, wherein the proximal end of the fluid drainage device provides a pathway into the internal lumen for aqueous humor to flow through the fluid drainage device from the anterior chamber to the suprachoroidal space and provide aqueous pressure regulation.
  • 24. A method as in claim 1, wherein aqueous pressure of the eye is maintained at a pressure of not less than 10 mmHg.
  • 25. A method as in claim 1, wherein the fluid drainage device includes an anchor, and further comprising placing the fluid drainage device in the eye such that the anchor is at least partially located on an inner surface of the sclera.
  • 26. A method as in claim 1, wherein the fluid drainage device includes an anchor, and further comprising placing the fluid drainage device in the eye such that the anchor is at least partially located in the suprachoroidal space.
  • 27. A method as in claim 1, wherein the fluid drainage device is substantially circular in cross-section.
  • 28. A method as in claim 1, wherein the fluid drainage device comprises a tube.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/615,642, filed Dec. 22, 2006 now U.S. Pat. No. 8,128,588, entitled “OCULAR PRESSURE REGULATION” by Minas Coroneo, which is a continuation of U.S. application Ser. No. 10/712,277, filed Nov. 14, 2003, entitled “OCULAR PRESSURE REGULATION” by Minas Coroneo, now U.S. Pat. No. 7,291,125, issued Nov. 6, 2007. This application also is related to U.S. application Ser. No. 10/579,330, filed Nov. 12, 2004, entitled “OCULAR PRESSURE REGULATION” by Minas Coroneo; and to U.S. application Ser. No. 11/615,615, Dec. 22, 2006, entitled “OCULAR PRESSURE REGULATION” by Minas Coroneo; and to U.S. application Ser. No. 12/107,676, filed on Apr. 22, 2008, entitled “OCULAR PRESSURE REGULATION” by Minas Coroneo, now U.S. Pat. No. 7,815,592, issued Oct. 19, 2010. Where permitted, the subject matter of each of the above noted applications is incorporated by reference in its entirety by reference thereto.

US Referenced Citations (287)
Number Name Date Kind
3439675 Cohen Apr 1969 A
3767759 Wichterle Oct 1973 A
3788327 Donowitz Jan 1974 A
3915172 Wichterle Oct 1975 A
4037604 Newkirk Jul 1977 A
4402681 Haas Sep 1983 A
4457757 Molteno Jul 1984 A
4521210 Wong Jun 1985 A
4554918 White Nov 1985 A
4604087 Joseph Aug 1986 A
4634418 Binder Jan 1987 A
4722724 Schocket Feb 1988 A
4750901 Molteno Jun 1988 A
4787885 Binder Nov 1988 A
4826478 Schocket May 1989 A
4846172 Berlin Jul 1989 A
4863457 Lee Sep 1989 A
4886488 White Dec 1989 A
4900300 Lee Feb 1990 A
4946436 Smith Aug 1990 A
4968296 Ritch et al. Nov 1990 A
5041081 Odrich Aug 1991 A
5071408 Ahmed Dec 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5127901 Odrich Jul 1992 A
5171213 Price, Jr. Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst Jan 1993 A
5284476 Koch Feb 1994 A
5300020 L'Esperance, Jr. Apr 1994 A
5338291 Speckman et al. Aug 1994 A
5342370 Simon et al. Aug 1994 A
5346464 Camras Sep 1994 A
5370607 Memmen Dec 1994 A
5372577 Ungerleider Dec 1994 A
5397300 Baerveldt et al. Mar 1995 A
5433701 Rubinstein Jul 1995 A
5443505 Wong et al. Aug 1995 A
5454746 Guegan et al. Oct 1995 A
5476445 Baerveldt et al. Dec 1995 A
5558629 Baerveldt et al. Sep 1996 A
5558630 Fisher Sep 1996 A
RE35390 Smith Dec 1996 E
5601094 Reiss Feb 1997 A
5626558 Suson May 1997 A
5626559 Solomon May 1997 A
5651782 Simon et al. Jul 1997 A
5676944 Alvarado et al. Oct 1997 A
5702414 Richter et al. Dec 1997 A
5704907 Nordquist et al. Jan 1998 A
5713844 Peyman Feb 1998 A
5741292 Mendius Apr 1998 A
5743868 Brown et al. Apr 1998 A
5752928 de Roulhac et al. May 1998 A
5807244 Barot Sep 1998 A
5807302 Wandel Sep 1998 A
5868697 Richter et al. Feb 1999 A
5882327 Jacob Mar 1999 A
5893837 Eagles et al. Apr 1999 A
5941250 Aramant et al. Aug 1999 A
5968058 Richter et al. Oct 1999 A
6007510 Nigam Dec 1999 A
6007511 Prywes Dec 1999 A
6019786 Thompson Feb 2000 A
6036678 Giungo Mar 2000 A
6050970 Baerveldt Apr 2000 A
6050999 Paraschac et al. Apr 2000 A
6077299 Adelberg et al. Jun 2000 A
6102045 Nordquist et al. Aug 2000 A
6142969 Nigam Nov 2000 A
6186974 Allan et al. Feb 2001 B1
6203513 Yaron et al. Mar 2001 B1
6221078 Bylsma Apr 2001 B1
6251090 Avery et al. Jun 2001 B1
6261256 Ahmed Jul 2001 B1
6264668 Prywes Jul 2001 B1
6331313 Wong et al. Dec 2001 B1
6375642 Grieshaber et al. Apr 2002 B1
6383219 Telandro et al. May 2002 B1
6450984 Lynch et al. Sep 2002 B1
6464724 Lynch et al. Oct 2002 B1
6468283 Richter et al. Oct 2002 B1
6471666 Odrich Oct 2002 B1
6471777 Kobayashi et al. Oct 2002 B1
6494857 Neuhann Dec 2002 B1
6508779 Suson Jan 2003 B1
6510600 Yaron et al. Jan 2003 B2
6524275 Lynch et al. Feb 2003 B1
6533768 Hill Mar 2003 B1
6537568 Olejnik et al. Mar 2003 B2
6544208 Ethier et al. Apr 2003 B2
6544249 Yu et al. Apr 2003 B1
6558342 Yaron et al. May 2003 B1
6561974 Grieshaber et al. May 2003 B1
6579256 Hughes Jun 2003 B2
6589203 Mitrev Jul 2003 B1
6595945 Brown Jul 2003 B2
6626858 Lynch et al. Sep 2003 B2
6638239 Bergheim et al. Oct 2003 B1
6648283 Chase et al. Nov 2003 B2
6666841 Gharib et al. Dec 2003 B2
6676607 de Juan, Jr. et al. Jan 2004 B2
6699210 Williams et al. Mar 2004 B2
6699211 Savage Mar 2004 B2
6719750 Varner et al. Apr 2004 B2
6726664 Yaron et al. Apr 2004 B2
6726676 Stegmann et al. Apr 2004 B2
6730056 Ghaem et al. May 2004 B1
6736791 Tu et al. May 2004 B1
6741666 Henry et al. May 2004 B1
6780164 Bergheim et al. Aug 2004 B2
6783544 Lynch et al. Aug 2004 B2
6827699 Lynch Dec 2004 B2
6827700 Lynch et al. Dec 2004 B2
6881197 Nigam Apr 2005 B1
6881198 Brown Apr 2005 B2
6939298 Brown et al. Sep 2005 B2
6955656 Bergheim et al. Oct 2005 B2
6962573 Wilcox Nov 2005 B1
6966888 Cullen Nov 2005 B2
6969384 de Juan, Jr. et al. Nov 2005 B2
6981958 Gharib et al. Jan 2006 B1
6989007 Shadduck Jan 2006 B2
7041077 Shields May 2006 B2
7090681 Weber et al. Aug 2006 B2
7094225 Tu et al. Aug 2006 B2
7135009 Tu Nov 2006 B2
7160264 Lisk, Jr. et al. Jan 2007 B2
7163543 Smedley et al. Jan 2007 B2
7186232 Smedley Mar 2007 B1
7192412 Zhou et al. Mar 2007 B1
7195774 Carvalho et al. Mar 2007 B2
7207965 Simon Apr 2007 B2
7220238 Lynch et al. May 2007 B2
7273475 Tu et al. Sep 2007 B2
7291125 Coroneo Nov 2007 B2
7297130 Bergheim et al. Nov 2007 B2
7331984 Tu et al. Feb 2008 B2
7431710 Tu et al. Oct 2008 B2
7488303 Haffner et al. Feb 2009 B1
7563241 Tu et al. Jul 2009 B2
7850637 Lynch et al. Dec 2010 B2
7857782 Tu et al. Dec 2010 B2
8075511 Tu et al. Dec 2011 B2
8128588 Coroneo Mar 2012 B2
20010000527 Yaron et al. Apr 2001 A1
20010025150 de Juan et al. Sep 2001 A1
20020013546 Grieshaber et al. Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020026200 Savage Feb 2002 A1
20020072673 Yamamoto et al. Jun 2002 A1
20020087111 Ethier et al. Jul 2002 A1
20020111608 Baerveldt et al. Aug 2002 A1
20020128613 Nakayama Sep 2002 A1
20020133168 Smedley et al. Sep 2002 A1
20020143284 Tu et al. Oct 2002 A1
20020156413 Williams et al. Oct 2002 A1
20020165478 Gharib et al. Nov 2002 A1
20020169130 Tu et al. Nov 2002 A1
20020169468 Brown Nov 2002 A1
20020177856 Richter et al. Nov 2002 A1
20020188308 Tu et al. Dec 2002 A1
20020193725 Odrich Dec 2002 A1
20030009124 Lynch et al. Jan 2003 A1
20030028228 Sand Feb 2003 A1
20030055372 Lynch et al. Mar 2003 A1
20030060752 Bergheim et al. Mar 2003 A1
20030069637 Lynch et al. Apr 2003 A1
20030088260 Smedley et al. May 2003 A1
20030097151 Smedley et al. May 2003 A1
20030097171 Elliott May 2003 A1
20030120200 Bergheim et al. Jun 2003 A1
20030135149 Cullen Jul 2003 A1
20030181848 Bergheim et al. Sep 2003 A1
20030187384 Bergheim et al. Oct 2003 A1
20030187385 Bergheim et al. Oct 2003 A1
20030191428 Bergheim et al. Oct 2003 A1
20030208163 Yaron et al. Nov 2003 A1
20030220602 Lynch et al. Nov 2003 A1
20030220603 Lynch et al. Nov 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20030232015 Brown et al. Dec 2003 A1
20030236483 Ren Dec 2003 A1
20030236484 Lynch et al. Dec 2003 A1
20040015140 Shields Jan 2004 A1
20040024345 Gharib et al. Feb 2004 A1
20040050392 Tu et al. Mar 2004 A1
20040073156 Brown Apr 2004 A1
20040088048 Richter et al. May 2004 A1
20040092856 Dahan May 2004 A1
20040097984 Zapata May 2004 A1
20040102729 Haffner et al. May 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040127843 Tu et al. Jul 2004 A1
20040147870 Burns et al. Jul 2004 A1
20040148022 Eggleston Jul 2004 A1
20040193095 Shadduck Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040210181 Vass et al. Oct 2004 A1
20040210185 Tu et al. Oct 2004 A1
20040216749 Tu et al. Nov 2004 A1
20040225250 Yablonski Nov 2004 A1
20040236343 Taylor et al. Nov 2004 A1
20040249333 Bergheim et al. Dec 2004 A1
20040254517 Quiroz-Mercado et al. Dec 2004 A1
20040254519 Tu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254521 Simon Dec 2004 A1
20040260227 Lisk, Jr. et al. Dec 2004 A1
20040260228 Lynch et al. Dec 2004 A1
20050008673 Snyder et al. Jan 2005 A1
20050038334 Lynch et al. Feb 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050090806 Lynch et al. Apr 2005 A1
20050090807 Lynch Apr 2005 A1
20050107734 Coroneo May 2005 A1
20050119601 Lynch et al. Jun 2005 A9
20050119636 Haffner et al. Jun 2005 A1
20050119737 Bene et al. Jun 2005 A1
20050125003 Pinchuk et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050192527 Gharib et al. Sep 2005 A1
20050197613 Sniegowski et al. Sep 2005 A1
20050209549 Bergheim et al. Sep 2005 A1
20050209550 Bergheim et al. Sep 2005 A1
20050232972 Odrich Oct 2005 A1
20050244462 Farooq Nov 2005 A1
20050250788 Tu et al. Nov 2005 A1
20050266047 Tu et al. Dec 2005 A1
20050267397 Bhalla Dec 2005 A1
20050267398 Protopsaltis et al. Dec 2005 A1
20050271704 Tu et al. Dec 2005 A1
20050273033 Grahn et al. Dec 2005 A1
20050277864 Haffner et al. Dec 2005 A1
20050283108 Savage Dec 2005 A1
20050288617 Yaron et al. Dec 2005 A1
20050288619 Gharib et al. Dec 2005 A1
20060020248 Prescott Jan 2006 A1
20060032507 Tu et al. Feb 2006 A1
20060036207 Koonmen et al. Feb 2006 A1
20060047263 Tu et al. Mar 2006 A1
20060069340 Simon Mar 2006 A1
20060074375 Bergheim et al. Apr 2006 A1
20060084907 Bergheim et al. Apr 2006 A1
20060116626 Smedley et al. Jun 2006 A1
20060149194 Conston et al. Jul 2006 A1
20060155238 Shields Jul 2006 A1
20060173397 Tu et al. Aug 2006 A1
20060195055 Bergheim et al. Aug 2006 A1
20060195056 Bergheim et al. Aug 2006 A1
20060200113 Haffner et al. Sep 2006 A1
20060235367 Takashima et al. Oct 2006 A1
20060241580 Mittelstein et al. Oct 2006 A1
20060241749 Tu et al. Oct 2006 A1
20060276739 Brown Dec 2006 A1
20070010827 Tu et al. Jan 2007 A1
20070088424 Greenberg et al. Apr 2007 A1
20070088432 Solovay et al. Apr 2007 A1
20070112292 Tu et al. May 2007 A1
20070118147 Smedley et al. May 2007 A1
20070191863 De Juan, Jr. et al. Aug 2007 A1
20070276315 Haffner et al. Nov 2007 A1
20070276316 Haffner et al. Nov 2007 A1
20070282244 Tu et al. Dec 2007 A1
20070282245 Tu et al. Dec 2007 A1
20070293807 Lynch et al. Dec 2007 A1
20080015488 Tu et al. Jan 2008 A1
20080045878 Bergheim et al. Feb 2008 A1
20080108933 Yu et al. May 2008 A1
20080200860 Tu et al. Aug 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080234624 Bergheim et al. Sep 2008 A2
20090036819 Tu et al. Feb 2009 A1
20100010416 De Juan, Jr. et al. Jan 2010 A1
20100152641 Yablonski Jun 2010 A1
20100274259 Yaron et al. Oct 2010 A1
20110087149 Theodore Coroneo Apr 2011 A1
20110087150 Theodore Coroneo Apr 2011 A1
20110087151 Theodore Coroneo Apr 2011 A1
20120123316 Horvath et al. May 2012 A1
Foreign Referenced Citations (72)
Number Date Country
0228185 Jul 1987 EP
1184010 Mar 2002 EP
1310222 May 2003 EP
1418868 May 2004 EP
1473004 Nov 2004 EP
1477146 Nov 2004 EP
1977724 Oct 2008 EP
2027837 Feb 2009 EP
2101891 Jan 1983 GB
2018289 Aug 1994 RU
2056818 Mar 1996 RU
2074686 Mar 1997 RU
2074687 Mar 1997 RU
2157678 Oct 2000 RU
WO 89-00869 Feb 1989 WO
WO 91-12046 Aug 1991 WO
WO 92-19294 Nov 1992 WO
WO-9402081 Feb 1994 WO
WO 94-09721 May 1994 WO
WO 94-09837 May 1994 WO
WO 94-13234 Jun 1994 WO
WO 9508310 Mar 1995 WO
WO 96-20742 Jul 1996 WO
WO 96-36377 Nov 1996 WO
WO-9636377 Nov 1996 WO
WO 98-23237 Jun 1998 WO
WO 98-30181 Jul 1998 WO
WO 99-26567 Jun 1999 WO
WO 00-06223 Feb 2000 WO
WO 00-64389 Nov 2000 WO
WO 00-64390 Nov 2000 WO
WO 00-64391 Nov 2000 WO
WO 00-64393 Nov 2000 WO
WO 00-64511 Nov 2000 WO
WO 01-78631 Oct 2001 WO
WO 01-78656 Oct 2001 WO
WO 01-97727 Dec 2001 WO
WO 02-36052 May 2002 WO
WO 02-070045 Sep 2002 WO
WO 02-074052 Sep 2002 WO
WO 02-080811 Oct 2002 WO
WO 02-080829 Oct 2002 WO
WO 02-087418 Nov 2002 WO
WO 02-087479 Nov 2002 WO
WO 02-089699 Nov 2002 WO
WO 02-102274 Dec 2002 WO
WO 03-015659 Feb 2003 WO
WO 03-015667 Feb 2003 WO
WO 03041622 May 2003 WO
WO 03-073968 Sep 2003 WO
WO 03-099175 Dec 2003 WO
WO 2004-014218 Feb 2004 WO
WO-2004026106 Apr 2004 WO
WO 2004-026347 Apr 2004 WO
WO 2004-043231 May 2004 WO
WO 2004-056294 Jul 2004 WO
WO 2004-060219 Jul 2004 WO
WO 2004-062469 Jul 2004 WO
WO-2004073552 Sep 2004 WO
WO 2004-110391 Dec 2004 WO
WO 2005-016418 Feb 2005 WO
WO 2005-046782 May 2005 WO
WO 2005-055873 Jun 2005 WO
WO 2005-105197 Nov 2005 WO
WO 2005-107664 Nov 2005 WO
WO 2005-107845 Nov 2005 WO
WO 2006-012421 Feb 2006 WO
WO 2006-036715 Apr 2006 WO
WO 2007-087061 Aug 2007 WO
WO 2007-115259 Oct 2007 WO
WO 2007-130393 Nov 2007 WO
WO 2008-061043 May 2008 WO
Non-Patent Literature Citations (105)
Entry
Grant, W.M. , MD, Further Studies on Facility of Flow Through the Trabecular Meshwork, A.M.A. Archives of Ophthalmololgy, Oct. 1958, vol. 60, pp. 523-533.
Hoskins, et al., “Aqueous Humor Outflow”, Becker-Shaffer's Diagnosis and Therapy of the Glaucomas, 6th Edition, Chapter 4, pp. 41-66, 1989.
Olsen, Timothy W., et al., Cannulation of the Suprachoroidal Space: A Novel Drug Delivery Methodology to the Posterior Segment, American Journal of Ophthalmology, vol. 142, No. 5, Nov. 2006, pp. 777-787.e2.
Rohen, Johannes W., Anatomy of the Aqueous Outflow Channels, Glaucoma, vol. 1, Chapter 14, pp. 277-296, Edited by J.E. Cairns, Grune & Stratton, Harcourt Brace Jovanovich Publishers, 1986.
Rowan, Patrick J., MD, Combined Cyclodialysis and Cataract Surgery, Ophthalmic Surgery and Lasers, Dec. 1998, vol. 29, No. 12, pp. 962-968 (9 pages).
Suguro K, Toris CB, Pederson JE. Uveoscleral outflow following cyclodialysis in the monkey eye using a fluorescent tracer. Invest Ophthalmol Vis Sci 1985: 26, 810.
Troncoso, Manuel U., Tantalum implants for inducing hypotny, Am Journal of Ophthalmology, vol. 32(4):499-508 (1949).
Wagner, Justin A., et al., Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused under Constant Pressure, Invest Ophthalmol Vis Sci., Published in edited form in Sep. 2004, vol. 45, Issue 9, pp. 3203-3206.
Barsky et al. “Evaluation of absorbable gelatin film (Gelfilm) in cyclodialysis clefts” Arch. Ophth. 60(6): 1044-1052,1958.
Bick M.W., “Use of tantalum for ocular drainage” Arch Ophthal. Oct. 1949; 42(4):373-88.
Bietti, G., “The present state of the use of plastics in eye surgery” Acta Ophthalmol (Copenh) 1955; 33(4):337-70.
Brown et al., “Internal Sclerectomy for Glaucoma Filtering Surgery with an Automated Trephine,” Archives of Ophthalmology, vol. 105, Jan. 1987.
Burchfield JC, Kass MA, Wax MB. Primary valve malfunction of the Krupin eye valve with disk. J Glaucoma. Jun. 1997;6(3):152-6.
Chiou et al. “Ultrasound biomicroscopy of eyes undergoing deep sclerectomy with collagen implant” Br J Ophthalmol 80 (1996), pp. 541-544.
Chylack LT, Bellows AR. Molecular sieving in suprachoroidal fluid formation in man. Invest Ophthalmol Vis Sci 17: 420, 1978.
Classen et al., “A histopathologic and immunohistorchemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation” Am. J. Ophthalmol. 122:205-12 (1996).
Cohen et al., “First day post-operative review following uncomplicated phacoemulsification” Eye 12(4):634-6 (1998).
Collaborative Normal-Tension Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998;126:487-97.
Demailly et al. “Non-penetrating deep sclerectomy (NPDS) with or without collagen device (CD) in primary open-angle glaucoma: middle-term retrospective study” International Ophthalmology 20: 131-140, 1997.
Derwent English abstract for EP 1184010, published Mar. 6, 2002 entitled: “Drainage unit for an eye, consists of a hollow line, a distribution member, and a pressure relief valve which only allows water to leave the eye chamber above a certain pressure,” Accession Nbr. 12409716 [351].
Dinakaran et al., “Is the first post-operative day review necessary following uncomplicated phacoemulsification surgery?” Eye, 14(3A):364-6 (2000).
Draeger “Chirurgische Maβnahmen bei kongenitalem Glaukom” (Surgical Interventions in Congenital Glaucoma) Klin Monatsbl Augenheilkd 1993; 202(5): 425-427 [Article in German with English summary included].
Einmahl et al., “Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye” Invest Ophthalmol Vis Sci. 43:1533-1539 (2002).
Ellis, Ra “A Reduction of Intraocular Pressure Using Plastics in Surgery” Am J Ophth. 50; 1960, 733-742.
Emi et al., “Hydrostatic pressure of the suprachoroidal space” Invest. Ophthal. Visual Sci. 30(2):233-238 (1989).
Fanous MM, Cohn RA. Propionibacterium endophthalmitis following Molteno tube repositioning. J Glaucoma. Aug. 1997;6(4):201-2.
Fuchs E., “Detachment of the choroid inadvertently during cataract surgery” [German] von Graefes Arch Ophthalmol, 51:199-224 (1900) [Article in German with English summary].
Gills et al., “Action of cyclodialysis utilizing an implant studied by manometry in a human eye” Expl Eye Res 1967; 6:75-78.
Gills JP, “Cyclodialysis implants” South Med J. 1967 60(7):692-5.
Gills, “Cyclodialysis Implants in Human Eyes” Am J Ophth 61:1966,841-846.
Goldberg “Management of Uncontrolled Glaucoma With the Molteno System” Australian and New Zealand Journal of Ophthalmology 1987; 15: 97-107.
Gordon MO, Kass. MA, for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. Design and baseline description of the participants. Arch Ophthalmol 1999:573-83.
Gross et al., “Surgical therapy of chronic glaucoma in aphakia and pseudophakia” Ophthalmology, 95:1195-201 (1988).
Harper SL, Foster CS. Intraocular lens explantation in uveitis. Int Ophthalmol Clin. 2000 Winter; 40(1):107-16.
Harrington “Cataract and glaucoma. Management of the coexistent conditions and a description of a new operation combining lens extraction with reverse cyclodialysis.” Am J Ophthalmol. May 1966;61(5 Pt 2):1134-40.
Heijl A, Leske MC, Bengtsson B, et al for the Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression. Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268-79.
Heine I., “Cyclodialysis, a new glaucoma operation” Dtsch Med Wochenschr, 31:824-826 (1905) [Article in German with English summary included].
Hildebrand et al., “Efficacy of anterior chamber decompression in controlling early intraocular pressure spikes after uneventful phacoemulsification” J. Catact Refract Surg., 29:1087-92 (2003).
Howorth DJ, “Feasibility study for a micromachined glaucoma drainage device” Cranfield University School of industrial and manufacturing science MSc Thesis Academic Year 2001-2002 Sep. 13, 2002.
Hylton et al., “Update on prostaglandin analogs” Curr Opin Ophthalmol, 14:65-9 (2003).
Javitt JC, Chiang YP. Preparing for managed competition. Utilization of ambulatory eye care visits to ophthalmologists. Arch Ophthalmol 1993;111:1034-5.
Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open-angle glaucoma relative to severity of disease. Eye 1989; 3:528-35.
Jordan J., “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma” J. Glaucoma 2006; 15:200-205.
Karlen, M. et al., “Deep sclerectomy with collagen implant: medium term results” Br. J. Ophthalmol, Jan. 1999, 83(1):6-11.
Kass MA, Heuer DK, Higginbotham EJ, et al for the Ocular Hypertension Treatment Study Group. The Ocular HypertensionTreatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-13.
Klemm et al. “Die Ultraschallbiomikroskopie als Kriterium der Funktionsprüfung des suprachorioidalen Spaltes nach kammerwinkelchirurgischen Eingriffen (Ultrasound Biomicroscopic Imaging for Assessment of the Suprachoroidal Cleft after Angle Surgery)” Klinische Monatsblätter für Augenheilkunde 1997; 210: 74-77.
Klemm et al., “Experimental use of space-retaining substances with extended duration: functional and morphological results” Graefes Arch Clin Exp Ophthalmol Sep. 1995; 233(9):592-7.
Kozlov et al., “Nonpenetrating deep sclerectomy with collagen” Eye microsurgery 3:44-46 (1990) [Article in Russian with English translation included].
Krejci L. “Microdrainage of anterior chamber of eye glaucoma operation using hydron capillary drain.” Acta Univ Carol Med Monogr. 1974;(61):1-90.
Krejci, L., “Cyclodialysis with hydroxymethyl methacrylate capillary strip (HCS). Animal experiments with a new approach in glaucoma drainage surgery” Ophthalmologica 1972; 164(2):113-21.
Kupfer “Studies on intraocular pressure. I. A technique for polyethylene tube implantation into the anterior chamber of the rabbit.” Arch Ophthalmol. Apr. 1961;65:565-70.
La Rocca “Gonioplasty in Glaucoma*A Preliminary Report” Br J Ophth 46:1962, 404-415.
Law et al., “Retinal Complications After Aqueous Shunt Surgical Procedures for Glaucoma” Arch Ophthal.; Dec. 1996; vol. 114:1473-1480.
Lee et al., “Magnetic resonance imaging of the aqueous flow in eyes implanted with the trabeculo-suprachoroidal glaucoma seton” Invest. Ophthalmol. Vis. Sci. 33:948 (1992).
Lee KY. Trabeculo-suprachoroidal shunt for treating recalcitrant and secondary glaucoma. Presented at the American Academy of Ophthalmology Annual Meeting, Anaheim, CA, 1991.
Leske MC, Heijl A, Hussein M, et al for the Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Arch Ophthalmol 2003;121:48-56.
Lichter PR, Musch DC, Gillespie BW, et al and the CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001;108:1943-53.
Losche, W., “Proposals for improvement of cyclodialysis” Klin Monatsblatter Augenheilkd Augenarztl Fortbild 1952 121(6):715-6 [Article in German with English translation included].
Marx et al., “Use of the Ganciclovir Implant in the Treatment of Recurrent Cytomegalovirus Retinitis” Arch Ophthal.; Jul. 1996; vol. 114:815-820.
McPherson “Combined Trabeculotomy and Cataract Extraction as a Single Operation” Tr. Am. Ophth. Soc., vol. LXXIV, 1976; 251-260.
Mehta KR. “The suprachoroidal hema wedge in glaucoma surgery” American Academy of Ophthalmology meeting 1977 pp. 144.
Migdal C, Gregory W, Hitchings R. Long term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994;101:1651-7.
Miglior S, Zeyen T, Pfeiffer N, et al for the European Glaucoma Prevention Study Group. The European Glaucoma Prevention Study design and baseline description of the participants. Ophthalmology 2002;109:1612-21.
Miki, MD et al., “Intraocular Cannula for Continuous, Chronic Drug Delivery-Histopathic Observations and Function” Arch Ophthal.; May 1985; vol. 103:712-717.
Molteno et al. “Long tube implants in the management of glaucoma” South African Medical Journal, Jun. 26, 1976;50(27):1062-6.
Molteno et al. “The Vicryl tie technique for inserting a draining implant in the treatment of secondary glaucoma.” Australian and New Zealand Journal of Ophthalmology 1986; 14: 343-354.
Moses RA “Detachment of ciliary body-anatomical and physical considerations” Investigative Ophthalmology & Visual Science, Assoc. for Research in Vision and Ophthalmology, US, vol. 4, No. 5, Oct. 1, 1965.
Nesterov, AP, et al., “Surgical stimulation of the uveoscleral outflow. Experimental studies on enucleated human eyes” Acta Opthalmol (Copenh) June; 57(3):409-17 (1979).
Nguyen et al., “Complications of Baerveldt Glaucoma Drainage Implants” Arch Ophthal.; May 1998; vol. 116:571-575.
O'Brien et al. “Cyclodialysis” Arch Ophthal. 1949;42(5):606-619.
Ozdamar, A., et al., “Suprachoroidal seton implantation in refractory glaucoma: a novel surgical technique” J. Glaucoma Aug. 2003; 12(4):354-9.
Pinnas, G. et al. “Cyclodialysis with teflon tube implants” Am J. Ophthalmol 1969 Nove; 68(5):879-883.
Portney GL, “Silicone elastomer implantation cyclodialysis.” Arch Ophthalmol 1973; 89: 10-12.
Pruett et al., “The Fishmouth Phenomenon-II. Wedge Scleral Buckling” Arch Ophthal.; Oct. 1977; vol. 95:1782-1787.
Qadeer “Acrylic Gonio-Subconjunctival Plates in Glaucoma Surgery” Br J Ophthalmol. Jun. 1954; 38(6): 353-356.
Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 1997; 38:83-91.
Richards et al. “Artificial Drainage Tubes for Glaucoma” Am J Ophth 60:1965,405-408.
Ritch R, Shields MB, Krupin T. The Glaucomas. St. Louis: Mosby, 1996; 337-343).
Rosenberg, L., et al. “Implants in glaucoma surgery” Chapter 88, The Glaucomas, Ritch et al. Eds. 2nd Ed. Mosby St. Louis 1986; p. 1783-1807.
Row, H., “Operation to control glaucoma: preliminary report”(1934) Arch. Ophthal 12:325.
Sampimon “A New Approach to Filtering Glaucoma Surgery” Ophthalmologica (Basel) 151: 1966, 637-644.
Schappert S. Office visits for glaucoma: United States, 1991-92. Advance data from vital and health statistics. vol. 262. Hyattsville, MD: National Center for Health Statistics, 1995.
Shaffer RN, Weiss DI. Concerning cyclodialysis and hypotony. Arch Ophthalmol 68: 25, 1962.
SOLX Clinical Literature Handout; Industry Show Feb. 2006; “The SOLX Gold Micro-shunt (GMS) treatment”.
Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med 1991;325:1412-7.
Sourdille et al. “Reticulated hyaluronic acid implant in non-perforating trabecular surgery.” J Cataract Refract Surg 25: 332-339. (1999).
Srinivasan, R., et al., “Microbial contamination of the anterior chamber during phacoemulsification” J. Cataract Refract Surg. 28:2173-6 (2002).
The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000;130:429-40.
The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthahnol 1995;120:718-31.
The Glaucoma Laser Trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. The Glaucoma Laser Trial Research Group. Ophthalmology 1990;97:1403-13.
Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991;266:369-74.
Toris CB. Extravascular albumin concentration of the uvea. Invest Ophthalmol Vis Sci 1990; 31: 43.
Toris et al. “Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye.” Investigative Ophthalmology & Visual Science. 26 (1985) 1745-1749.
Toris, C., et al., “Aqueous humor dynamics in the aging human eye” Am J. Ophthalmol., 127:407-12 (1999).
Troncosco, U.M., “Cyclodialysis with insertion of metal implant in treatment of glaucoma Preliminary report” Arch. Ophthal. 23:270 (1940).
Veen et al. “The gonioseton, a surgical treatment for chronic glaucoma” Documenta Ophthalmologica vol. 75, Nos. 3-4, 365-375.
Yablonski, “Trabeculectomy with Internal Tube Shunt: a novel glaucoma surgery” J. Glaucoma 14:91-97 (2005).
Yablonski, M., “Some thoughts on the pressure dependence of uveoscleral flow” Journal of Glaucoma, 12(1):90-92 (2003).
Zhou, J., et al., “A trabecular bypass flow hypothesis” J Glaucoma. 14(1):74-83 (2005).
Lee et al. “Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies.” Investigative Ophthalmology. vol. 5 No. 1: 59-64. Feb. 1966.
Spiegel et al. “Schlemm's Canal Implant: A New Method to Lower Intraocular Pressure in Patients With POAG?” Ophthalmic Surgery and Lasers. vol. 30, No. 6: 492-494. Jun. 1999.
Transcend Medical Inc. v. Glaukos Corporation, Transcend Medical, Inc.'s Disclosures Pursuant to Default Discovery Rule 4 (d) (United States District Court for the District of Delaware, dated Dec. 6, 2013; case No. C.A. No. 13-830 (MSG) and Certificate of Service, dated Dec. 9, 2013.
Coote. “Glaucoma Hollow Fiber Filters—A New Glaucoma Seton. Preliminary Results.” J. Glaucoma. vol. 8 No. 1 Supplement (1999):p. S4.
Cullen, et al. “Anterior Chamber of Frontal Sinus Shunt for the Diversion of Aqueous Humor: A Pilot Study in Four Normal Dogs”. Veterinary Ophthalmology. vol. 1. No. 1. (1998):31-39.
Odrich. “The New Technique During Complex Tube-Shunt Implantation”. J. Glaucoma. vol. 9 No. 3 (2000):278-279.
Related Publications (1)
Number Date Country
20110028884 A1 Feb 2011 US
Continuations (2)
Number Date Country
Parent 11615642 Dec 2006 US
Child 12905003 US
Parent 10712277 Nov 2003 US
Child 11615642 US